用户名: 密码: 验证码:
火成岩储层测井评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油勘探的发展,国内外发现的火成岩油气藏愈来愈多。国内外勘探表明,火成岩可以成为良好的油气储集层。火成岩作为一种特殊的油藏类型,正在引起越来越大的关注。火成岩储层测井评价研究是继砂岩、碳酸盐岩等储层测井评价的另一重要领域。
     火成岩这类复杂储层测井评价的难点主要有三个:一是储层的非均质性,使得应用建立在均质基础上的方法难以定量计算储层的孔隙度、渗透率、饱和度等参数;二是火山岩气藏受构造、烃源岩、相带等多种因素控制,具有多个气水系统,不同的火山机构或同一火山机构不同井之间具有各自的气水系统,区分气水层很难;三是常规测井技术难以定量确定储层的孔隙结构、裂缝宽度、孔隙度及发育程度等。
     以往在解释火成岩储层时,建立的多是岩石模型、双矿物模型或多矿物解释模型,对于含气饱和度的确定,主要是根据阿尔奇公式或采用基质孔隙与裂缝的“双重孔隙”模型计算含水饱和度,且没有考虑火成岩蚀变产生的粘土的影响。为解决火成岩储层测井评价的问题,本文采取了以下工作方法:
     ①进行岩性的判别,以确定骨架参数;
     ②应用混合骨架体积模型,采用自适应遗传优化算法计算总孔隙度、骨架含量和粘土含量;
     ③建立由基质孔隙、裂缝和非连通孔洞组成的三重孔隙模型;
     ④在上述计算出总孔隙度的基础上,计算出裂缝孔隙度、基质孔隙度和非连通孔洞孔隙度,然后应用三重孔隙模型计算出孔隙度指数m;
     ⑤建立包含粘土影响的含水饱和度方程,根据含水饱和度方程计算出含水饱和度;
     ⑥根据偶极横波等资料定性判别储层流体性质;
     ⑦根据以上结果进行储层综合评价,确定出油气水层。
     在前人已有研究成果的基础上,研究过程中提出了一些新的见解和具有创新性的处理方法。创新之处主要包括以下几个方面:
     ①运用线性降维映射方法识别火成岩岩性;
     ②建立了评价火成岩储层的混合骨架体积模型;
     ③采用自适应遗传优化算法计算总孔隙度、混合矿物骨架百分比和粘土含量;
     ④首次将三重孔隙模型用于火成岩储层测井评价中;
     ⑤建立了包含粘土影响的含水饱和度方程;
     取得的最终成果主要有:
     ①提出了评价火成岩储层的混合骨架体积模型,即将岩石体积简化成三部分:孔隙、粘土和混合骨架。
     ②根据火成岩储集空间特点,建立了由基质,裂缝和非连通孔洞组成的三重孔隙模型。三重孔隙模型能用于基质孔隙、裂缝和不连通孔洞的不同组合。
     ③建立了包含蚀变产生的粘土影响的含水饱和度方程;
     ④遗传算法最优化测井处理为综合利用各种测井资料,评价火成岩这类复杂岩性油气藏开辟了一条新的有效途径。
     ⑤在现有的测井、测试资料基础上,采用定性和定量的方法寻找火成岩气层。
At the moment, with the increase of the world demand on hydrocarbon resources, and the difficulty advancement of exploration and development, it is difficult for the clastic rock and carbonate rock to meet the demand on the energy in the future. It is very important to find reservoir of new type, and this is a general trend. The exploration in home and abroad indicates that igneous rock can become good reservoir. Under suitable conditions, igneous rock can become good reservoir if it combines well with hydrocarbon mother rock and capping formation.
     With the development of oil exploration, more and more igneous rock reservoirs are found. Igneous rock reservoirs are found in Cuba, Japan, Argentina, America and former Soviet Union during the end of 19 century and the early of 20 century. Igneous reservoirs are also found in many areas of China.
     As a particular reservoir type, igneous reservoir is attracting more and more concern. The study on evaluating igneous reservoir is another important field in reservoir evaluation by logging after sandstone and carbonate reservoir evaluation. As nonhomogeneity reservoir, the relationship between the rock and the electric property of igneous reservoir is more complicated than that of sandstone and carbonate reservoir, which arises difficulty in reservoir evaluation by logging. The complicate lithology and pore type, and the poor physical property are the bottleneck problem of logging evaluation. How to establish the evaluation model of igneous rock is the important task in the future.
     There are three main difficulties when evaluating the igneous rock by logging. First, due to the anisotropism of the reservoir, it is difficult to evaluate quantitatively using the methods based on the isotrope. Second, igneous rock reservoirs are controlled by structure, hydrocarbon mother rock and phase belt, so they have more gas and water system, and different volcanic edifice or the different well of the same volcanic edifice each have its gas and water system. Third, it is very difficult to define the pore configuration, fracture width and development degree.
     The exsiting methods on evaluating igneous rock are mainly about summing up the log response feature, identifying the lithology and simply computing the parameters. There are not many references which specially deal with the theory and method on evaluating igneous rock by logging. It can be seen that the log features of igneous rock have zonality, the lithology of different area have big difference which are arised by the complex of igneous rock. The interpretation models are established on analytical data of special area, and many equations are defined according to experience, they are different in different area. The exsiting models mainly are two-mineral model ,rock mineral or multi-mineral model when igneous rock are interpreted .It is dependant on Archie’s equations to derive water saturation. In order to well evaluating igneous rock, this thesis aims at establishing appropriate mixed matrix model and porosity model,then defining the water saturation , forming the theory and method, finally applying to reality by systematically researching the method and theory of evaluating igneous rock. The main research contents include:
     ①summing up the log response features
     Referred to the log response features in the references home and abroad, and combined the log response features of igneous rock in north Songliao basin, the log response features of different lithology are summing up and log response laws are understood.
     ②research on the methods of identifying igneous rock lithology
     The relationships between lithology and log curves are studied and the close or distant relationships between different lithology are evaluated by using factor analysis method, and the favorable curves which are used to identify lithology are selected .The main methods used to identify lithology are:R-factor analysis method, fuzzy clustering method, nerve network method, TAS method and linear dimension-reducing mapping method.
     ③Identify fracture and quantitatively evaluate the extent of fracture development
     This paper studies the extent of fracture development and computes the fracture porosity, fracture openness and fracture permeability by using the conventional logging data. In view of the complexity of igneous rock, this paper analyzes the effectiveness from the two resources by comparing the fracture porosity computed with the fracture parameter derived from FMI.
     ④Mixed matrix model and porosity model which are appropriate for evaluating igneous rock are established.
     ⑤The water saturation equation is defined.
     ⑥The methods of qualitatively identifying the fluid property in igneous rock are researched.
     ⑦Optimization algorithm which is used to compute reservoir relevant parameter are dealt with.
     ⑧The methods of quantitatively identifying the fluid property in igneous rock are researched.
     Referring to the characteristic of igneous rock, this paper tries to resolve the problems in evaluating igneous rock. On the basis of summing up the log response of igneous rock in various areas and the existing research outcomes of predecessors, this paper proposed some new ideas and processing methods which have innovation. The innovations include:
     ①Linear dimension-reducing mapping method is used to identify igneous rock lithology.
     ②Mixed matrix model is established to evaluate igneous reservoir;
     ③Triple porosity model is used to evaluate igneous reservoir first;
     ④Self adaptive genetic optimization algorithm is used to compute total porosity, mixed mineral and shale content.
     ⑤The methods of qualitatively identifying the fluid property in igneous rock are researched.
     ⑥The water saturation equation is defined.
     ⑦The methods of quantitatively identifying the fluid property in igneous rock are researched.
     After finishing above research, the following awarenesses are achieved:
     ①on identifying lithology of igneous rock
     The relationships between the development extent of igneous reservoir and rock type are not very obvious. Basic basalt, mediosilicic andesite, acidic rhyolite and volcaniclastic rock all can become reservoir rock. The first work of evaluating igneous rock is to identify lithology. Identifying the lithology accurately is the foundation of accurately computing porosity and water saturation.
     The methods of identifying lithology include: the method of crossplot, the method of facotr analysis, the method of fuzzy clustering , the method of nerve network, the method of TAS. This paper newly proposed the method of linear dimension-reducing mapping.
     ②on mixed mineral model
     According to mixed mineral model, the rock volume can simplify into porosity, shale and mixed matrix, big differences of physical property are existed among them. Therefore, the discriminability of the model is advanced, and it is easy to accurately compute the entire parameters, which raised the accuracy of the reservoir parameters. Moreover, under the restrictions of matrix content, the relative contents of the minerals which make up of the igneous rock can be computed, so the geology lithological profile like ELAN can be achieved .In short, the mixed mineral model protruded the main contradiction, dissolved less important contradiction.
     ③on triple porosity model
     Igneous reservoir is classified into fractured reservoir, and its pore space has many types, including: pore, fracture, dissolved pore (vug) and fracture-pore, fracture-dissolved pore (vug), dissolved cavern-fracture due to their coupling. The pore space of fractured reservoir is far more complex than that of porous reservoir. Fracture, dissolved pore, dissolved cavern, matrix pore and chicken wire pattern system due to their connection are main pore spaces of igneous reservoir.
     The triple porosity model which is built in this paper based on matrix, natural fracture and non-connected vug is suitable to the characteristic of igneous rock. Triple porosity model is suitable for all combinations of matrix, fracture and non-connected vug porosities. Moreover, it has significant directing sense for the reservoir evaluation of carbonate and metamorphic reservoir. The definition of porosity of each type is the key to use the triple porosity model. If nuclear magnetic resonance, micro-resistivity imaging logs and a variety of sonic imaging logs which permit reasonable estimates of some rock properties in complex reservoir are available, it will be easy to define porosity of each type. But, if they are not available, this paper tried to solve it by traditional logs.
     ④on genetic optimization log interpretation
     Optimization log interpretation does not directly use limited log information and response equations to compute reservoir parameters, whereas according to generalized inversion theory of geophysics, it comprehensively uses all kinds of log information and relevant geology information, and utilize optimization mathematical approach, statistics probability, error theory and the technique of quality control to resolve geologic parameter and evaluate formation. Those parameters can reflect the original appearance of complex lithology formation.
     Genetic algorithm is a robust search algorithm which can be used to optimization computation in complex system. It has many merits.
     ⑤on identifying fluid property
     The geologic condition that igneous reservoir is formed is complex, and it has powerful anisotropism. First, the log responses vary a lot between different lithology, so it is very difficult to analyze the gas zone by using the same standard; Secondly, borehole wall collapse of igneous rock is serious, which makes the readings of density log curve less low and the readings of neutron log curve higher. Moreover, due to the different sensibility of igneous reservoir to logging suite, it is very difficult to directly establish the relationship between gas surveying data and gas-bearing reservoir. Therefore, on the basis of the existing logging and test data, it is a effective way to find gas-bearing reservoir in igneous rock by using qualitative and quantitative methods at the same time. The qualitative method is simple and audio-visual, but it requires good borehole. It accords with the geologic conditions of igneous rock when the qualitative method combined with the quantitative method.
引文
[1] A.M.Sibbit,O.Faivre .The dual laterolog response in fractured rocks . Transactions of the SPWLA Twenty-Sixth annual logging symposium, 1985,paper T
    [2] Aguilera R. Naturally Fractured Reservoirs, PennWell Books, Tulsa, Oklahoma, 1995
    [3] Aguilera R.F., Aguilera R . A triple porosity model for petrophysical analysis of naturally fractured reservoirs,2004,Petrophysics,45(2):157-166
    [4] Aguilera, M. S. and Aguilera, R. Improved models for petrophysical analysis of dual porosity reservoirs, Petrophysics,2003,44(1):21-35
    [5] Aguilera, R. Analysis of naturally fractured reservoirs from conventional well logs: Journal of Petroleum Technology,1976,28(7):764-772
    [6] Alberto Khatchikian. Log evaluation of oil-bearing igneous rocks. SPWLA 23 annual logging symposium. 1982.
    [7] Archie G.E. The electrical resistivity log as an aid in determining some reservoir characteristics: 1942,Trans.AIME,vol.146,p.54-67
    [8] Bourima Ali Belgasem, An evaluation of an oil-bearing granite reservoir from well logs, Transactions of the SPWLA Twenty-Sixth annual logging symposium, 1993, Paper K.
    [9] C.Galle. Neutron porosity logging and core porosity measurements in the beauvior granite, Massif Central Range France. Applied Geophysics, 1994, 32
    [10] Draxler J. K., Edwards D.P. Evaluation procedures in the Carboniferous of Northern Europe: Ninth International Formation Evaluation Transactions, Paris, 1984, France Eberle D. Interpretation of multi-method geophysical borehole logging data from KTB oberpfalz VB using multivariate statistical analyses. Scientific Drilling, 1992, 3(1): 16-26
    [11] Guyed H.Fundamental data for the interpretation of electric logs.oil weekly,1944,October 30.
    [12] Herrick D.C. Conductivity models, pore geometry, and conduction mechanisms. SPWLA, 23rd annual logging symposium transactions, 1988
    [13] Khatchikan A. Log evaluation of oil-bearing igneous rocks . SPWLA, 23rd annual logging symposium transactions, 1982
    [14] Koning T. Oil and gas production from basement reservoirs:Examples from Indonesia, USA and Venezuela [A]. Petford N , McCaffrey K J W. Hydrocarbons in crystalline rocks [C] .London , The Geological Society of London , 2003. 83-93.
    [15] Lucia,F.J.Petrophysical parameters estimated from visual descriptions of carbonate rocks:A field classification of carbonate pore space.Journal of petroleum technology,1983,vol(35):629-637
    [16] Nelson P.H., Glenn W.E..Influence of bound water on the neutron log in mineralized igneous rocks. Kerherve J. An introduction to volcanic reservoirs and to their evaluation from wireline electrical measurements. Note for a seminar, 1977.
    [17] Serra. Fundamentals of welllog Interpretation Developments in Petroleum Science (15B), 1986
    [18] PAN Baozhi, XUE Linfu, HUANG Buzhou, et al. Evaluation of volcanic reservoirs with the“QAPM mineral model”using a genetic algorithm [J]. APPLIED GEOPHYSICS, 2008, 5(1):1-8
    [19] Potter J , Konnerup Madsen J . A review of the occurrence and origin of abiogenic hydrocarbons in igneous rocks [A]. Petford N , McCaffrey K J W. Hydrocarbons in crystalline rocks [C] .London ,The Geological Society of London , 2003. 151-175.
    [20] Rasmus J.C. A variable cementation exponent m of carbonate pore systems[J].The Log Analyst, 1983,24(6):13-23
    [21] Rasmus, J.C. A summary of the effects of various pore geometries and their wettabilities on measured and in-situ values of cementation and saturation exponents. The log analyst, March-April 1987
    [22] Rigby A F. Fracture identification in an igneous geothermal reservoir Surprise Valley. California, SPWLA, 21st annual logging symposium, 1980
    [23] Sanyal S.K., Juprasert S., Jubasche J..An evaluation of rhyolite-basalt- volcanic ash sequence from welllogs[J]. The log analyst,1980,Jan-Feb.
    [24] Schutter S R. Hydrocarbon occurrence and exploration in and around igneous rocks [A]. Petford N , McCaffrey K J W.Hydrocarbons in crystalline rocks [C] . London , The Geological Society of London , 2003. 7-35.
    [25] Scott keys W. Borehole geophysics in igneous and metamorphic rocks. The Log Analyst, 1979,July-August,14-28
    [26] Serra O. Formation Micro Scanner image interpretation: Schlumberger Educational Service,1989, Houston, SMP-7028, 117p
    [27] T D范高尔夫-拉特.裂缝油藏工程基础[M].陈钟祥,金玲年,秦同洛译.北京:石油工业出版社,1989
    [28] Towle,G..An analysis of the formation resistivity factor-porosity relationship of some assumed pore geometries.1962,paper C ,presented at third annual meeting of SPWLA,Houston,Texas
    [29] Winsauer,W.O.,Shearin,Jr,H.M.,Masson,P.E.,et al.Resistivity of brine-saturated sands in relation to pore geometry.AAPG Bull,vol(36):253-277
    [30] Wyllie,M.R, J.Rose,W.Some theoretical considerations related to the quantitative evaluation of the physical characteristis of reservoir frock from electric log data.J.Petrol.Tech.1950,vol(2):105-112
    [31] Yuli Mitsuhata,Koichi Mat suo, Mat sto Minegishi. Magnetotelluric survey for exploration of a volcanic2rock reservoir in the Yurihara oil and gas field, Japan [J].Geophysical Prospecting, 1999, 47(2):195-2l8.
    [32]柏松章.碳酸盐岩潜山油田开发[M].北京:石油工业出版社,1996
    [33]卞德智,邱子刚.模糊数学识别火成岩岩性的方法及地质效果.测井资料的地质应用[M].北京:石油工业出版社,1991,P57-67
    [34]卞德智.克拉玛依油田一区石炭系玄武岩储层测井解释研究[J],新疆石油地质,1987,8(2)
    [35]陈钢花,范宜仁,代诗华.火山岩储层测井评价技术[J].中国海上油气,2000,14(6):422-428
    [36]陈建文,魏斌,李长山等.火成岩岩性的测井识别[J].地学前缘,2000,7 (4):458
    [37]陈建文.一门新兴的边缘科学-火成岩储层地质学[J].海洋地质动态,2002, 18(4): 19-22
    [38]代诗华,罗兴平,王军等.火成岩储集层测井响应与解释方法[J].新疆石油地质,1998,19(6):466-470
    [39]邓攀,陈孟晋,高哲荣,等.火成岩储层构造裂缝的测井识别及解释[J].石油学报,2002,23(6):32-36
    [40]丁次乾.矿场地球物理[M].东营:石油大学出版社,1992
    [41]丁秀春.测井响应在火成岩储层研究中的应用-以辽河油区东部凹陷中北段为例[J].特种油气藏,2003,10(1):69-72
    [42]范宜仁,邓少贵,周灿灿.低矿化度条件下的泥质砂岩阿尔奇参数研究[J].测井技术,1997,21(3):200-204
    [43]范宜仁,黄隆基,代诗华.交会图技术在火成岩岩性与裂缝识别中的应用[J].测井技术,1999,23(1):53-56
    [44]高楚桥,李先鹏,吴洪深,等.温度与压力对岩石物性和电性影响实验研究[J].测井技术,2003,27(2):110-112.
    [45]高知云,章谦澄.黄骅盆地新生代火山岩与油气[M].大港油田勘探丛书,北京石油工业出版社,1999
    [46]葛家理.油气导渗流力学[M].北京,石油工业出版社,1982
    [47]郭洪岩.升平气田火成岩储层特征及有利储集区预测研究[D].吉林:吉林大学,2003
    [48]郭占谦.火山作用与油气田的形成和分布[J].新疆石油地质,2002 , 23(3):183-185.
    [49]何琰,伍友佳,吴念胜.火成岩油气藏研究[J].大庆石油地质与开发,1998,18(4): 6-14.
    [50]胡守仁,余少波,戴葵.神经网络导论[M].北京:国防科技大学出版社,1992
    [51]黄布宙,潘保芝.松辽盆地北部深层火成岩测井响应特征及岩性划分[J].石油物探,2001,40(3) :42-47
    [52]贾承造,赵文智,邹才能,等.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发, 2007,34(3):257-272.
    [53]贾文玉,田素月,孙耀庭.成像测井技术与应用[M].北京:石油工业出版社,2000
    [54]金强.裂谷盆地生油层中火成岩及其矿物与有机质的相互作用[J].地球科学进展, 1998,13(6):542-546.
    [55]景永奇,等.利用裂缝指示曲线判别花岗岩潜山纵向裂缝发育带[J].测井技术,1999,23(1):38-42
    [56]孔令福.辽河盆地东部凹陷火成岩储层测井评价方法研究[D].大庆石油学院,2003
    [57]匡立春.克拉玛依油田5-8区二叠系佳木河组火成岩岩性识别[J],石油与天然气地质,1990,11(2)
    [58]匡立春.裂缝孔隙度指数的选择的探讨[J].地球物理测井, 1990
    [59]郎东升.大庆油区火成岩储层识别综合研究[J].隐蔽油气藏形成机理与勘探实践,2004: 329-334
    [60]李瑞,向运川,杨光惠,等.孔隙结构指数在鄂尔多斯中部气田气水识别中的应用[J].成都理工大学学报(自然科学版), 2004 ,31(6):689-692
    [61]李凤琴,任海容,崔秀芝,等.复杂岩性裂缝性储层测井评价[J].河南石油,2004,18(3):22-24
    [62]李宁.电阻率-孔隙度、电阻率-含油气饱和度关系的一般形式及其最佳逼近函数类型的确定⑴[J].地球物理学报,1989,32(5):581-591
    [63]李瑞,肖崇礼,杜奉屏.混合矿物体积模型优化计算复杂岩性储层参数[J].物探化探计算技术,1993,15(1):44-48
    [64]李瑞,朱介寿,李能根.古潜山火成岩裂缝带划分与孔隙度计算[J].物探化探计算技术,1996,18(2):167-170
    [65]李善军,肖承文,汪涵明,等.裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释[J].地球物理学报,1996,39(6)
    [66]李石,王彤.火成岩[M].北京:地质出版社,1981
    [67]李思田,路凤香,林畅松,等.中国东部及邻区中、新生代盆地演化及地球动力学环境[M].武汉:中国地质大学出版社, 1997.
    [68]李亚辉.高邮凹陷北斜坡辉绿岩与油气成藏[J].地质力学学报,2000,6(2):17-22
    [69]李亚美,等.基础地质[M].北京,地质出版社, 1994
    [70]李舟波.地球物理测井数据处理与综合解释[M].北京,2009,地质出版社
    [71]刘呈冰,等.全面评价低孔裂缝-孔洞型碳酸盐岩及火成岩储层[J].测井技术,1999,23(6):57-65
    [72]刘红岐,彭仕宓,唐洪.苏里格庙气田气层识别方法研究[J].西南石油学院学报,2005,27(1):9-13
    [73]刘启,舒萍,李松光.松辽盆地北部深层火成岩气藏综合描述技术[J].大庆石油地质与开发,2005,3(26):21-24
    [74]刘为付,王永生,杜刚.松辽盆地徐家围子断陷营成组火成岩储集层特征[J].特种油气藏, 2004,11(2)
    [75]卢颖忠,黄智辉,管志宁,等.储层裂缝特征测井解释方法综述[J].地质科技情报,1998,17(1): 85-89
    [76]吕炳全,张彦军,王红罡,等.中国东部中、新生代火成岩油气藏的现状与展望[J].海洋石油, 2003,79(4):522-529.
    [77]罗静兰,邵红梅,张成立.火成岩油气藏研究方法与勘探技术综述[J].石油学报, 2003,24(1): 31-38.
    [78]罗静兰,曲志浩,孙卫,等.风化店火山岩成因!储集孔隙类型及其火山岩相与油气的关系[J].石油学报,1996,17(1):32-39
    [79]罗静兰,曲志浩.风化店火成岩岩相、储集性与油气的关系[J].石油学报,1996(1):32—39.
    [80]罗群,刘为付,郑德山.深层火成岩油气藏的分布规律[J].新疆石油地质,2001,22 (3):196-198.
    [81]马全华.辽河盆地东部凹陷欧利坨子地区特殊储层评价技术研究[D].北京:中国地质大学,2008
    [82]孟宪波,韩淑静.商741地区火成岩储层研究[J].特种油气藏,2003,(9):78-81
    [83]宁从前,谭廷栋,李宁.核磁共振测井在天然气勘探中的应用[J].地球物理学进展,2001,16(2):42-49
    [84]牛嘉玉,张映红,袁选俊,等.中国东部中、新生代火成岩石油地质研究、油藏勘探前景及面临问题[J].特种油气藏, 2003,10(1): 7-12.
    [85]欧阳健,王英杰.裂缝型复杂岩性地层的测井解释[M].测井年会论文集,1988:219-223
    [86]欧阳健.用最优化方法研究含油火成岩的测井解释.测井技术,1985,9(1):1-16
    [87]欧阳健.用最优化方法研究含油火成岩的测井解释[J].1985,测井技术,19(1): 1-16
    [88]潘保芝,薛林福,李舟波等.裂缝性火成岩储层测井评价方法与应用[M].北京:石油工业出版社,2003
    [89]庞彦明.酸性火山岩储层储集空间特征与评价研究-以松辽盆地北部营城组为例[D].浙江大学,2006
    [90]钱峥.济阳坳陷罗[5]块火成岩油藏储集层概念模型[J].石油勘探与开发,1999,26(6),72-74
    [91]秦启荣,黄平辉,周远志,等.全直径样品分析在测井解释裂缝孔隙度中的应用研究[J].天然气地球科学,2005,16(5):637-640
    [92]秦绪英,肖立志,陈有明.声波全波测井的应用研究[J].石油地球物理勘探,2004,39(1):82-85
    [93]邱家骧,陶奎元,赵俊磊,马昌前.火成岩[M].北京:地质出版社,1996
    [94]邱家骧,林景仟.岩石化学[M].北京:1991,地质出版社
    [95]邱家骧,陶奎元,赵俊磊等.火成岩[M].北京:地质出版社,1996,10-22
    [96]曲志浩,于庄敬.火成岩油藏描述[M].北京:石油工业出版社,1996
    [97]冉启全,胡永乐,任宝生.火成岩岩性识别方法及其应用研究—以大港枣园油田枣35块火成岩油藏为例[J].中国海上油气,2005,17(1)
    [98]尚林阁,潘保芝.应用模糊数学统计识别花岗岩古潜山裂缝的方法与效果[J].长春地质学院学报,1986,No.4
    [99]邵维志.黄骅凹陷火成岩储层测井响应特征研究[J].测井技术,2006,30(2)
    [100]施振飞,蔡晓明,廖东良.江苏油田泥灰岩裂缝性储层测井解释方法研究[J].测井技术,2004,28(4):301-305
    [101]石油测井情报协作组编.测井新技术应用[M].北京:石油工业出版社,1998.
    [102]宋延杰,王秀明,卢双舫.骨架导电的混合泥质砂岩通用孔隙结合电阻率模型研究[J].地球物理学进展,2005,20(3):747-756
    [103]苏成义,张玲,史建忠,等.缝洞型古潜山油藏储量参数解释方法研究[J].特种油气藏,2003,10(2):38-40
    [104]孙鼐,彭亚鸣.火成岩石学[M].北京:地质出版社, 1985
    [105]谭廷栋.裂缝油气藏测井解释模型及评价方法[M].北京:石油工业出版社,1987
    [106]谭廷栋.天然气勘探中的测井技术[M].北京:石油工业出版社,1994
    [107]汤永梅,秦菲莉等.致密深层气层测井评价方法研究[J].河南石油,2004 ,18(5): 20-22
    [108]陶果,岳文正,谢然红,等.岩石物理的理论模拟和数值实验新方法[J].地球物理学进展,2005,20(1):4-11
    [109]陶奎元,杨祝良,王力波,等.苏北闵桥玄武岩储油的地质模型[J].中国地质大学学报,1998,3(3):272-276
    [110]田云英,夏宏泉.基于多矿物模型分析的最优化测井解释[J].西南石油学院学报,2006,28(4):9-13
    [111]王碧泉,陈祖荫.模式识别理论、方法和应用[M].地震出版社,1989
    [112]王贵清.大港油田气层测井识别技术[J].国外测井技术,2004,19(6):10-14
    [113]王青,李国平,赵新民.复杂储集空间储集层测井解释方法研究[J].测井技术,2003,27(5):389-393
    [114]王维东.火成岩储层油气水层测井识别方法研究[D].硕士论文,大庆石油学院,2005
    [115]王小平,曹立明著.遗传算法—理论、应用与软件实现。西安:西安交通大学出版社,2002,
    [116]魏斌,陈建文,李长山等.徐家围子断陷火成岩岩性的测井识别技术[J].特种油气藏,2003,10(1):73-75
    [117]魏斌,柯启宇,李能根.中、深部天然气层识别及其分布特征[J].测井技术,1996, 20(4):44-55
    [118]吴昌志,顾连兴,任作伟,等.中国东部中、新生代含油气盆地火成岩油气藏成藏机制[J].地质学报,2005,79(4):522-529.
    [119]吴昌志,顾连兴,任作伟,等.辽河油田欧利沱子潜火山岩及其成藏机制[J].地质论评,2003,49(2):162-167
    [120]吴海波.松辽盆地北部深层火成岩储层裂缝特征及测井评价[D].长春,吉林大学地球探测科学与技术学院,2004
    [121]吴海波.松辽盆地北部深层火成岩储层裂缝特征及测井评价[M]. 2004,吉林大学
    [122]吴简彤,王建华.神经网络技术及及其应用[M].哈尔滨:哈尔滨工程大学出版社,1998
    [123]徐朝晖,焦翠华,王绪松,等.碳酸盐岩地层中双孔隙结构对电阻率及胶结指数的影响[J].测井技术,2005,29(2):115-117
    [124]玄光男[日],程润伟著,汪定伟等译.遗传算法与工程设计[M].北京:科学出版社,2000
    [125]闫春德,俞惠隆,余芳权,等.江汉盆地火山岩气孔发育规律及其储集性能[J].江汉石油学院学报,1996,18(2):1-6
    [126]闫磊,潘保芝,陈玉魁.松辽盆地东岭地区火山岩气层测井识别与综合评价[J].物探与化探,2008,32(6):657-660
    [127]杨碧松.低矿化度地层水地层油气水层识别研究[J].天然气工业(地质勘探),2000,20(3): 42-44
    [128]杨申谷,吴洪珍.大洼油田中、新生界火成岩的测井识别方法[J].江汉石油学院学报,2003,25(2) :58-59
    [129]伊培荣,彭峰,韩芸.国外火成岩油气藏特征及其勘探方法[J] .特种油气藏, 1998,5(2): 65-70.
    [130]雍世和,张超谟.测井数据处理与综合解释[M].石油大学出版社,1996
    [131]雍世和.最优化测井解释[M].山东东营,石油大学出版社,1995
    [132]翟光明.中国石油地质志卷一[M].北京:石油工业出版社1987
    [133]张福功.辽河盆地东部凹陷中段火成岩岩性测井评价方法研究[J].海洋石油,2005
    [134]张明禄,石玉江.复杂孔隙结构砂岩储层岩电参数研究[J].石油物探, 2005,44(1):21-23
    [135]张文修,梁怡,著.遗传算法的数学基础[M].西安:西安交通大学出版社,2000
    [136]张旭.复杂碎屑岩储层测井参数计算方法研究[J].天然气勘探与开发,2003,26(3): 17-22
    [137]赵澄林,等.辽河盆地火成岩与油气[M].北京:石油工业出版社,1999
    [138]赵澄林,刘孟慧等.特殊油气储层[M].北京:石油工业出版社,1997
    [139]赵建,高福红.测井资料交会图法在火成岩岩性识别中的应用[J].世界地质,2003 ,22 (2) :136-140
    [140]赵杰,王宏建,王鹏.大庆探区复杂储层测井综合评价技术[J].中国石油勘探,2004,9(4):49-54
    [141]赵良孝,补勇.碳酸盐岩储层测井评价技术[M].北京:石油工业出版社,1994
    [142]赵喜元.准噶尔盆地天然气储层测井识别方法研究及应用[J].新疆石油地质,1995,16(2): 135-139
    [143]赵旭东.石油数学地质概论[M].北京:石油工业出版社,1992
    [144]赵彦超,吴春萍,吴东平.致密砂岩气层的测井评价-以鄂尔多斯盆地大牛地山西组一段气田为例[J].地质科技情报,2003,22 (4): 65-70
    [145]赵永军,李汉林.石油数学地质[M].山东,1998,石油大学出版社
    [146]周改英,赵喜亮.多矿物模型分析的最最优化测井解释[J].河南石油,2005,19(5):22-24
    [147]朱海华.成像测井在火成岩中的应用[J].石油仪器,2007,21(3):63-66
    [148]朱建华,王晓艳.核磁测井识别火山岩气层应用研究[J].国外测井技术,2007,22(4):7-11
    [149]邹长春,严成信,李学文.神经网络在枣北地区火成岩储层测井解释中的应用[J].石油地球物理勘探,1997,32 (增刊2) :27-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700