用户名: 密码: 验证码:
板坯连铸结晶器内传热与摩擦行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结晶器是连铸机的核心部件,完成将钢液初步凝固成型的任务。结晶器与铸坯之间会发生复杂的热、力行为的作用,结晶器内的传热凝固与摩擦润滑状态决定结晶器的工作状况,最终决定铸坯的表面质量和连铸机的生产能力。当前结晶器监控技术的核心是热学和力学行为的在线检测,其目的是能够实时了解结晶器与铸坯间的传热、摩擦和润滑状况,为实现铸坯质量的在线预测和调控提供帮助和支持。因此,分析和掌握结晶器内热学和力学行为的作用机理,开发和应用基于实测数据的结晶器内传热与摩擦润滑的计算方法,是顺应高效连铸技术发展的根本要求。
     本文以连铸结晶器为研究对象,围绕着连铸结晶器内发生的传热和摩擦行为展开工作,着眼于推动和促进结晶器热、力行为研究的生产应用,归纳总结以往研究工作的成果与不足,对结晶器内的传热凝固和摩擦润滑行为进行模拟与检测研究。首先,建立基于实测的板坯连铸结晶器传热反问题数学模型,并对实际工况下的结晶器传热与铸坯凝固行为进行分析;其次,推导并建立结晶器-保护渣-铸坯界面摩擦行为的数学模型,对结晶器内的润滑摩擦行为进行讨论;第三,基于液压振动装置驱动的板坯连铸机,研究和建立结晶器摩擦力的瞬态检测模型,并对摩擦力的检测结果进行分析;最后综合模拟计算与检测实验的内容,提出结晶器内传热与摩擦状态联合监测的应用构想,并进行初步的设计与讨论。
     针对板坯结晶器热电偶的排布特点,研究并建立板坯连铸结晶器传热反问题的数学模型。基于实测温度数据,对结晶器传热与铸坯凝固行为进行了模拟计算,细致分析了实际工况下结晶器内的热流和坯壳厚度分布,以及拉速的影响,并对模型的合理性和传热计算应用的可行性进行了验证。
     依据摩擦学的基本原理,利用结晶器保护渣的界面模型,界定并划分铸坯表面不同的接触和摩擦状态,同时引入了混合润滑理论,建立了详细描述结晶器-保护渣-铸坯间界面摩擦行为的数学模型。利用基于实测的板坯结晶器传热计算结果,对结晶器与铸坯间的液渣膜厚度分布、保护渣的润滑状况及界面上摩擦应力的变化和影响因素等进行了分析和讨论,并由此提出了可用于生产现场的结晶器保护渣热态润滑摩擦状态的检测方法。
     基于液压振动装置驱动的板坯连铸机,根据经典的受迫振动理论,对结晶器振动过程中的受力状况进行分析,确定了结晶器摩擦力的检测思路,回归出空振输出力的计算模型,并对模型的合理性及参数的取值规律进行了讨论。根据结晶器摩擦力的检测结果,对实际生产条件下的摩擦力的瞬态行为、其相关参数的变化、振动方式的影响和摩擦力的异常状况等进行了分析,结果表明:正常工况下,瞬态摩擦力近似随结晶器振动速度变化,二者符合较好;漏钢前,摩擦力随振动速度变化的趋势不再明显,摩擦力变化紊乱、无规则。
The mould is the core component of continuous caster for primary cooling and initial shell forming of liquid steel.There is a complex interaction of thermo-mechanical behaviors between mould and strand.The states of heat transfer,solidification,friction and lubrication determine the mould working conditions,furthermore,determine strand surface quality and production capacity of continuous caster.At present,the key of mould monitoring technique is on-line detection of thermo-mechanical behaviors,the aim of which is to understand the status of heat transfer,friction and lubrication between mould and strand immediately,in order to provide the support for on-line forecast and control of strand quality.Therefore,it complies with the basic requirement of the development of high efficiency continuous casting technology,to analyze and master the mechanism of thermo-mechanical interaction behaviors in mould,and to develop and apply the calculation methods of heat transfer and friction in mould based on measured data.
     In this paper,the mould of continuous slab caster is taken as the research object,the study is spread around heat transfer and friction behaviors occurring in the mould.With a view to drive and promote the production application of the study on mould thermo-mechanical behaviors,the achievements and shortage of previous works are summarized,the simulating and detecting studies on heat transfer,solidification,friction and lubrication behaviors are conducted.Firstly,based on the measured data of mould temperature during slab continuous casting,an inverse problem model is built,and the mould heat transfer and the strand solidification in the practical production are analyzed.Secondly, the mathematical model of friction behavior on mould/slag/strand interface is derived and built,and the lubrication behavior in mould is discussed.Thirdly,based on the slab caster equipped with hydraulic oscillators the transient detecting model of mould friction is researched and built,and the detection results of mould friction are analyzed.Finally, integrating the contents of simulating calculation and detection experiment,the application idea of combined monitoring of heat transfer and friction states in mould is put forward with primary design and discussion.
     An inverse problem model of mould heat transfer in slab continuous casting is researched and built aiming at the installation characteristics of thermocouples in slab mould. Based on measured temperature data the behaviors of mould heat transfer and strand solidification are simulated,and then the distributions of heat flux and shell thickness,and the effect of casting speed in the practical production are detailedly analyzed.And the rationality and feasibility of heat transfer calculation is validated.
     The mathematical model to describe friction behavior on mould/slag/strand interface is built with introducing mixed lubrication theory by well defined and divided different contacting and lubricating states on strand surface.Using the calculation results of mould heat transfer based on measuring data mentioned above,the thickness distribution of liquid slag film between mould and strand,slag lubrication status,frictional stress variation on the interface and their influence factors are analyzed.After that a detecting method of thermal lubrication and friction state of mould fluxes is put forward,which can be used for production field.
     On the basis of the slab caster equipped with hydraulic oscillators and the classical forced oscillation theory,the mould force situation during oscillation is analyzed and the detection idea of mould friction is determined.The calculation model of cylinder force at empty state is regressed,and the rationality and the range of parameters are discussed.Based on the detecting results of mould friction,frictional transient behavior,relative parameters variation,effect of oscillation mode and abnormal status are analyzed.The results show that the transient friction approximately changes with oscillation velocity during the normal state, both of which coincide well;abnormal fluctuation of friction would occur before the breakout with bad coincidence between friction and velocity.
引文
[1]Paul N.连铸现状及展望.第一届欧洲连铸会议,佛罗伦萨,1991:3-12.
    [2]干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模型.北京:冶金工业出版社,2001.
    [3]Karl S.Driving force for innovation in continuous casting.CCC'04,Beijing,2004:9-14.
    [4]张兴中.我国连续铸钢技术的发展状况和趋势.钢铁研究学报,2004,16(6):1-6.
    [5]Yin R Y.Development of continuous casting in China in the 21st century.CCC'08,Beijing,2008:1-12.
    [6]刘青,田乃媛,张永元等.高效连铸的重要技术.钢铁研究,2000,(1):54-58.
    [7]张兴中,那贤昭,倪满森.高效连铸基本问题的介绍与评价.钢铁,2000,35(4):62-64.
    [8]Schwerdtfeger K.Heat withdrawal in the mold in continuous casting of steel.Review and analysis.Steel Research International,2006,77(12):911-920.
    [9]Zhang L,Kang F,Xu R J.The present status and future development of Baosteel CC technology.CCC'04,Beijing,2004:84-91.
    [10]Brimacombe J K.Empowerment with knowledge toward the intelligent mold for the continuous casting of steel billets.Metallurgical and Materials Transactions B,1993,24B(6):917-934.
    [11]Bakshi I A,Brendzy J L,Walker N et al.Mould-strand interaction in continuous casting of steel billets Partl Industrial trials.Ironmaking and Steelmaking,1993,20(1):54-62.
    [12]Huang X,Thomas B G.Modeling of transient flow phenomena in continuous casting of steel.Canadian Metallurgical Quarterly,1998,37(3):197-212.
    [13]Araki T,Ikeda M.Optimization of mold oscillation for high speed casting-new criteria for mold oscillation.Canadian Metallurgical Quarterly,1999,38(5):295-300.
    [14]卢盛意.连铸坯质量.北京:冶金工业出版社,1994.
    [15]Jiang Z K,Cheng N L,Zou J S.Mould-the heart of slab continuous caster.CCC'04,Beijing,2004:427-430.
    [16]Thomas B G,Jenkins M S,Mahapatra R B.Investigation of strand surface defects using mould instrumentation and modeling.Ironmaking and Steelmaking,2004,31(6):485-494.
    [17]殷瑞钰.关于21世纪发展连续铸钢的若干认识.连铸,2001,(1):1-3.
    [18]姜进强.济钢厚板坯连铸热装直轧工程设计特点.山东冶金,2003,25(10):119-121.
    [19]Normanton A S,Hewitt P N,Hunter N S et al.Mould thermal monitoring:a window on the mould.Ironmaking and Steelmaking,2004,31(5):357-363.
    [20]Mahapatra R B,Brimacombe J K,Samatrasekera I V et al.Mold behavior and its influence on quality in the continuous casting of steel slabs:Part 1.Industrial trials,mold temperature measurements,and mathematical modeling.Metallurgical and Materials Transactions B,1991,22B(6):861-874.
    [21]Ozgu M R,孔金满.最新连铸检测仪表概述(一).国外钢铁,1997,22(9):33-39.
    [22]罗庆梅.圆坯连铸结晶器温度、热流实测数据分析及检测系统的建立:(硕士学位论文).大连:大连理工大学,2004.
    [23]Byme A,Powell J,Perkins A et al.Commissioning and work up of the three strand round bloom caster at British Steel,Clydesdale Works.Ironmaking and Steelmaking,1990,17(4):288-291.
    [24]Haers F,Thornton S G.Application of mould thermal monitoring on the two strand slab caster at Sidmar.Ironmaking and Steelmaking,1994,21(5):390-398.
    [25]Kumar S,Meech J A,Samarasekera l Vet al.Development of intelligent mould for online detection of defects in steel billets.Ironmaking and steelmaking,1999,26(4):269-284.
    [26]Alvarez G,Ciriza J,Laraudogoitia J J et al.Abnormal transient phenomena in the continuous casting process.Ironmaking and Steelmaking,2003,30(5):360-368.
    [27]张立,王俊,孙宝德.宝钢板坯连铸结晶器平均热流.上海交通大学学报,2003,37(12):1891-1894.
    [28]雷作胜,任忠鸣,张邦文等.连铸结晶器振动下弯月面处温度波动的模拟实验.金属学报,2002,38(8):877-880.
    [29]雷作胜,任忠鸣,张邦文等.连铸结晶器弯月面区温度波动的模拟研究.上海大学学报(自然科学版),2002,8(4):317-320.
    [30]张慧,陶红标,刘爱强等.薄板坯连铸结晶器铜板温度及热流密度分布.钢铁,2005,40(7):25-28.
    [31]刘立文,刘爱强,仇圣桃等.连铸结晶器温度场在线监测技术.连铸,2006,(3):41-43.
    [32]李长茂,姚曼,苏云刚等.小方坯连铸结晶器温度检测及作用.连铸,2001,(1):30-33.
    [33]Yao M,Yin H B,Wang J C et al.Monitoring and analysis of local mould thermal behaviour in continuous casting of round billets.Ironmaking and Steelmaking,2005,32(4):359-368.
    [34]Yin H B,Yao M,Wang J C et al.Analysis of variability and non-uniformity of mould heat extraction for round billet continuous casting in plant trials.Ironmaking and Steelmaking,2006,33(4):299-305.
    [35]姚曼,刘晓,罗庆梅等.连铸圆坯结晶器的热流分析.钢铁研究学报,2006,18(3):51-55.
    [36]Lair J E,Brimacombe J K,Weinberg F.Mathematical modeling of heat flow in the continuous casting of steel.Ironmaking and Steelmaking,1974,1(2):90-97.
    [37]Okuno K,Naruwa H,Kuribayashi T et al.Slab casting at Rouge Steel.Iron Steel Eng.,1987,64(1):34-41.
    [38]Mizikar E A.Mathematical Heat Tranfer Model for Solidification of Continuously Cast Steel Slabs.Tran.TMS-AIME,1967,239:1747-1753.
    [39]Spencer S,Carless P,Magee E.Mathematical model for simulation of solidification and cooling of cast rolls.Ironmaking and Steelmaking,1981,8(3):129-135.
    [40]Meng Y,Thomas B G.Heat transfer and solidification model of continuous slab casting:CON1D.Metallurgical and Materials Transactions B,2003,34B(5):685-704.
    [41]Spitzer K H,Harste K,Weber Bet al.Mathematical model for thermal tracking and on-line control in continuous casting.ISIJ International,1992,32(7):848-856.
    [42]Louhenkilpi S,Laitinen E,Nieminen R.Real-time simulation of heat transfer in continuous casting.Metallurgical and Materials Transactions B,1993,24B(4):685-693.
    [43]蔡开科,刘凤荣.连铸坯凝固冷却过程的控制.金属学报,1984,20(3):146-154.
    [44]蔡开科,吴元增.连续铸锭板坯凝固传热数学模型.北京钢铁学院学报,1982,(3):1-11.
    [45]金俊泽,郑贤淑,郭可切等.连铸钢坯凝固进程的数值模拟.钢铁,1985,20(5):19-27.
    [46]陈登福,颜广庭,刘人达.方坯连铸凝固传热数学模型.重庆大学学报,1994,17(1):112-116.
    [47]张炯明,张立,王新华等.板坯连铸结品器热流分布的研究.金属学报,2003,38(12):1285-1290.
    [48]李东辉,白金兰,邱以清等.方坯连铸机结品器凝固传热的模型研究.特种铸造及有色合金,2004,(6):37-41.
    [49]汪建农,马金昌,陈刚.连铸初始凝同行为的热模拟研究.钢铁,1998,33(9):18-20.
    [50]兰惠清,盛义平.圆坯结晶器铜管温度场模拟.钢铁研究学报,2000,12(增刊):33-35.
    [51]王宝峰,丁国,麻永林等.大方坯在连铸过程中传热及凝固规律的数学模拟.炼钢,2002,18(5):15-18.
    [52]杨秉俭,苏俊义.板坯连铸结晶器中三维凝固壳厚度分布的数值模拟及实验验证.钢铁,1996,31(9):24-28.
    [53]伍成波,王谦,刘仁龙等.板坯连铸结晶器温度场的计算机仿真.重庆大学学报,2002,25(12):31-34.
    [54]冯科,徐楚韶,陈登福.方坯连铸流动传热的二维耦合数值仿真.系统仿真学报,2001,16(8):1665-1669.
    [55]文光华,李刚,张建春.高速板坯连铸结品器内流场、温度场的数值模拟.重庆大学学报(自然科学版),1997,20(6):23-29.
    [56]仇圣桃,刘和平,干勇.基于连续模型的板坯连铸凝固过程的数值模拟.钢铁研究学报,2003,15(6):16-20.
    [57]刘旭东,朱苗勇,邹俊苏等.连铸板坯凝固传热过程的计算机模拟.材料与冶金学报,2002,1(3):195-199.
    [58]刘旭东,朱苗勇,程乃良.板坯连铸结晶器热行为研究.金属学报,2006,42(10):1081-1086.
    [59]Pinheiro C A M,Samarasekera I V,Brimacombe J K et al.Mould heat transfer and continuously cast billet quality with mould flux lubrication Patti:Mould heat transfer,lronmaking and Steelmaking,2000,27(1):37-54.
    [60]Chow C,Samarasekera I V,Walker B Net al.High speed continuous casting of steel billets Part 2:Mould heat transfer and mould design.Ironmaking and Steelmaking,2002,29(1):61-69.
    [61]Marcial G,Marcela B G,Andrea P A et al.Modeling of the solidification process in a continuous casting installation for steel slabs.Metallurgical and Materials Transactions B,2003,34B(4):455-473.
    [62]郝守卫,柳百成,张卓其等.凝固过程中热传导的反问题.清华大学学报,1989,29(2):36-43.
    [63]朱宪华,董增章,苏俊义.水平连铸铸铁棒材凝固过程数值模拟.金属学报,1990,26(3):171-177.
    [64]孙冀,潘德惠.在线计算结晶器内铸坯表面热流密度的方法.钢铁研究,1998,(5):21-23.
    [65]孙冀,潘德惠.基于实测温度推算铸坯表面热流量分布.东北大学学报(自然科学版),1998,19(1):66-68.
    [66]卢义,巫英伟,索晓娜等.板坯连铸二冷表面传热系数预测与仿真软件.工业加热,2005,34(6):4-8.
    [67]巫英伟,卢义,索晓娜等.板坯连铸二冷区表面传热系数的预测方法.西安交通大学学报,2006,40(1):26-30.
    [68]尹合壁,姚曼.圆坯连铸结晶器传热的反算法.金属学报,2005,41(6):638-644.
    [69]Yao M,Yin H B,Fang D C.Real-time analysis on non-uniform heat transfer and solidification in mould of continuous casting round billets.ISIJ International,2004,44(10):1696-1704.
    [70]Yao M,Yin H B,Fang D C.3-D inverse problem continuous model for thermal behavior of mould process based on the temperature measurements in plant trial.ISIJ International,2006,46(4):539-545.
    [71]Mali B R Y.结晶器监测的长期发展.第一届欧洲连铸会议,佛罗伦萨,1991:134-141.
    [72]Lang O,Federspiet C,Thalhammer Met al.VAI's MoldEXPERT-a mould monitoring system for improved casting performance.Steel World,2000,5(1):38-42.
    [73]陈亚贤,姚曼.结晶器振动阻力在线监测应用研究.2001年中国钢铁年会.北京,2001:682-685.
    [74]Wagner A,Watzinger J,Flick A.美国阿拉巴莫比尔依普斯科公司采用热装方式的超宽板坯连铸机.2002年薄板坯连铸连轧国际研讨会,北京,2002:88-95.
    [75]Bommaraju R.Optimum selection and application of mold fluxes for carbon steels.Steelmaking Conference,Washington D C,1991:131-146.
    [76]Anzai E,Shigezumi T.Hydrodynamic behavior of molten powder in meniscus zone of continuous casting mold.Nippon Steel Technical Report,1987,34(7):31-40.
    [77]Meng Y,Thomas B G,Polycarpou A A et al.Mold slag property measurements to characterize CC mold - shell gap phenomena.MS&T 2004 Conference,New Orleans,2004:57-67.
    [78]朱立光,王硕明,金山同.连铸结晶器内保护渣渣膜状态的数学模拟.北京科技大学学报,1999,21(1):13-16.
    [79]朱立光,金山同.结晶器与铸坯间气隙内液态保护渣流动行为的数学解析.钢铁研究学报,1998,10(4):9-12.
    [80]张玉文,朱立光,丁伟中.连铸保护渣润滑行为的数学模拟.钢铁研究学报,2002,14(4):21-25.
    [81]张玉文,丁伟中,朱立光.方坯连铸保护渣渣膜润滑行为的理论研究.炼钢,2002,18(2):25-28.
    [82]张殿君,王子亮.保护渣的物性对熔渣摩擦力的影响.炼钢,1996,12(4):26-29.
    [83]蔡娥,谢兵,王雨.保护渣物化性能对铸坯与结晶器间摩擦的影响.连铸,2007,(1):35-38.
    [84]Takeuchi E,Brimacombe J K.The formation of oscillation marks in the continuous casting of steel slabs.Metallurgical and Materials Transactions B,1984,15B(3):493-509.
    [85]Royzman S E.Coefficient of friction between strand and mould during continuous casting:mathematical model.Ironmaking and Steelmaking,1997,24(6):484-488.
    [86]Akira Y,Toshihiko E,Seshadri S.A mathematical model for prediction of thickness of mould flux film in continuous casting mould.ISIJ International,2002,42(10):1084-1093.
    [87]Meng Y,Thomas B G.Modeling transient slag layer phenomena in the shell/mold gap in continuous casting of steel.Metallurgical and Materials Transactions B,2003,34B(5):707-725.
    [88]张洪波,王海之.连铸结晶器振动参数与保护渣物化性能的关系.钢铁,1995,30(11):17-20.
    [89]吴夜明,杜挺.连铸结晶器保护渣稳态润滑作用的简化数学分析.化工冶金,1997,18(2):187-191.
    [90]许光明,崔建忠,常守威.铸拉工艺中摩擦力的计算.铸造技术,1997,(5):3-5.
    [91]姚曼,王文华,魏树立等.板坯连铸结晶器摩擦力计算与影响因素研究.大连理工大学学报,2002,42(2):195-199.
    [92]杜波.连铸结晶器内润滑与摩擦计算和实测数据分析:(硕士学位论文).大连:大连理工大学,2004.
    [93]姚曼,王文华,方大成.连铸结晶器与铸坯间保护渣润滑行为的研究.钢铁,2001,36(3):26-29.
    [94]Mairy B,Wolf M.在连续铸钢中控制结晶器摩擦力的重要性.现代连铸理论与实践,北京,1988:207-217.
    [95]Emling W H,Daoson S.Mold instrumentation for breakout detection and control.ISS 71st Steelmaking Conference,Ontario,1991:197-217.
    [96]中森幸雄.連绩續造の铸型と铸片間の摩擦力定と解析结果.铁と鋼,1984,70(9):278-284.
    [97]姚曼,范光华,方大成等.连铸振动台功率在线监测可行性探讨.大连理工大学学报,1995,35(6):820-823.
    [98]尹合壁,姚曼,罗庆梅等.连铸坯表面裂纹预测研究的现状.钢铁研究学报,2004,16(1):1-5.
    [99]姜苍华,姚曼,杨建华等.宝钢2号板坯连铸机结晶器拉坯阻力在线监测系统的设计与应用.系统与装置,2001,(6):37-39.
    [100]张立,陈亚贤,姚曼等.连铸结晶器拉坯阻力异常数据分析及应用方法研究.钢铁,2004,39(7):24-27
    [101]Wang X D,Yao M,Chen X F et al.Prediction of abnormal mould friction in slab continuous casting based on neural network.CCC'04,Beijing,2004:761-764.
    [102]井勇,王延公,周亚辉.板坯连铸液压振动技术的特点及其发展前景.冶金设备,1998,(6):32-33.
    [103]罗卫国,姚良挺,黄志坚.板坯连铸机液压振动技术原理与实例.液压与气动,1999,(4):6-7.
    [104]李运华,王占林,陈栋梁.连铸机结晶器电液伺服振动波形系统的开发研制.机床与液压,1998,(3):5-6.
    [105]Carranza J,Guzman E,Beirana J et al.Quality improvement in round billets via a vibromold system and mold electromagnetic stirring.14th IAS Steelmaking Conference,Argentina,2003:301-306.
    [106]Watzinger J,Flick A.VAI's online mold friction monitoring system in continuous casting,CCC2000,Linz,2000:Paper 17.
    [107]Watzinger J,Pesk A,Huebner N.MoldEXPERT-operational experience and future development.Ironmaking and Steelmaking,2005,32(3):208-212.
    [108]Ehrenberg H J,Kaiser H P,Kiuge J et al.Operational results on casting round strands using a resonance mould.Stahl und Eisen,1999,119(10):81-86.
    [109]Carlos C,Constantino C,Angel C et al.Analysis of mold friction in a continuous casting machine of round bars.Iron and Steel Technology,2006,(7):45-51.
    [110]Samarasekera I V,Brimacombe J K.Thermal and mechanical behaviour of continuous casting billet moulds.Ironmaking and Steelmaking,1982,9(1):1-15.
    [111]陈海清,李华基,曹阳.铸件凝固过程数值模拟.重庆:重庆大学出版社,1991.
    [112]Han H N,Lee J E,YeoT J et al.A finite element model for 2-dimensional slice of cast strand.ISIJ International,1999,39(5):445-454.
    [113]Lally B,Biegler L,Henein H.Finite difference heat transfer modeling for continuous casting.Metallurgical and Materials Transactions B,1990,21B(4):761-770.
    [114]Won Y M,Yeo T J,Oh K H et al.Analysis of mold wear during continuous casting of slab.ISIJ International,1998,38(1):53-62.
    [115]Moon C H,Hwang S M.Analysis of flow,heat transfer,solidification,and inclusion removal in continuous slab caster by finite element method.Ironmaking and Steel making,2003,30(1):48-56.
    [116]Choudhary S K,Mazumdar D,Ghosh A.Mathematical modeling of heat transfer phenomena in continuous casting of steel.ISIJ International,1993,33(7):764-774.
    [117]Thomas B G,Samarasekera ⅠⅤ,Brimacombe J K.Comparison of numerical modeling techniques for complex,two-dimensional,transient heat conduction problems.Metallurgical and Materials Transactions B,1984,15B(2):307-318.
    [118]Kelly J E,Michalek K P,Connor T G O et al.Initial development of thermal and stress fields in continuously cast steel billet.Metallurgical and Materials Transactions A,1988,19A:2589-2602.
    [119]Cabrera-Marrero J M,Carreno-Galindo V,Morales R D et al.Macro-micro modeling of the dendritic microstructure of steel billets processed by continuous casting.ISIJ International,1998,38(8):812-821.
    [120]孟祥宁,朱苗勇,刘旭东等.高拉速连铸结晶器非正弦振动因子研究.金属学报,2007,43(2):205-210.
    [121]孟祥宁,朱苗勇,程乃良.高拉速下连铸坯振痕形成机理及振动参数优化.金属学报,2007,43(8):839-846.
    [122]Bikerman J J.Physical Surfaces.London:Academic Press,1970.
    [123]Suzuki M,Miyahara S,Kitagawa T et al.Effect of mold oscillation curves on heat transfer and lubrication behavior in mold at high speed continuous casting of steel slabs.Tetsu-to-Hagane,1992,78(1):113-120.
    [124]王致清.粘性流体力学.哈尔滨:哈尔滨工业大学出版社,1990.
    [125]吴江航.计算流体力学的理论、方法及应用.北京:科学技术出版社,1988.
    [126]孙丽枫,宋智芳,刘承军等.连铸结晶器保护渣结晶性能的研究.特殊钢,2007,28(2):34-35.
    [127]尹合壁.圆坯连铸结晶器内热-力学行为的分析:(博士学位论文).大连:大连理工大学,2005.
    [128]余俊,徐真.摩擦学.长沙:湖南科学技术出版社,1984.
    [129]郑林庆.摩擦学原理.北京:高等教育出版社,1994.
    [130]Kang G P,Shin G,Kang C G.Development of new model of mold oscillator in continuous casting.Journal of Mechanical Science and Technology,2007,21(3):421-425.
    [131]米源.板坯连铸结晶器非正弦振动技术的应用.炼钢,2006,22(3):6-9.
    [132]王子亮,郭世宝,王广林等.非正弦振动在板坯连铸机上的应用.钢铁,2005,40(1):31-34.
    [133]张兴中,李宪奎.连铸结晶器非正弦振动系统模糊神经网络跟踪控制.中国机械工程,2005,16(2):112-114.
    [134]郭世宝,石中雪,高新军.结晶器液压振动装置在板坯连铸机上的应用及实践.连铸,2002,(2):6-8.
    [135]方一鸣,焦晓红,庄开宇等.液压伺服驱动连铸结晶器振动控制系统的设计.冶金自动化,2000,(1):43-45.
    [136]干勇,陈栋梁,杨文改.连铸结晶器瞬态摩擦阻力的实验研究.钢铁,1999,34(4):16-19.
    [137]Edward S.Overview of mould oscillation in continuous casting.Iron and Steel Engineer,1996,(7):29-37.
    [138]焦志明.连铸结晶器振动方式的探讨.炼钢,1999,(4):30-33.
    [139]李宪奎,朱清香,郑学然等.结晶器非正弦振动波形及参数研究.钢铁,1998,33(11):26-29.
    [140]胡军宏,周亚君.宝钢连铸试验平台结晶器电液伺服振动系统研究.冶金自动化,2005,(6):6-10.
    [141]刘延柱,陈文良,陈力群.振动力学.北京:高等教育出版社,1998.
    [142]王忆,杨玉屏,赵健生.受迫阻尼振动系统动力学性质的研究.大学物理,2001,20(7):22-25.
    [143]姜耕华.机械传动设计手册(上册).北京:煤炭工业出版社,1992.
    [144]王旭东.连铸结晶器热、力在线检测技术及其应用基础研究:(博士学位论文).大连:大连理工大学,2008.
    [145]张洪波,陈建波.频率与拉速匹配关系对振痕的影响.河北冶金,1999,(5):12-15.
    [146]张卫红.2Cr13马氏体不锈钢铸坯表面纵裂控制.连铸,2007,(6):39-40.
    [147]王静,魏艳龙,李献峰.连铸板坯表面纵裂原因分析.河北冶金,2008,(2):23-25.
    [148]程刚,焦玉亮,聂玉利等.泰钢板坯纵裂纹原因分析及控制措施.中国冶金,2006,16(12):24-26
    [149]Chow C,Samarasekera ⅠⅤ.High speed continuous casting of steel billets Part Ⅰ:General overview.Ironmaking and Steelmaking,2002,29(1):53-60.
    [150]Kenneth C M.The Performance of Casting Powders and Their Effect on Surface Quality.1991Steelmaking Conference,Washington D C,1991:121 - 129.
    [151]韩宝明.连铸结晶器非正弦振动的曲线函数构造与机械驱动装置.河北冶金,2002,(6):11-13.
    [152]王旭东,臧欣阳,马勇等.液压振动下板坯连铸结晶器摩擦力检测实验研究.钢铁,2006,41(11):23-25.
    [153]Valentin P,Bruch C,Horn A C.Friction forces between mould and strand shell during billet casting.Steel Research International,2004,75(10):666-671.
    [154]Ozgu M R.在Burns Harbor 2 号板坯连铸机上采用测试的方法评价结晶器保护渣及其实践.第一届欧洲连铸会议,佛罗伦萨,1991:40-47.
    [155]任延清.板坯连铸机自动开浇控制.重工与起重技术,2007,(3):18-19.
    [156]朱祖民,陈荣欢.连铸板坯中碳钢开浇刚发热保护渣.钢铁,2005,40(5):29-31.
    [157]孙风晓.板坯连铸开浇漏钢控制措施.山东冶金,2004,26(4):10-11.
    [158]孔德才.结晶器专家系统在连铸机中的应用.连铸,2005,(4):11-12.
    [159]王旭东,姚曼,尹合壁等.神经元网络应用于圆坯连铸结晶器传热计算.北京科技大学学报,2008,30(2):184-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700