用户名: 密码: 验证码:
板坯连铸动态二冷与轻压下建模及控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态二冷与动态轻压下是现代连铸工艺提高铸坯质量的一项重要技术。研究动态轻压下模型与控制方法,需要对连铸机辊列结构、铸坯凝固传热以及复杂热—力学问题有深入的认识和理解。本文针对超高强度钢(UHSS)动态轻压下工艺的关键技术,开展实验、设计、建模与控制方面的研究。在铸坯高温力学性能实验与铸机辊列设计的基础上,开发了动态二冷与动态轻压下控制系统。
     首先,在Gleeble—1500D热/力模拟试验机上进行了实验,获得了超高强度钢高温力学性能参数及塑性曲线;同时分别采用凝固法和加热法获得了高温固相区和两相区的拉伸强度。实验结果表明,拉伸强度随着温度的升高而呈近似线性降低;凝固法的拉伸强度小于加热法的实验值,加热法和凝固法拉伸强度的区别是由不同的变形激活能所致。考虑应变速率、温度、应力、固相分数和变形激活能等参数的粘塑性本构方程为轻压下工艺分析和关键参数确定提供了实验及理论依据。
     其次,分别采用多点弯曲多点矫直和改进的Concast连续弯曲连续矫直曲线对铸坯断面尺寸为1100mm×180mm的板坯连铸机进行了辊列设计。校核计算结果表明,两种方案均满足设计要求,设计结果合格、可靠,设计方法正确。
     再次,基于板坯连铸机的辊列和喷嘴布置,建立三维稳态传热数学模型,模型考虑了铸坯与辊子间的接触换热及喷嘴特性。计算的温度和凝固坯壳厚度分别与测温和射钉实验结果相吻合。通过模拟计算为实际生产中的二次冷却工艺提出了有效的控制措施。
     然后,根据铸坯高温塑性曲线、铸机辊列及二冷区冶金准则,制定了超高强度钢等钢种的表面目标温度。同时,开发了动态二冷瞬态传热数学模型,采用增量型PID算法实现了动态二冷控制。结果表明,动态二冷模型与增量型PID算法能够有效控制冷却回路的目标温度,可以准确及时地预测凝固末端位置。
     最后,以钢的高温力学性能及本构方程为依据,得出了950~1950mm×170mm板坯超高强度钢及低碳钢的动态轻压下模型参数。采用多线程运行方式开发了板坯动态轻压下控制系统Visual Cast—Dynamic。分别以钢的两相区内临界应变和临界应力作为力学判据,设置了位置控制与压下力控制两种动态轻压下控制方式。本研究制定的轻压下工艺与实际已有同类钢种的轻压下工艺一致,说明本文开发的动态轻压下模型正确,相应的动态轻压下系统已具备在线控制能力。
Dynamic secondary cooling and soft reduction are effective technologies for the improvement of strand quality in continuous slab casting.A comprehensive understanding of the roller-layout of caster as well as the heat transfer,solidification and thermo-mechanical behaviors of strand is essential for the modelling and control of dynamic soft reduction.In this dissertation,the key technologies of dynamic soft reduction for an ultrahigh strength steel (UHSS) have been studied in view of experiment,design,modelling and dynamic control. And a dynamic secondary cooling and soft reduction control system has been developed based on the experiment of high temperature mechanical properties of strand and the design of roller-layout of caster.
     Firstly,thermo-mechanical parameters and plastic curves of an UHSS at elevated temperatures have been obtained using the physical simulation system Gleeble-1500D.The measured results showed that the tensile strength subject to solidified type and reheated type thermal histories approximately decreased linearly with the increasing temperature.The tensile strength with solidified type thermal history was lower than that with reheated type,and the influence of thermal history on the tensile strength could be contributed to the activation energy for deformation.A viscoplastic constitutive equation with variables of strain rate,temperature, stress,solid fraction and activation energy for deformation was constructed,which could be applied on the thermo-mechanical analysis and the process parameters determination of dynamic soft reduction technology.
     Secondly,two differential roller-layouts of caster with slab cross dimension of 1100mm×180mm have been designed by the multi-point bending and straightening principle as well as the improved Concast continuous bending and straightening curve method.The corresponding mechanical inspection of calculation results indicated that the two design methods were reasonable and reliable.
     Thirdly,a three-dimensional model of the steady heat transfer and solidification has been developed based on the realistic roller-layout and spray nozzle distribution in continuous slab casting.The contact cooling of individual rolls and the characteristics of spray nozzle were involved in the model.The calculated slab surface temperature and shell thickness accorded with the measured ones derived from pyrophotometer and pin-shooting experiments, respectively.The three-dimensional model was applied to optimize the temperature distribution in continuous slab casting with effective improvement.
     Fourthly,the aimed slab surface temperatures were determined according to the high temperature plastic curves,the caster roller-layout parameters and the metallurgical principles in the secondary cooling zone.Therefore,a dynamic secondary control model has been developed based on the two-dimensional transient heat transfer module and the incremental PID algorithm module.The testing results showed that the present online model and incremental PID algorithm could effectively control the aimed slab surface temperature with the operational conditions variation in each loop of secondary cooling zone,and the solidification end position could be predicted.
     Finally,the dynamic soft reduction parameters of low carbon steel and the UHSS with slab cross dimension of 950~1950mm×170mm were determined based on the high temperature mechanical properties and constitutive equation.As a result,a dynamic soft reduction control system in continuous slab casting,Visual Cast-Dynamic,has been developed by multithreading method.The dynamic soft reduction system was implemented by two control modes,i.e.,soft reduction and soft clamping,which were based on critical strain and critical stress of steel in the mushy zone measured by experiment.The process parameters determined by the developed dynamic soft reduction control system were in agreement with those in practice.It demonstrated that the dynamic soft reduction model in this study was correct with the ability of online control.
引文
[1]THOMAS B G.Modeling of the continuous casting of steel-past,present,and future[J].Metallurgical and Materials Transactions B,2002,33B(6):795-812.
    [2]M(O|¨)RWALD K,THALHAMMER M,FEDERSPIEL C,et al.SMART~(?)/ASTC技术在连铸冶金操作和经济诸方面的效益[J].连铸,2004,(3):7-10.
    [3]祭程,朱苗勇.连铸动态轻压下关键技术与自主开发应用进展[J].中国冶金,2009,19(3):1-5.
    [4]M(O|¨)RWALD K,WATZINGER J,O'MALLEY R J.Roll load measurements on thin slab caster for liquid core detection[J].Ironmaking and Steelmaking,1998,25(2):159-162.
    [5]YIM C H,PARK I K,OH K S.The control of internal quality by the reduction of blooms with liquid core[C].Steelmaking Conference Proceedings,1998,81:309-313.
    [6]孙蓟泉,周华勤.高效连铸及轻压下技术[J].机械工程与自动化,2004,(1):4-6.
    [7]王捷,杨拉道.连铸轻压下技术的最新发展[J].重型机械,2001,(6):1-4.
    [8]张家泉.现代连铸及其轻压下技术[R].包头:中国金属学会连铸分会轻压下会议讲座,2005.
    [9]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1994.
    [10]卢盛意.连铸坯质量[M].北京:冶金工业出版社,2005.
    [11]FLEMINGS M C.Our understanding of macrosegregation:past and present[J].ISIJ International,2000,40(9):833-841.
    [12]HAIDA O,KITAOKA H,HABU Y,et al.Macro- and semi-macroscopic features of the centerline segregation in CC slabs and their effect on product quality[J].Transactions ISIJ,1984,24(11):891-898.
    [13]阎朝红.凝固末端轻压下技术在连铸中的应用[J].宝钢技术,2001,(5):51-55.
    [14]MATSUMIYA T,KAJIOKA H,MIZOGUCHI S,et al.Mathematical analysis of segregations in continuously-cast slabs[J].Transactions ISIJ,1984,24(11):873-882.
    [15]LALLI L A.A model for deformation and segregation of solid-liquid mixtures[J].Metallurgical Transactions A,1985,16A(8):1393-1403.
    [16]KOBAYASHI S,TOMONO H,GUNJI K.Mathematical analysis of solidification process with consideration on solute segregation[J].Transactions ISIJ,1988,28(3):214-217.
    [17]DU Y,LU S Z,COURTNEY T H.Macrosegregation and sedimentation in liquid-phase sintering [J].Metallurgical and Materials Transactions A,2001,32A(12):3091-3097.
    [18]WATANABE T,YAMASHITA M.Influence of liquid flow at the final solidification stage on centerline segregation in continuously cast slab[J].Sumitomo Metals,1993,45(3):26-39.
    [19]谢海唯,朱苗勇,宋景欣等.连铸方坯凝固末端轻压下区间的预报研究[J].材料与冶金学报,2003,2(3):185-188.
    [20]廖永松.轻压下技术在高碳钢方坯连铸机中的应用[J].炼钢,2002,18(5):35-39.
    [21]THOME R,HARSTE K.Principles of billet soft-reduction and consequences for continuous casting[J].ISIJ International,2006,46(12):1839-1844.
    [22]BYRNE C,TERCELLI C.Mechanical soft reduction in billet casting[J].Steel Times International,2002,26(9):33-35.
    [23]朱苗勇,林启勇.连铸坯的轻压下技术[J].鞍钢技术,2004,(1):1-6.
    [24]KOJIMA S,MATSUKAWA T,MIZOTA H,et al.Improvement in center segregation of continuously cast bloom by continuous forging at unsolidified state[J].Transactions ISIJ,1987,27(8):203-205.
    [25]OGIBAYASHI S,KOBAYASHI M,YAMADA M,et al.Influence of soft reduction with one-piece rolls on center segregation in continuously cast slabs[J].ISIJ International,1991,31(12):1400-1407.
    [26]RAIHLE C -M,SIVESSON P,TUKIAINEN M,et al.Improving inner quality in continuously cast billets:comparison between mould electromagnetic stirring and thermal soft reduction[J].Ironmaking and Steelmaking,1994,21(6):487-495.
    [27]SIVESSON P,ORTLUND T,WIDELL B.Improvement of inner quality in continuously cast billets through thermal soft reduction and use of multivariate analysis of saved process variables [J].Ironmaking and Steelmaking,1996,23(6):504-511.
    [28]SIVESSON P,H(A|¨)LL(?)N G,WIDELL B.Improvement of inner quality of continuously cast billets using electromagnetic stirring and thermal soft reduction[J].Ironmaking and Steelmaking,1998,25(3):239-246.
    [29]YAMANAKA A,OKUDA M.Reduction of centre cavity by forging with liquid core in round billet[J].Ironmaking and Steelmaking,1999,26(1):64-68.
    [30]马长文,沈厚发,黄天佑.连铸轻压下技术的机理比较[J].上海金属,2003,25(6):1-5.
    [31]ITO Y,YAMANAKA A,WATANABE T.Internal reduction efficiency of continuously cast strand with liquid core[J].La Revue de M(?)tallurgie-CIT,2000,97(10):1171-1176.
    [32]林启勇,蒋欢杰,朱苗勇.连铸坯动态轻压下的压下参数分析[J].材料科学与冶金学报,2004,3(4):261-265.
    [33]MIYAGAWA O.Process of the iron and steel technologies in Japan in the past decade[J].Transactions ISIJ,1985,25(7):539-540.
    [34]TSUCHIDA Y,MAKADA M,SUGAWARA I,et al.Behavior of semi-macroscopic segregation in continuously cast slabs and technique for reducing the segregation[J].Transactions ISIJ,1984,24(11):899-906.
    [35]倪满森,干勇.国外全连铸生产特点及国内连铸生产概况[J].炼钢,1994,10(2):57-62.
    [36]程常桂,茅洪祥,胡琳.轻压下技术在连铸中的应用[J].炼钢,1998,14(5):42-45.
    [37]MASAOKA T.Improvement of centerline segregation in continuously cast slab with soft reduction technique[C].Steelmaking Conference Proceedings,1989,72:63-69.
    [38]近藤裕计.福山6号连铸机铸坯质量的改善[J].NKK技报,1997,(2):67-73.
    [39]OKIMORI M,NISHIHARA R,FUKUNAGA S,et al.Development of soft reduction techniques for preventing center porosity occurrence in large size bloom[J].Tetsu-to-Hagane,1994,80(8):120-123.
    [40]MARKUS J.The latest result of dynamic soft reduction in slab CC machine[C].Steelmaking Conference Proceedings,2000,83:201-206.
    [41]WIINNENBERY.The principle of thin slab continuous casting[J].Iron and Steelmaker,1995,22(4):25-31.
    [42]彭晓华.薄板坯连铸连轧的液芯压下技术[J].钢铁,1999,34(9):63-67.
    [43]YAMANAKA A,KUMAKURA S,OKAMURA K,et al.Thin slab casting with liquid core reduction[J].Ironmaking and Steelmaking,1999,26(6):457-462.
    [44]CARBONI,A,BUORO S,ZAGITTI R.Dynamic soft reduction in thin slab casting[J].Metallurgical Plant and Technology International,1999,22(2):68-70.
    [45]JUNGBAUER A,FLICK A,WILLEIT H.奥钢联(VAI)连铸机在不断发展的中国钢铁市场中的表现[J].连铸,2005,(6):312-317.
    [46]雅赫拉 M,康廷恩 J,赫都 H等.罗德洛基钢铁公司6号板坯连铸机特点及实践[J].钢铁,1999,34(10):16-19.
    [47]M(O|¨)RWALD K,THALHAMMER M,FEDERSPIEL C,et al.Benefits of SMART segment technology and ASTC strand taper control in continuous casting[J].Steel Times International,2003,27(1):17-19.
    [48]PREBLINGER H,ILIE S,REISINGER P,et al.Methods for assessment of slab centre segregation as a tool to control slab continuous casting with soft reduction[J].ISIJ International,2006,46(12):1845-1851.
    [49]OH K S,PARK J K,CHANG S H,et al.Development of soft reduction technique for the bloom caster at Pohang Works of POSCO[C].Steclmaking Conference Proceedings,1995,78:301-308.
    [50]沈国强,汪洪峰.动态轻压下技术在梅山连铸中的应用[J].连铸,2006,(2):1-3.
    [51]余志祥,郑万,杨运超.武钢三炼钢新宽板坯连铸机的投产及半年的试生产情况[C].2004年6月奥钢联连铸热轧会议文集,第8.7篇.
    [52]阎朝红,徐国栋.3#宽厚板坯连铸机凝固末端轻压下技术[J].宝钢技术,2008,(4):63-67.
    [53]王国新,张家泉,王语昌等.大方坯连铸动态二冷与动态轻压下控制模型的开发与应用[C].连铸动态轻压下技术讲座论文集,2008:66-71.
    [54]CHEN Y,LI G J,YANG S B,et al.Dynamic soft reduction for continuously cast rail bloom[J].Journal of Iron and Steel Research,International,2007,14(5):13-17.
    [55]MATSUMIYA T,ITO M,KAJIOKA H,ctal.An evaluation of critical strain for internal crack formation in continuously cast slab[J].Transactions ISIJ,1986,26(6):540-546.
    [56]YAMANAKA A,NAKAJIMA K,OKAMURA K.Critical strain for internal crack formation in continuous casting[J].Ironmaking and Stechnaking,1995,22(6):508-512.
    [57]林启勇.连铸过程铸坯动态轻压下压下模型的研究与应用[D].沈阳:东北大学,2008.
    [58]KROPF A.SMART~(?)扇形段/动态辊缝调整(DynaGap)—使您赚钱的技术[C].2004年6月奥钢联连铸热轧会议文集,第2.3篇.
    [59]SUZUKI K,TAKAHASHI K,NISHI T,et al.Mechanical properties of the slabbing mill roll materials at room and elevated temperatures[J].Tetsu-to-Hagane,1975,61(3):371-387.
    [60]TAKAHASHI T.Solidification and segregation of steel ingot[J].Iron and Steel,1982,17(3):57-61.
    [61]武金波译.板坯连铸动态软压下的最新成果[J].世界钢铁,2001,6:5-7.
    [62]赵培建,韩洪龙.轻压下技术在济钢新板坯连铸机上的应用[J].连铸,2002,(6):11-12.
    [63]龙木军.板坯连铸二冷动态轻压下辊缝收缩模型及软件开发[D].重庆:重庆大学,2007.
    [64]赵劲松.大方坯连铸动态轻压下位置的确定[D].包头:内蒙古科技大学,2007.
    [65]崔立新.板坯连铸动态轻压下工艺的三维热—力模型研究[D].北京:北京科技大学,2006.
    [66]祭程.板坯连铸动态二冷与动态轻压下过程控制系统的开发与应用研究[D].沈阳:东北大学,2007.
    [67]YOKOYAMA T,UESHIMA Y,MIZUKAMI Y,et al.Effect of Cr,P and Ti on density and solidification shrinkage of iron[J].Tetsu-to-Hagane,1997,83(4):557-562.
    [68]ZEZE M,MISUMI H,NAGATA S,et al.Segregation behavior and deformation behavior during soft-reduction of unsolidified steel ingot[J].Tetsu-to-Hagane,2001,87(2):71-76.
    [69]朱苗勇,林启勇,王军.连铸板坯轻压下过程压下率参数的理论分析[J].鞍钢技术,2007,(4):1-5.
    [70]林启勇,朱苗勇.连铸板坯轻压下过程压下率理论模型及其分析[J].金属学报,2007,43(8):847-850.
    [71]林启勇,朱苗勇.连铸板坯轻压下过程中的压下效率分析[J].金属学报,2007,43(12):1301-1304.
    [72]SRORY S R,MAHAPATRA R B,WOODBERRY P A,et al.Liquid core detection through segment load measurements[C].Steehnaking Conference Proceedings,1993,76:405-413.
    [73]TANIZAWA Y,KUMAKURA S,OKA M,et al.Development of thin slab casting technology with liquid core hard reduction[J].Iron and Steelmaker,1999,26(9):73-75.
    [74]SCHADE J,IVES K D,BROWN W A.Operating experiences with a liquid core detection system at Armco Steel's Ashland slab caster[C].Steelmaking Conference Proceedings,1994,77:279-290.
    [75]冯科.板坯连铸机轻压下扇形段的设计特点[J].炼钢,2006,22(2):53-56.
    [76]赵志毅,康永林,刘德民等.连铸板坯凝固末端在线监测系统[J].北京科技大学学报,2003,25(5):458-461.
    [77]MORWALD K,DITTENBERGER K,IVES K D.Dynacs~(?) cooling system-features and operational results[J].Ironmaking and Steelmaking,1998,25(4):323-327.
    [78]宋东飞.LPC模型在动态轻压下控制中的应用[J].冶金自动化,2005,29(3):57-59.
    [79]张克强,自学军,杜得宝.连铸二冷区铸坯表面温度及配水研究[J].钢铁,2000,35(S):288-290.
    [80]朱立光,周建宏,王硕明等.基于目标温度的方坯连铸二冷配水方案优化[J].炼钢,2006,22(2):34-38.
    [81]SAMARASEKERA I V,BRIMACOMBE J K.Application of mathematical models for the improvement of billet quality[C].Steelmaking Conference Proceedings,1991,74:91-103.
    [82]党紫九,蔡开科,张艳等.连铸钢高温力学性能专辑[J].北京科技大学学报,1993,15(S2):24-26.
    [83]LANKFORD W T.Some considerations of strength and ductility in the continuous casting process[J].Metallurgical Transactions,1972,3(4):1331-1357.
    [84]WEISS B,GROTHE G E,STICKLER R.Physical metallurgy of hot ductility testing[J].Welding Journal,1970,49(10):471-481.
    [85]SUZUKI H G,NISHIMURA S,YAMAGUCHI S.Characteristics of hot ductility in steels subjected to the melting and solidification[J].Transactions ISIJ,1982,22(1):48-56.
    [86]SUZUKI H G,NISHIMURA S,NAKAMURA Y.Improvement of hot ductility of continuously cast carbon steels[J].Transactions ISIJ,1984,24(2):54-59.
    [87]WEINBERG F.The ductility of continuously-cast steel near the melting point-hot tearing[J].Metallurgical Transactions B,1979,10B(2):219-227.
    [88]WEINBERG F.The strength and ductility of continuously-cast steel above 800℃[J].Metallurgical Transactions B,1979,10B(4):513-522.
    [89]NACHTRAB W T,CHOU Y T.High temperature ductility loss in carbon-manganese and niobium-treated steels[J].Metallurgical Transactions A,1986,17A(11):1995-2006.
    [90]NACHTRAB W T,CHOU Y T.The effect of Sn,A1 and N on the hot ductility of a carbon-manganese steel between 700 and 1200℃[J].Metallurgical Transactions A,1988,19A(5):1305-1309.
    [91]MINTZ B,ARROWSMITH J M.Hot-ductility behavior of C-Mn-Nb-Al steels and its relationship to crack propagation during the straightening of continuously cast strand[J].Metals Technology,1979,6(1):24-31.
    [92]MINTZ B.The influence of composition on the hot ductility of steels and to the problem of transverse cracking[J].ISIJ International,1999,39(9):833-855.
    [93]CROWTHER D N,MOHAMED Z,MINTZ B.The relative influence of dynamic and static precipitation on the hot ductility of microalloyed steels[J].Metallurgical Transactions A,1987,18A(11),1929-1939.
    [94]KIM K,YEO T J,OH K H,et al.Effect of carbon and sulfur in continuously cast strand on longitudinal surface cracks[J].ISIJ International,1996,36(3):284-289.
    [95]SEOL D J,WON Y M,YEO T J,et al.High temperature deformation behavior of carbon steel in the austenite and δ-ferrite regions[J].ISIJ International,1999,39(1):91-98.
    [96]SEOL D J,WON Y M,OH K H,et al.Mechanical behavior of carbon steels in the mushy zone [J].ISIJ International,2000,40(4):356-363.
    [97]WRAY P J.Effect of carbon content on the plastic flow of plain carbon steels at elevated temperatures[J].Metallurgical Transactions A,1982,13A(1):125-134.
    [98]OUCHI C,MATSUMOTO K.Hot ductility in Nb-bearing high-strength low-alloy steels[J].Transactions ISIJ,1982,22(3):181-189.
    [99]NAGASAKI C,AIZAWA A,KIHARA J.Influence of manganese and sulfur on hot ductility of carbon steels at high strain rate[J].Transactions ISIJ,1987,27(6):506-512.
    [100]EL-WAZRI A M,HASSANI F,YUE S,et al.The effect of thermal history on the hot ductility of microalloyed steels[J].ISIJ International,1999,39(3):253-262.
    [101]SPRADBERY C,MINTZ B.Influence of undercooling thermal cycle on hot ductility of C-Mn-Al-Ti and C-Mn-Al-Nb-Ti steels[J].Ironmaking and Steehnaking,2005,32(4):319-324.
    [102]LAASRAOUI A,JONAS J J.Prediction of steel flow stresses at high temperatures and strain rates[J].Metallurgical Transactions A,1991,22A(7):1545-1558.
    [103]MAEHARA Y,YASUMOTO K,TOMONO H,et al.Morphology of carbonitrides and hot ductility of low carbon low alloy steels[J].Transactions ISIJ,1987,27(3):222-228.
    [104]WON Y M,KIM K,YEO T J,et al.Effect of cooling rate on ZST,L1T and ZDT on carbon steels near melting point[J].ISIJ International,1998,38(10):1093-1099.
    [105]王学杰,蔡开科,党紫九等.中碳钢的高温力学性能[J].北京科技大学学报,1992,14(1):28-33.
    [106]王新华,朱国森,于会香等.高碳钢连铸板坯高温力学性能[J].北京科技大学学报,2005,27(5):545-548.
    [107]刘青,张立强,王良周等.汽车用钢连铸坯的高温力学性能[J].北京科技大学学报,2006,28(2):133-137.
    [108]吴光亮,孙彦辉,周春泉等.CSP板坯Q235B高温力学性能试验研究[J].钢铁,2006,41(5):73-77.
    [109]傅广瑞,郑贤淑,金俊泽.碳素钢连铸坯高温力学性能的研究[J].钢铁研究学报,1993,5(3):15-20.
    [110]罗守靖,霍文灿,胡连喜.在Gleeble—1500动态热—力模拟机进行钢的高温力学性能研究[J].钢铁,1991,26(8):54-57.
    [111]康丽,王洋,王恩刚等.12Cr1MoV连铸钢坯高温力学性能研究[J].东北大学学报,2007,28(10):1393-1396.
    [112]潘艳华,陈登福,董凌燕等.20CrMo连铸坯高温力学性能和热物理性能分析[J].重庆大学学报,2006,29(9):68-70.
    [113]梁建平,刘旭峰,王立新等.冷却速率对1Cr18Ni9Ti钢高温力学性能的影响[J].钢铁,2007,42(3):56-59.
    [114]KOZLOWSKI P F,THOMAS B G,AZZI J A,et al.Simple constitutive equations for steel at high temperature[J].Metallurgical Transactions A,1992,23A(3):903-918.
    [115]GANCARZ J,LAMANT J Y,LARRECQ M,et al.Mechanical behavior of the slab during continuous casting[C].Steelmaking Conference Proceedings,1991,74:15-22.
    [116]THOMAS B G.Issues in thermal-mechanical modeling of casting processes[J].ISIJ International,1995,35(6):737-743.
    [117]FACHINOTTI V D,CARDONA A.Constitutive models of steel under continuous casting conditions[J].Journal of Materials Processing Technology,2003,135:30-43.
    [118]JON(?)TA Z,HERNAS A,MAZANEC K.Contribution of mechanical metallurgy behavior of steel during continuous casting[J].Journal of Materials Processing Technology,1998,78:90-94.
    [119]HUESPE A E,CARDONA A,NIGRO N,et al.Visco-plastic constitutive models of steel at high temperature[J].Journal of Materials Processing Technology,2000,102:143-152.
    [120]张克强,林宪,高海等.方坯连铸二级配水技术研究[J].钢铁,2006,41(1):39-42.
    [121]贾凌云.转炉—连铸工艺设计与程序[M].北京:冶金工业出版社,2005.
    [122]韩国瑞,许宏伟.板坯连铸技术的发展及应用[J].连铸,2004,(1):4-6.
    [123]杨拉道,雷华,曾晶等.直弧形连铸机辊列设计中基本概念的最新阐述[J].重型机械,2006,(2):4-8.
    [124]陶维瑛,李强.渐进矫直原理分析及拉矫机应用研究[J].包头钢铁学院学报,2001,20(1):46-48.
    [125]曹广畴.现代板坯连铸[M].北京:冶金工业出版社,1994.
    [126]盛义平,董少华,孙蓟泉.连铸坯的三段曲线矫直法—对CONCAST连续矫直法的改进[J].钢铁,1997,32(1):32-35.
    [127]王铁钢,陈志勇,李宪奎等.连续矫直技术在板坯连铸中的应用[J].连铸,2007,(5):9-11.
    [128]刘明延,李平,峦兴家等.板坯连铸机设计与计算(上册)[M].北京:机械工业出版社,1990.
    [129]刘明延,李平,峦兴家等.板坯连铸机设计与计算(下册)[M].北京:机械工业出版社,1990.
    [130]刘青,王良周,曹立国等.连铸二次冷却研究的进展[J].钢铁研究学报,2005,17(6):6-9.
    [131]蔡开科,张克强.连铸二次冷却的控制[J].冶金自动化,1985,9(5):8-14.
    [132]刘青,田乃媛,吴晓东等.矩形坯连铸机二次冷却的在线控制[J].冶金自动化,1997,21(2):9-12.
    [133]占贤辉.基于BP-GA算法的板坯连铸二冷水动态控制模型研究[D].重庆:重庆大学,2007.
    [134]CAMISANI-CALZOLARI F R,CRAIG I K,PISTORIUS P C.Speed disturbance compensation in the secondary cooling zone in continuous casting[J].ISIJ International,2000,40(5):469-477.
    [135]刘文红,谢植,纪振平等.连铸二冷配水先进控制策略的研究及应用[J].钢铁研究学报,2007,19(9):59-62.
    [136]SANTOS C A,SPIM JR J A,IERARDI M C F,et al.The use of artificial intelligence technique for the optimisation of process parameters used in the continuous casting of steel[J].Applied Mathematical Modelling,2002,26(11):1077-1092.
    [137]韩朋,张兴中.连铸坯二次冷却的非稳态控制[J].钢铁研究学报,2002,14(4):73-76.
    [138]HARDIN R A,LIU K,KAPOOR A,et al.A transient simulation and dynamic spray cooling control model for continuous steel casting[J].Metallurgical and Materials Transactions B,2003,34B(3):297-306.
    [139]PEHLKE R D.Unidirectional analysis of heat transfer during continuous casting[J].Metals Engineering Quarterly,1964,4(2):42-47.
    [140]MIZIKAR E A.Mathematical heat transfer model for solidification of continuously cast steel slabs[J].Metallurgical and Petroleum Engineers-Transactions,1967,239(11):1747-1753.
    [141]LAIT J E,BRIMACOMBE J K,WEINBERG F.Mathematical modeling of heat flow in the continuous casting of steel[J].Ironmaking and Steelmaking,1974,1(2):90-97.
    [142]BRIMACOMBE J K,WEINBERG F,HAWBOLT E B.Formation of longitudinal,midface cracks in continuously-cast slabs[J].Metallurgical Transactions B,1979,10B(2):279-292.
    [143]MENG Y,THOMAS B G.Heat-transfer and solidification model of continuous slab casting:CON1D[J].Metallurgical and Materials Transactions B,2003,34B(5):685-704.
    [144]BAROZZI S,FONTANA P,PRAGLIOLA P.Computer control and optimization of secondary cooling during continuous casting[J].Iron and Steel Engineer,1986,63(12):21-26.
    [145]OKUNO K,NARUWA H,KURIBAYASHI T,et al.Dynamic spray cooling control system for continuous casting[J].Iron and Steel Engineer,1987,64(4):34-38.
    [146]LOUHENKILPI S,LAITINEN E,NIENMINEN R.Real-Time simulation of heat transfer in continuous casting[J].Metallurgical Transactions B,1993,24B(4):685-693.
    [147]M(O|¨)RWALD K,THALHAMMER M,FEDERSPIEL C,et al.SMART~(?)/ASTC技术的冶金、操作和经济效果[J].钢铁,2003,38(11):21-25.
    [148]金俊泽,郑贤淑,郭可切等.连铸钢坯凝固进程的数值模拟[J].钢铁,1985,20(5):19-27.
    [149]蔡开科,刘凤荣.连铸坯凝固冷却过程的控制[J].金属学报,1984,20(3):146-154.
    [150]YAO M,YIN H B,FANG D C.3-D inverse problem continuous model for thermal behavior of mould process based on the temperature measurements in plant trial[J].ISIJ International,2006,46(4):539-545.
    [151]龙木军,陈登福,靳星.板坯连铸通用仿真模型算法的研究及软件开发[C].第四届发展中国家连铸国际会议,2008:546-549.
    [152]SHEN H F,HARDIN R A,MACKENZIE R,et al.Simulation using realistic spray cooling for the continuous casting of multi-component steel[J].Journal of Materials Science Technology,2002,18(4):311-314.
    [153]高文江,赵克文,沈厚发.连铸大方坯凝固传热过程的数值模拟[J].热加工工艺,2006,35(17):66-69.
    [154]马长文,沈厚发,黄天佑.板坯凝固末端轻压下流动与溶质分布的研究[J].铸造,2004,53(12):1023-1027.
    [155]祭程,陈志平,宋景欣等.高拉速板坯连铸机动态二冷控制模型研究[J].冶金自动化,2007,31(3):52-56.
    [156]祭程,朱苗勇,程乃良等.板坯连铸动态轻压下过程控制系统研究与实现[J].冶金自动化,2007,31(1):51-54.
    [157]崔立新,张家泉,陈志平等.板坯连铸轻压下过程的二冷区传热机制[C].板坯连铸技术交流会,2006:98-106.
    [158]张家泉,王国新,钱宏智等.首台国产现代化大方坯动态轻压下铸机[C].第八届全国连铸学术会议,2007:339-344.
    [159]李杰,李志,颜明皋.高合金超高强度钢的发展[J].材料工程,2007,(4):61-65.
    [160]SCHEIL E.Retrograde saturation curves[J].Zeitschrifi Fur Metallkunde,1942,34(3):70-72.
    [161]KOBAYASHI S.A mathematical model for solute redistribution during dendritic solidification [J].Transactions ISIJ,1988,28(7):535-542.
    [162]CLYNE T W,KURZ W.Solute redistribution during solidification with rapid solid state diffusion[J].Metallurgical Transactions A,1981,12A(6):965-971.
    [163]JACOBI H,SCHWERDTFEGER K.Dendrite morphology of steady-state unidirectional solidified steel[J].Metallurgical Transactions A,1976,7A(5):811-820.
    [164]CHU S,LI J,LIU Z,et al.On morphologies,microsegregation,and mechanical behavior of directionally solidified cobalt-base superalloy at medium cooling rate[J].Metallurgical and Materials Transactions A,1994,25A(3):637-642.
    [165]IMAGUMBAI M.Behaviors of manganese-sulfide in aluminum-killed steel solidified uni-directionally in steady state-dendrite structure and inclusions[J].ISIJ International,1994,34(11):896-905.
    [166]NAKAGAWA T,UMEDA T,MURATA J.Deformation behavior during solidification of steels [J].ISIJ International,1995,35(6):723-729.
    [167]黄光杰,钱宝华,游红.45钢高温拉伸峰值应力和变形储能与Z参数的关系函数研究[J].材料工程,2007,(12):21-25.
    [168]袁伟霞,董汉雄,袁桂莲.中碳钢高温力学性能研究及在连铸生产中的应用[J].炼钢,1999,15(1):28-31.
    [169]WON Y M,YEO T J,SEOL D J,et al.A new criterion for internal crack formation in continuously cast steels[J].Metallurgical and Materials Transactions B,2000,31B(4):779-794.
    [170]GAROFALO F.An empirical relation defining the stress dependence of minimum creep rate in metals[J].Metallurgical and Transactions AIME,1963,227:351-359.
    [171]UEHARA M,SAMARASEKERA I V,BRIMACOMBE J K.Mathematical modeling of unbending of continuously cast steel slabs[J].Iroumaking and Steelmaking,1986,13(3):138-153.
    [172]HAN H N,LEE Y G,OH K H,et al.Analysis of hot forging of porous metals[J].Materials Science and Engineering A,1996,206A:81-89.
    [173]KIM K,OH K H,LEE D N.Mechanical behavior of carbon steel during continuous casting[J].Scripta Materialia,1996,34(2):301-307.
    [174]CHO H K,SUH J,KIM K T.Densification porous alloy steel performs at high temperature[J].International Journal of Mechanical Sciences,1994,36(4):317-328.
    [175]NGUYEN T G,FAVIER D,SUERY M.Theoretical and experimental study of the isothermal mechanical behaviour of alloys in the semi-solid state[J].International Journal of Plasticity,1994,10(6):663-693.
    [176]De FREITAS E R,FERRANTE M.Rheological behavior and deformation characteristics of a commercial and a laboratory-cast Al-4%Cu alloy in the semi-solid state[J].Acta Materialia,2001,49(18):3839-3847.
    [177]杨拉道,谢东钢.常规板坯连铸技术[M].北京:冶金工业出版社,2002.
    [178]张兴中,那贤昭,王忠英等.圆坯方坯凝固定律的导出和验证[J].金属学报,2004,40(3):281-284.
    [179]邹冰梅.连铸多点弯曲多点矫直与连续弯曲连续矫直辊列设计计算[J].钢铁技术,2006,(2):12-17.
    [180]盛义平,张小春,金正瑞.连铸大方坯二次冷却区域两相界应变的模拟计算[J].重型机械,2002,(5):29-31.
    [181]朱国森,于会香,王新华等.连铸板坯凝固过程的应变分析[J].北京科技大学学报,2004,26(3):251-254.
    [182]GRILL A,SCHWERDTFEGER K.Finite element analysis of bulging produced by creep in continuously cast steel slabs[J].Ironmaking and Steelmaking,1979,6(3):131-135.
    [183]OKAMURA K,KAWASHIMA H.Three-dimensional elasto-plastic and creep analysis of bulging in continuously cast slabs[J].ISIJ International,1989,29(8):666-672.
    [184]盛义平,孙蓟泉,章敏.连铸板坯鼓肚变形量的计算[J].钢铁,1993,28(3):20-25.
    [185]W(U|¨)NNENBERG K,HUCHINGEN D.Strand bulging between supporting rollers during continuous slab casting[J].Stahl mad Eisen,1978,98(6):254-259.
    [186]文石斧.现代弧形连铸机的多点矫直和连续矫直[J].重型机械,1989,(1):57-64.
    [187]DEISINGER M,TACKE K H.Unbending of continuously cast slabs with liquid core[J].Ironmaking and Steelmaking,1997,24(4):321-328.
    [188]BARBER B,PERKINS A.Strand deformation in continuous casting[J].Ironmaking and Steelmaking,1989,16(6):406-411.
    [189]TOLEDO G A,LAINEZ J,CIRION J C.Model optimization of continuous casting steel secondary cooling[J].Material Science and Engineering A,1993,173A:287-291.
    [190]傅广瑞,郑贤淑,金俊泽.用温度场数值模拟方法优化连铸二冷制度[J].钢铁,1994,29(5):26-29.
    [191]EL-BEALY M,LESKINEN N,FREDIKSON H.Simulation of cooling conditions in secondary cooling zones in continuous casting process[J].Ironmaking and steelmaking.1995,22(3):246-255.
    [192]EL-BEALY M.Monotonic and fluctuated cooling approaches in secondary cooling zones during continuous casting[J].Canadian MetallurgieaI Quarterly,1997,36(I):49-56.
    [193]HA J S,CHO J R,LEE B Y.Numerical analysis of secondary cooling and bulging in the continuous casting of slabs[J].Journal of Materials Processing Technology,2001,113:257-261.
    [194]SCHNEIDER M C,BECKERMANN C.Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel[J].Metallurgical and Materials Transactions A,1995,26(9):2373-2388.
    [195]SAVAGE J,PRITCHARD W H.Problem of rupture of the billet in the continuous casting of steel[J].Journal of the Iron and Steel Institute,1954,178(11):269-277.
    [196]NOZAKI T,MATSUNO J,MURATA K,et al.Secondary cooling pattern for preventing surface cracks of continuous casting slab[J].Transactions ISIJ,1978,18(6):330-338.
    [197]LAITINEN E,NEITAANM(A|¨)KI P.On numerical solution of the problem connected with the control of the secondary cooling in the continuous casting process[J].Control-Theory and Advanced Technology,1988,4(3):285-305.
    [198]KELLY J E,MICHALEK K P,O'CONNOR T G,et al.Initial development of thermal and stress fields in continuously cast steel billet[J].Metallurgical Transactions A,1988,19A(12):2589-2602.
    [199]陈家祥.连续铸钢手册[M].北京:冶金工业出版社,1991.
    [200]MOON C H,HWANG S M.Analysis of flow,heat transfer,solidification,and inclusion removal in continuous slab caster by finite element method[J].Ironmaking and Steelmaking,2003,30(1):48-56.
    [201]CHOUDHARY S K,MAZUMDAR D,GHOSH A.Mathematical modelling of heat transfer phenomena in continuous casting of steel[J].ISIJ International,1993,33(7):764-774.
    [202]THOMAS B G,SAMARASEKERA I V,BRIMACOMBE J K.Comparison of numerical modeling techniques for complex,two-dimensional,transient heat-conduction problems[J].Metallurgical Transactions B,1984,15B(3):307-318.
    [203]HAN H N,LEE J E,YEO T J,et al.A finite element model for 2-dimensional slice of cast strand[J].ISIJ International,1999,39(5):445-454.
    [204]THOMAS B G,SAMARASEKERA I V,BRIMACOMBE J K.Mathematical model of the thermal processing of steel ingot:Part I.Heat flow model[J].Metallurgical Transactions B,1987,18B(2):119-130.
    [205]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [206]田勇.板坯连铸二冷工艺模拟及动态控制系统开发[D].北京:清华大学,2007.
    [207]SENGUPTA J,THOMAS B G,WELLS M A.The use of water cooling during the continuous casting of steel and aluminum alloys[J].Metallurgical and Materials Transactions A,2005,36A(1):187-204.
    [208]张克强,吴国庆,吴建忠等.含铌钢板坯连铸二冷目标温度及配水[J].连铸,2002,(6):1-3.
    [209]VAN DRUNEN G,BRIMACOMBE J K,WEINBERG F.Internal cracks in strand-cast billets[J].Ironmaking and Steelmaking,1975,2(2):125-133.
    [210]SUZUKI H G,NISHIMURA S,YAMAGUCHI S.Physical simulation of the continuous casting [C].Steel International Conference of Welding,Hot Formation and Continuous Casting,1988:5.
    [211]王正林,郭阳宽.过程控制与Simulink应用[M].北京:电子工业出版社,2006.
    [212]郭戈,乔俊飞.连铸过程控制理论与技术[M].北京:冶金工业出版社,2003.
    [213]HAN Z Q,CAI K K,LIU B C.Prediction and analysis on formation of internal cracks in continuously cast slabs by mathematical models[J].ISIJ International,2001,41(12):1473-1480.
    [214]MATSUMIYA T,SAEKI T,TANAKA J,et al.Mathematical model analysis on the formation mechanism of longitudinal,surface cracks in continuously cast slabs[J].Tetsu-to-Hagane,1982,68(13):1782-1791.
    [215]CLYNE T W,WOLF M M,KURZ W.The effect of melt composition on solidification cracking of steel,with particular reference to continuous casting[J].Metallurgical Transactions B,1982,13B(2):259-266.
    [216]林启勇,朱苗勇.连铸板坯自然收缩行为有限元模拟[J].东北大学学报,2006,27(S2):8-10.
    [217]祭程,朱苗勇,程乃良等.板坯连铸动态轻压下控制模型的开发与应用[J].钢铁,2008,43(9):38-40.
    [218]陈素琼,张家泉,崔立新等.板坯凝固末端轻压下实时控制的热—力分析[J].钢铁研究学报,2003,15(2):9-15.
    [219]MIYAZAKI J,NARITA K,NOZAKI T,et al.On the internal cracks caused by the bending test of small ingot[J].Transactions ISIJ,1981,21:B210.
    [220]WUNNENBERG K,FLENDER R.Investigation of internal crack formation in continuous casting,using a hot model[J].Ironmaking and Steelmaking,1985,12(1):22-29.
    [221]NAGATA S,MATSUMIYA T,OZAWA K,et al.Estimation of critical strain for internal crack formation in continuously cast slabs[J].Tetsu-to-Hagane,1990,76(2):214-221.
    [222]HIEBLER H,ZIRNGAST J,BERNHARD CH,et al.Inner crack formation in continuous casting:stress or strain criterion?[C].Steelmaking Conference Proceedings,1994,77:405-416.
    [223]YU C H,SUZUKI M,SHIBATA H,et al.Simulation of crack formation on solidifying steel shell in continuous casting mold[J].ISIJ International,1996,36(S):S159-162.
    [224]韩志强,袁伟霞,韩传基等.连铸坯内裂纹形成的临界应变[J].连铸,1999,(5):22-24.
    [225]SHIN G,KAJITANI T,SUZUKI T,et al.Mechanical properties of carbon steels during solidification[J].Tetsu-to-Hagane,1992,78(4):587-593.
    [226]WOLF M M.Definition and control of strand soft reduction(Center soundness in conventional continuous casting-2)[J].CAMP-ISIJ,1998,11(4):787.
    [227]SEDIAKO D,SEDIAKO O,LIN K J.Some aspects of thermal analysis and technology upgrading in steel continuous casting[J].Canadian Metallurgical Quarterly,1999,38(5):377-385.
    [228]OGIBAYASHI S,YAMADA M,YOSHIDA Y,et al.Influence of roll bending on center segregation in continuously cast slabs[J].ISIJ International,1991,31(12):1408-1415.
    [229]管克智,周纪华,朱其圣等.热轧技术塑性变形阻力研究[J].北京钢铁学院学报,1983,(1):123-139.
    [230]郭晓鹏,李存斌.Visual C++高级编程及其项目应用开发[M].北京:中国水利水电出版社,2004.
    [231]PROSISE J.MFC Windows程序设计(第二版)[M].北京:清华大学出版社,2001.
    [232]OPC FOUNDATION.OLE for Process Data Access Standard[M].Version 2.01,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700