用户名: 密码: 验证码:
珠海水库富营养化现状、浮游植物群落特征与蓝藻水华风险分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了保障城市用水需求,珠海市修建了大量的中、小型调水水库,并通过管网和泵站与河流相连,形成了有特色的河库连通的调水水库系统。因为从珠江下游河道大量调入污染相对较重的河水,加速了水库的富营养化进程。珠海水库的浮游植物群落和蓝藻对富营养化的响应受到多个因子的共同影响:水质退化,水动力条件复杂和亚热带高温多雨的气象因素以及水库之间的相互串联调水。本论文在调查分析珠海城市水库的富营养化特征和调水特征的基础上,分析了浮游植物在这些特殊水体中的季节演替和优势种群的组成特征,利用生存策略模型和CCA方法分析了调水、降雨和营养盐等多个环境因子对浮游植物群落组成和优势种的影响。最后通过stella-Ⅱ动力学模拟工具,构建一维的蓝藻动力学模型,对简单工况下蓝藻细胞数量积累过程进行了模拟,并结合水库富营养化特征与蓝藻水华发生的风险加以分析。
     在被调查的19座珠海城市水库中有9座水库达到了富营养水平,多数水库处于中营养水平;4月富营养化程度最高,有5座水库处于富营养水平,蓝藻水华发生的几率较大;12月份水温较低,调水频率少,整体富营养化程度最低。整体上看调水水库的富营养化程度要高于非调水水库。从季节上看,大部分调水水库4月份富营养化最严重,12月份富营养化程度较低;非调水水库并没有固定的动态变化规律。
     在水库调查中,共检出浮游植物95个属143个分类单位(包括种、变种、变型和变种变型,下同),隶属于7个门。绿藻门的种类数最多,达39个属66个分类单位;硅藻门的种类数次之,为24个属34个分类单位;再其次为蓝藻门,为21个属28个分类单位;其它各门藻类的种类数较少,有11个属15个分类单位。从浮游植物的优势类群组成上看,所有水库分为5个类群:蓝藻型、蓝藻硅藻混合型、蓝藻甲藻混合型、硅藻甲藻混合型和其它混合型。其中凤凰山、蛇地坑、南屏水库和正坑水库为蓝藻型。
     珠海调水水库的浮游植物主要由丝状蓝藻(假鱼腥藻、拟柱孢藻和泽丝藻等)、硅藻门的针杆藻和小环藻以及甲藻门的多甲藻以及在某些季节出现的水华蓝藻——微囊藻所组成。个别调水水库的优势种是绿藻门的鞭毛种类。非调水水库没有外源营养盐输入,大部分处于中营养状态,甲藻是全年的优势种,丰水期以硅藻的优势度较大,枯水期大型绿藻的优势度较大。
     珠海市水库中水华和有害蓝藻的主要优势种类有:微囊藻(3个种)、鱼腥藻(2个种)、假鱼腥藻、拟柱孢藻和泽丝藻8个种类。它们在4—10月均可成为水库的绝对优势种。调水水库蓝藻水华风险比非调水水库大,4月份的风险比其它季节大;目前,竹仙洞、南屏、蛇地坑、凤凰山和大镜山这五座水库的蓝藻水华潜在的威胁较大。
     浮游植物群落对水库调水与富营养化的响应主要取决于浮游植物的形态大小和相应的适应策略。中等强度的调水和换水率对球形群体蓝藻的水华发生具有一定的抑制作用,R策略的丝状蓝藻占据浮游植物的优势。高频率的调水可以对水库中浮游植物的组成产生很大影响,C策略的浮游植物占据优势。珠海水库分别处于两种富营养化的两种状态:即以蓝藻占优势的状态和以鞭毛藻、C-选择者占优势的状态。调水频率的不同是导致这两种状态相互转换的关键因子。非调水水库中,枯水期个体较大的S策略的甲藻和绿藻占据了较大优势,丰水期则由C—R策略的硅藻占据优势,降雨是引起优势种改变的主要因素。
     根据5座水库的CCA分析,pH值、水位库容、正磷和水力滞留时间与浮游植物的分布关系最为直接;而透明度和降雨量对其也有一定的影响。在蛇地坑水库中,总磷、正磷酸盐浓度是影响蓝藻丰度的主要因子,硅藻则与库容和透明度有关。在南屏水库短水力滞留时间期间,硅藻的相对丰度较高;水位较高的丰水期,微小多甲藻的相对丰度较高。竹仙洞水库的绿藻分成两个集群:衣藻、游丝藻等大型绿藻在低温、低水位和较长水力滞留时间的4月份较高;小球藻、栅藻、月牙藻等小型种类则与较高的水位和正磷酸盐浓度呈正相关。南屏水库与竹仙洞水库的浮游植物优势种类相似,蛇地坑水库的优势种则与它们存在较为明显的差异。影响这5座水库浮游植物群落组成的主要因素是水力滞留时间,短水力滞留时间抑制了南屏和竹仙洞水库中的蓝藻成为优势类群。
     浮游蓝藻动力学模拟表明,在南屏、竹仙洞和凤凰山水库中,由于凤凰山水库水力滞留时间最长,蓝藻水华发生的风险最大,在25℃时只需一周即可形成一定规模的蓝藻水华。竹仙洞水库的水华风险最小,南屏水库处于两者之间。综合各个水库浮游植物群落中蓝藻的相对丰度和调水情况,凤凰山、大镜山、先锋岭、月坑和大枝园水库处于蓝藻水华发生高风险水平,龙井、南屏、竹仙洞、银坑和蛇地坑水库处于中等风险水平,其它水库蓝藻水华爆发的风险较低。
In order to guarantee the water supply to the Zhuhai City and Macau,many middle and small sized reservoirs have been built and connected by pipes and pumping station to the Pearl Rivers.These pumped storage reservoirs are different from those normally formed by damming rivers.Pumping water from polluted lowland rivers results in eutrophication and algal blooming.
     On the basis of investigating eutrophication,we analyzed response of phytoplankton community to eutrophication and water pumping.SRC model of phytoplankton survivorship was applied to the adaptive strategies of phytoplankton dominant species in the special reservoir ecosystems.Canonical Correspondence Analysis(CCA) was used to identify the main environmental factors affecting the abundance of dominant phytoplankton.A simple dynamic modeling system was established with Stellao-Ⅱto simulate the accumulations of cyanobacterial cells under several cases with varying temperature and water retention time.The risk of cyanobacteria bloom was evaluated.
     Among the 19 investigated reservoirs,9 of them were eutrophic nearly in the whole year,and the others are mesotrophic.More reservoirs are eutrophicated and at the high risk of cyanobacteria blooming in April just before the wet season is coming. Fewer reservoirs were eutrophic in December.This seasonal variation was regulated by both water pumping and water temperature.In general,the trophic state indices are higher in the pumped storage reservoirs than in the normal reservoirs.
     A total of 143 species of phytoplankton from 95 genera in 7 phyla were observed,66 species in Chlorophyta,34 species in Bacillariophyta,21 species in Cyanophyta,5 species in Euglenophyta,4 species of Pyrrophyta and Chrysophyta and 2 species of Cryptophyta.As pumping water from the river enhanced the mixing and nutrient concentration and reduced water transparency,filamentous blue-green algae (Pseudanabaena,Cylindrospermopsis and Limnothrix etc.) and Peridinium in Pyrrophyta were favored in these reservoirs.Synedra and Cyclotella usually dominant in winter and spring.Microcystis blooms occasionally in the warm and low mixing stages.Medium-frequent pumping and flushing could promote the dominant of filamentous blue green algae with R survival strategy,and decrease Microcystis blooming.Very high frequent pumping and flushing could favor the dominant of C survival strategy species(representive as flagellated green algae).The eutrophicated reservoirs are in two states:Cyanobacteria dominant state and flagellated C-strategy dominant state(so called Holotrophic).The frequency of pumping is the key factor triggering the shift between the two states.
     Most of non-pumped storage reservoirs are mesotrophic;their phytoplankton was dominant by Peridinium(dinophyta) yearly.Large sized species of green algae such as Staurastrum spp.,Botrycoccus sp.and Cosmarium sp.with S strategy were dominant in the dry season,while diatoms(Cyclotella spp.,Melosira sp., Rhizosolenia sp.) dominated in the flood season.Precipitation determines the shift between two states of communities.
     CCA analysis showed that water retention time,pH,water level and phosphate concentration are major environmental variables influencing the structure of phytoplankton community,following by Secchi disk depth and precipitation.There is a markedly positive correlation between high phosphorus concentration and cyanobacteria abundance in April in Shedikeng Reservoir.The abundance of diatom in Zhuxiandong reservoir was correlated with water volume and Secchi Disk depth. Diatom abundance had a negative relationship with water residence time in Nanping reservoir,while the abundance of dinoflagellate peridinium minutum was positively correlated to precipitation.The dominant phytoplankton species such as Chlamydomonas sp.,Planctonema lauterbornii and Cryptomonas sp.were more sensitive to the variation of environmental variables than the other species in Zhuxiandong reservoir.Their relative abundance increased in April with relatively low water temperature,low water level and longer water residence time.Another group- the small unicellular chlorophytes showed positive correlation with high phosphorus concentration and water level in June and August.The large sized species such as Melosira spp.,Nitzschia spp.and Euglena acus prefer to high Secchi depth and precipitation,they have high relative abundance in June,August and December. In Zhuxiandong reservoir,a eutrophic water body,its phytoplankton was characterized with fewer phytoplankton species and but relatively high abundance of green algae,being different from that in most of eutrophic reservoirs in the same region.Flagellated green algae,filamentous green algae and Cyclotella meneghiniana (diatom) were the major contributors for phytoplankton biomass in the reservoirs mentioned above.The structure and dynamics of phytoplankton community was primarily controlled by short water residence time in Zhuxiandong and Nanping reservoir.
     In simulation with Stella-Ⅱbased model,the Fenghuangshan Reservoir has the highest risk of Microcystis blooming for its long water retention time Zhuxiandong reservoir has the lowest risk of Microcystis bloom for its short water retention time.
引文
Antenucci J A,Ghadouani A N & Burford M I,et al.2005.The long-term effect of artificial destratification on phytoplankton species composition in a subtropical reservoir[J].Freshwater Biology,50(6):1081-1093
    Basu,B.K.and Pick F.R.,1995.Longitudinal and seasonal development of planktonic chlorophyll a in the Rideau River,Ontario[J].Can.J.Fish.Aquat.Sci.52:804-815
    Benndorf J U,Boing W,Koop J,et al.2002.Top-down control of phytoplankton:the role of time scale,lake depth and trophic state[J].Freshwater Biology.47(12):2282-2295
    Briand J F,Leboulanger C,Humbert J F.2004.Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes:selection,wide physiological tolerance,or globalwarming?[J].J.Phycol.40:231-238
    Briand J F,Robillot C & Quiblier-Lloberas C,et al.2002.Environmental context of Cylindrospermopsis raciborskii(Cyanobacteria) blooms in a shallow pond in France[J].Water Res,36(13):3183-3192
    Brooks A.S.and Torke B.G.,1977.Vertical and seasonal distribution of chlorophyll a in Lake Michigan[J].J.Fish.Res.Bd.Can.34:2280-2287
    Butterwick C,Heaney S I & Tailing J F.2005.Diversity in the influence of temperature on the growth rates of freshwater algae,and its ecological relevance [J].Freshwater Biology,50(2):291-300
    Calijuri,M.C.and Dos Santos A.C.A.,1996.Short-term changes in the Barra Bonita reservoir(S(?)o Paulo,Brazil):emphasis on the phytoplankton communities[J].Hydrobiologia,330:163-175
    Celik K.2006.Spatial and Seasonal Variations in Chlorophyll-Nutrient Relationships in The Shallow Hypertrophic Lake Manyas,Turkey[J].Environ Monit Assess,117(1-3):261-269
    Danilov,R.A.and Ekelund,N.G.A.,2001.Effects of solar radiation,humic substances and nutrients on phytoplankton biomass and distribution in Lake Solummsj(o|¨),Sweden[J].Hydrobiologia,44:203-212
    Dear D G,Xie P & Zhou Q,et al.2007.Studies on Temporal and Spatial Variations of Phytoplankton in Lake Chaohu[J].Journal of Integrative Plant Biology,49(4):409-418
    Enrique M O.2008.Hydraulic Management Drives Heat Budgets and Temperature Trends in a Mediterranean Reservoir[J].International Review of Hydrobiology,93(2):131-147
    Gaedke U.1992,The size distribution of plankton biomass in a large lake and its seasonal variability[J].Limnol.Oceanogr.,37:1202-1220
    Geraldes A M & Boavida M J.2004.Limnological variations of a reservoir during two successive years:One wet,another dry.Lakes & Reservoirs:Research and Management,9:143-152
    Geraldes A.M.and Boavida M.J.2004.What factors influence the cladoceran assemblage of a meso-eutrophic reservoir?[J]Annales de Limnologie,40:101-111
    Ha K.,1999.Phytoplankton Community Dynamics and Microcystis Bloom Development in a Hypertrophic River(Nakdong River,Korea)[M].Ph.D.dissertation.Pusan National University,Pusan,pp140
    Ha,K.,Jang M.H.and Joo G.J.,2002.Spatial and temporal dynamics of phytoplankton communities along a regulated river system,the Nakdong River,Korea[J].Hydrobiologia.470:235-245
    H(a|¨)der D-P,1988.Ecological comequences of photomovement in micro-organisms[J].J.Photochem.Photobiol.1:385-414
    Hallegraeff G.M.,1993.A review of harmful algal blooms and their apparent global increase[J].Phycologia.32(2):79-99
    Hart B P and Straskraba M.1998.Size dependence of biomass spectra and population density I.The effects of size scales and size intervals.J theor Biol,191:259-265
    Hart B,Armengol J & Carlos Garcia J,et al.2000.The thermal structure of Sau Reservoir(NE:Spain):a simulation approach[J].Ecological Modelling,125(2-3):109-122
    Happey-Wood C.M.,1993.Diurnal and seasonal ariation in the contributions of autotrophic pico-,nano- and microplankton to the primary production of an upland lake[J].J Plankton Res 15:125-159
    Harris,G.P.and Smith,R.E.H.,1977.Observations of small-scale spatial patterns in phytoplankton populations[J].Lirnnol.Oceanogr.,22:887-89
    Havens K E.2002.Zooplankton structure and potential food web interactions in the plankton of a subtropical chin-of-lakes[J].Scientific World Journal,2:926-942
    Hillebrand H,Durselen C D & Kirschtel D,et al.1999.Biovolume Calculation For Pelagic And Benthic Microalgae[J].Journal of Phycology,35(2):403-424
    Huisman,J.,van Oostveen,P.and Weissing,F.J.,1999.Critical depth and critical turbulence:two different mechanisms for the development of phytoplanlaon blooms[J].Limnology and Oceanography,44:1781-7
    Jones I D & Elliott J A.2007.Modelling the effects of changing retention time on abundance and composition of phytoplankton species in a small lake[J].Freshwater Biology,52(6):988-997
    Jung J M,Lee Y J & Park H G,et al.2005.Changes in microcystin content and environmental parameters over the course of a toxic cyanobacteria bloom in a hypertrophic regulated fiver,South Korea[J].J Environ Biol,26:97-103
    Kivrak E & Hasan G.2005.Seasonal variations of chlorophyll-a in Demirdoven Dam Reservoir(Erzurum,Turkey) in relation to phytoplankton density and environmental factors[J].J Environ Biol,26(3):597-602
    Kotut,K.,L.Krienitz & M.Muthuri,1998.Temporal changes in phytoplankton structure and composition at the Turkwel Gorge Reservoir,Kenya[J].Hydrobiologia,368:41-59
    Kruskopf M & Flynn K J.2006.Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass,nutrient status or growth rate[J].New Phytol,169(3):525-536
    Langdon P E,Ruiz Z O & Brodersen K L,et al.2006.Assessing lake eutrophication using chironomids:understanding the nature of community response in different lake types[J].Freshwater Biology,51(3):562-577
    Leit(?)o M.,Morata S.M.,Rodriguez S.and Vergon J.P.2003.The effect of perturbations on phytoplankton assemblages in a deep reservoir(Vouglans,France)[J].Hydrobiologia,502:73-83
    Lep(?) J &(?)milauer P.2003.Multivariate Analysis of Ecological Data using CANOCO [M].Cambridge:Cambridge University Press.282pp
    Lin Q Q,Han B P,Li T & L M Wang,2001.Reservoir water supply and reservoir eutrophication in Guangdong Province(South China).In:International Lake Environment Committee ed.Proceedings of 9~(th) International Conference on the Conservation and management of Lakes.Shiga,Japan,Shiga Prefectural Government,3:269-272
    Lurid,J.W.G.,Mackereth,F.J.H.and Mortimer,C.H.1963.Changes in depth and time of certain chemical and physical conditions and of the standing crop of Asterionella formosa Hass.in the north basin of Windermere in 1947[J].Philosophical Transactions of the Royal Society of London B,246(731):255-290
    Makarewicz,J.C.1991.Feasibility of shore side monitoring of the Great Lakes[J].J.Great Lakes Res.17:344-360
    Marinho M M & Rodrigues S V,2003.Phytoplankton of an eutrophic tropical reservoir:comparison of biomass estimated from counts with chlorophyll-a biomass from HPLC measurements[J].Hydrobiologia,505:77-88
    Masojidek J,Torzillo G and Koblizek M,et al.1999.Photoadaptation of two members of the Chlorophyta(Scenedesmus and Chlorella) in laboratory and outdoor cultures:changes in chlorophyll fluorescence quenching and the xanthophyll cycle[J].Planta,209:126-135
    Moreira-Santos M,Soares A M & Ribeiro R.2004.A phytoplankton growth assay for routine in situ environmental assessments[J].Environ Toxicol Chem,23(6):1549-1560
    Munawar,M.and Munawar I.F.,1996.Phytoplankton dynamics in the North American Great Lakes.Ecovision world monograph series.Amsterdam,The Netherlands::SPB Academic Pub.25
    Mwaura F,Koyo A O & Zech B.2004.Cyanobacterial blooms and the presence of eyanotoxins in small high altitude tropical headwater reservoirs in Kenya[J].J Water Health,2(1):49-57
    Naselli-Flores L.2000.Phytoplankton assemblages in twenty-one Sicilian reservoirs:relationship between species composition and environmental factors[J].Hydrobiologia,424:1-11
    Naselli-Flores L & Barone R.1998.Phytoplankton dynamics in two reservoirs with different trophie state(Lake Rosamarina and Lake Arancio,Sicily,Italy)[J].Hydrobiologia 369/370:163-178
    Naselli-Flores L & Barone R.2000.Phytoplankton dynamics and structure:a comparative analysis in natural and man-made bodies of difference trophic state [J].Hydrobiologia 438:65-74
    Naselli-Flores L.,Padis(?)k J.,Dokulil M.T.and Chorus I.2003.Equilibrium/steady-state concept in phytoplankton ecology.Hydrobiologia,502:395-403
    Padis(?)k J.,1993.The influence of different disturbance frequencies on the species richness,diversity and equitability of phytoplankton of shallow lakes[J].Hydrobiologia,249,135-56
    Padis(?)k,J.,Scheffler,W.,Sipos,C.et al.,2003.Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999[J].Advances in Limnology,58:135-55
    Pannard A,Bormans M And Lefebvre S,et al.2007.Phytoplankton size distribution and community structure:influence of nutrient input and sedimentary loss[J].Journal of Plankton Research,29(7):583-598
    Perez-Martinez C A & Cruz-Pizarro L U.1995.Species-specific phytoplankton responses to nutrients and zooplankton manipulations in enclosure experiments [J].Freshwater Biology.33(2):193-203
    Popovskaya G.I.2000.Ecological monitoring of phytoplankton in Lake Baikal[J].Aquatic Ecosystem Health and Management,3:215-225
    Prestidge M.C.,Taylor A.H.,1995.A modelling investigation of the distribution of stratification and phytoplankton abundance in the Irish Sea[J].J Plankton Res,17:1393-1420
    Reynolds C S.1984.The ecology of freshwater ecology[M].Cambridge:Cambridge University Press
    Reynolds C S.1988.Functional morphology and the adaptive strategies of freshwater phytoplankton.In Growth and Reproductive Strategies of Freshwater Phytoplankton[M],ed.C.D.Sandgren,Cambridge:Cambridge University Press.338-433
    Reynolds C S.1995.Succssional change in the planktonic vegetation:species,structures,scales.In Molecular Ecology of Aquatic Microbes[M],ed.I.Joint,Berlin:Springer-Verlag.115-132
    Reynolds C.S.,2006.Ecology of Phytoplankton[M].Cambridge:Cambridge University Press.535pp
    Reynolds C.S.,Huszar V.L.,Kruk C.,Naselli-Flores L.and Melo S.2002.Towards a functional classification of the freshwater phytoplankton[J].Journal of Plankton Research,24:417-428
    Reynolds,C.S.,1975.Interrelations of photosynthetic behaviour and buoyancy regulation in a natural population of a blue-green alga[J].Freshwater Biology,5:323-338
    Reynolds,C.S.,1984.Artificial induction of surface blooms of Cyanobacteria.Verhandlungen der internationale Vereinigung f(u|¨)r theoretische und angewandte Limnologie[J],22:638-43
    Reynolds,C.S.,Wiseman,S.W.,Godfrey,B.M.and Butterwick,C.,1983.Some effects of artificial mixing on the dynamics of phytoplankton populations in large limnetic enclosures[Y].Journal of Plankton Research,5:203-234
    Richardson T L,Gibson C E,Heaney S I.2000.Temperature,growth and seasonal succession of phytoplankton in Lake Baikal,Siberia[J].Freshwater Biology.44(3):431-440
    Richardson T.L.,Gibson C.E.and Heaney S.I.2000.Temperature,growth and seasonal succession of phytoplankton in Lake Baikal,Siberia[J].Freshwater Biology,44:431-40
    Robertson,A.and D.Scavia.1984.The North American Great Lakes.In:Lake and Reservoir Ecosystems(F.B.Taub.,Ed)[M].Elsevier Science Publishers,Amsterdam
    Sabetta L,Vadrucci M R,Fiocca A,et al.,2008.Phytoplankton size structure in transitional water ecosystems:a comparative analysis of descriptive tools[J].Aquatic Conservation:Marine and Freshwater Ecosystems,18(S1):76-87
    Sandgren C D.1991.Growth and reproductive strategies of freshwater phytoplankton [M].Cambridge,Cambridge University Press.442pp
    Sandgren,C.D.1988.General introduction.In Growth and Reproductive Strategies of Freshwater Phytoplankton[M],ed.C.D.Sandgren,Cambridge:Cambridge University Press:1-8
    Serra T,Granata T,Colomer J,Stips A,Mφhlenberg F,Casamitjana X.2003.The role of advection and turbulent mixing in the vertical distribution of phytoplankton[J].Estuarine,Coastal and Shelf Science,56:53-62
    Sieburth J M N,Smetacek V,Lenz J.1978,Pelagic ecosystem structure:Heterotrophic components of the plankton and their relationship to plankton size fractions[J].Limnol Oceanogr,23:1256-1263
    Smith V H.1983.Low Nitrogen to Phosphorus Ratios Favor Dominance by Blue-Green Algae in Lake[J].Science.221(4611):669-671
    Sommer,1988.Growth and survival strategies of planktonic diatoms.In Growth and Reproductive Strategies of Freshwater Phytoplankton[M],ed.C.D.Sandgren,Cambridge:Cambridge University Press:227-260
    Sommer,U.1986.The periodicity of phytoplankton in Lake Constance(Bodensee) in comparison to other deep lakes of central Europe[J].Hydrobiologia,138:1-7
    Steinberg C E W,Schafer H & Beisker W,et al.1998.Deriving Restoration Goals for Acidified Lakes from Ataxonomic Phytoplankton Studies[J].Restoration Ecology,6(4):327-335
    Straskraba M.1999.Retention time as a key variable of reservoir limnology.In:Tundisi J G and Straskraba M.Theoretical Reservoir Ecology and its Applications,International Institute of Ecology[M].Brazil:Brazilian Academy of Sciences and Backhuys Publishers,385-410
    Tadonleke R D,Thouvenot A,Gilbert D,et al.2003,Size-fractionated phytoplankton and relationships with Metazooplankton in a Newly Flooded Reservoir[J].International review of hydrobiology,88(6):614-634
    Thornton K W,Kimmel B L & F E Payne,1990.Reservoir Limnology:Ecological Perspectives[M].New york:A wiley-Interscience Publication,John wiley & sons Inc.,654-661
    Tilman,D.1988.Plant Strategies and the Dynamics and Structure of Plant Communities.Monographs in Population Biology 26[M].Princeton University Press,Princeton,NJ.360 pp
    Verspagen J M,Passarge J & Johnk K D,et al.2006.Water management strategies against toxic Microcystis blooms in the Dutch delta[J].Ecol Appl,16(1):313-327
    Weisse T.,M(u|¨)ller H.,Pinto-Coelho R.M.,1990.Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake[J].Limnol.Oceanogr.35(4):781-794
    Weyhenmeyer G A,Will(?)n E,Sonesten L.2004.Effects of an extreme precipitation event on water chemistry and phytoplankton in the Swedish Lake Malaren[J].Boreal environment research.9:409-420
    Yoshiyama K.and Nakajima H.,2002.Catastrophic transition in vertical distributions of phytoplankton:Alternative equibibria in a water column[J],J.theor.Bio.,216:397-408
    范成新,陈宇炜,吴庆龙等.1998.夏季盛行风对太湖北部藻类水华分布的影响.上海环境科学.17(8):4-7
    韩博平等主编,2003.广东省大中型水库富营养化现状与防治对策研究[M].北京:科学出版社
    韩博平,林桂花,钟秀英.2006.水库蓝藻和蓝藻毒素分布与检测.广东省典型供水水库研究[M].中国环境科学出版社.268pp
    韩博平,石秋池,陈文祥主编.2006.中国水库生态学与水质管理研究[M].北京:科学出版社.650pp
    胡鸿钧,魏印心.2006.中国淡水藻类:系统、分类及生态.北京.科学出版社.1023pp
    胡韧,雷腊梅,韩博平.2008,南亚热带大型贫营养水库浮游植物群落结构与季节变化——以新丰江水库为例[J].生态学报,28(10):4652-4664
    胡韧,林秋奇,王朝晖等,2002.广东省典型水库浮游植物组成与分布特征[J].生态学报,22(11):1939-1944
    胡韧,熊江霞,韩博平.2008.具有短水力滞留的小型富营养化水库浮游植物群落结构与动态.生态环境.17(4):1319-1326
    黄邦钦,洪华生,林学举等,2003.台湾海峡微微型浮游植物的生态研究——Ⅰ.时空分布及其调控机制[J].海洋学报.25(4):72-82
    金相灿主编.2001.湖泊富营养化控制和管理技术[M].北京:化学工业出版社
    金湘灿&屠清瑛.1990.湖泊富营养化调查规范[M].北京:中国环境科学出版社
    李秋华 & 韩博平.2007.基于CCA的典型调水水库浮游植物群落动态特征分析[J].生态学报,27(6):2355-2364
    李秋华,胡韧 & 韩博平.2007.南亚热带贫营养水库春季浮游植物群落结构与动态[J].植物生态学报,31(2):313-319
    林秋奇and韩博平,2001.水库生态系统特征研究及其在水库水质管理中的应 用[J].生态学报,21(06):1034-1040
    林秋奇 and 韩博平,2007.热带直流型水库蓝藻季节变化特征[J].热带亚热带植物学报,15(02):152-159
    林秋奇,胡韧,段舜山,et al.2003.广东省大中型供水水库营养现状及浮游生物的响应[J].生态学报.23(06):1101-1108
    林秋奇,胡韧,and 韩博平,2003.流溪河水库水动力学对营养盐和浮游植物分布的影响[J].生态学报,23(11):2278-2284
    林秋奇,雷腊梅 & 韩博平.2007.南亚热带不同营养水平水库的蓝藻组成与动态[J].生态学杂志,26(7):1027-1033
    林少君,贺立静,黄沛生等.2005.浮游植物中叶绿素a提取方法的比较与改进[J].生态科学.24(1):9-11
    刘健康.1999.高级水生生物学[M].北京:科学出版社
    刘蕾,胡韧 & 顾继光,et al.2008.华南沿海地区抽水型与非抽水型水库富营养化特征比较[J].生态学杂志,27(11):1960-1965
    刘蕾,雷腊梅 & 韩博平.2009.珠海地区小型抽水型与非抽水型水库的浮游植物群落结构变化[J].热带亚热带植物学报,17(1):54-61
    刘蕾,雷腊梅 & 肖利娟,et al.2008.一座南亚热带小型水库水体营养状态与浮游植物的季节变化[J].生态科学,27(2):71-76
    刘蕾,肖利娟 & 韩博平.2008.一座南亚热带小型贫营养水库浮游植物群落结构及季节变化[J].生态科学,27(4):217-221
    孙军,刘东艳,钱树本.1999.浮游植物生物量研究:Ⅰ.从浮游植物体积测定生物量[J].海洋学报,21:75-85
    王伟,顾继光 & 韩博平.2009.华南沿海地区小型水库叶绿素a浓度的影响因子分析[J].应用与环境生物学报,15(1):64-71
    王朝晖,林秋奇,胡韧等.2004.广东省水库的蓝藻污染状况与水质评价[J].热带亚热带植物学报.12(2):117-123
    魏复盛等.2006.水和废水监测分析方法[M].北京.中国环境科学出版社
    邬红娟,郭生练,2001.水库水文情势与浮游植物群落结构[Jr].水科学进展,12(01):51-55
    杨清良,林更铭,林茂,戴燕玉.2002.东北太平洋中国开辟区浮游植物的种类组成与分布[J].海洋通报.21(4):15-27
    章宗涉,黄祥飞.1991.淡水浮游生物研究方法[M].北京:科学出版社
    赵孟绪 & 韩博平.2005.汤溪水库蓝藻水华发生的影响因子分析[J].生态学报,25(7):1554-1561
    赵帅营,韩博平.2007,大型深水贫营养水库--新丰江水库浮游动物群落分析[J].湖泊科学,19(3):305-314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700