用户名: 密码: 验证码:
卤代甲烷甲基转移酶基因转化烟草的研究及中华补血草LsNHXs基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章卤代甲烷甲基转移酶基因转化烟草的研究
     甲基溴是在全球被广泛采用的一种熏蒸杀虫剂,但是,甲基溴对臭氧层和环境有破坏作用。国际组织呼吁尽快淘汰甲基溴,因此,甲基溴替代技术的开发迫在眉睫。
     卤代甲烷的生物合成由以下酶促反应完成:SAM(S-腺苷甲硫氨酸)+ X-(Cl-,Br-,I-)→CH3X + S-adenosylhomocysteine(S-腺苷高半胱氨酸),反应由一种甲基转移酶(methyl chloride transferase MCT)催化完成。本实验克隆了来源于甜土植物—拟南芥及来源于盐生植物—盐芥和盐地碱蓬的MCT基因AtMCT(AtHOL)、ThMCT和SsMCT。通过基因工程手段将这三个基因转入烟草,实现基因的过量表达。
     土壤甲基溴熏蒸的目标在于杀死具有较高耐药性的病源物的孢子或其他休眠形式,熏蒸所需浓度高,这也是造成环境污染的原因。通过转基因手段,赋予转基因烟草微量、持续产生甲基溴的能力,病源物侵染时可直接对其作用,从而替代甲基溴土壤熏蒸。此技术在国内外尚属首创。
     主要实验结果如下:
     1)利用RT-PCR和RACE方法克隆获得ThMCT和SsMCT基因的全长序列。ThMCT基因全长923 bp,开放阅读框为681 bp,共编码226个氨基酸,蛋白分子量约为25.1 KD。SsMCT基因全长1094 bp,开放阅读框为699 bp,共编码232个氨基酸,蛋白分子量约为25.8 KD。
     2)将AtMCT、ThMCT和SsMCT的全长ORF构建到植物双元表达载体pINT4中,用农杆菌介导的叶圆盘法转化烟草,分别获得了18个AtMCT、20个ThMCT和38个SsMCT基因独立的转化株系。
     3)对转基因植株进行分子鉴定。PCR分析、Southern和Northern杂交结果表明外源基因已整合进烟草的基因组中并正常转录。用总蛋白作Western杂交,三种转基因植株均有杂交信号。但是如果主要用可溶性蛋白作Western杂交,则只有AtMCT转基因植株有杂交信号,而ThMCT和SsMCT转基因植株均没有杂交信号。
     4)用不同浓度的处理液处理野生型和转基因烟草,用气/质联用仪测定其CH3Cl、CH3Br和CH3I的释放量。AtMCT转基因植株a12三种气体的释放量明显高于野生型对照,是对照的100倍左右,而ThMCT和SsMCT转基因植株的释放量和对照差异不明显。
     5)对AtMCT转基因植株a12和野生型植株接种线虫,在施加Br-,增加底物的情况下,AtMCT转基因植株提高了对线虫的抗性。
     第二章中华补血草LsNHXs基因的功能研究
     液泡膜Na+/H+逆向转运蛋白与植物耐逆密切相关,它利用液泡膜H+-ATPase及H+-PPase泵H+产生的驱动力把Na+区隔化入液泡中以消除Na+的毒害,除此之外,液泡膜Na+/H+逆向转运蛋白还与PH调节、囊泡运输、液泡的发育以及蛋白质分选有关。液泡不仅是一个物质储存细胞器,在特定的生理条件下,某些植物细胞的液泡可参与矿质离子、简单糖类、有机酸和氨基酸等物质的运输。
     早期的电镜观察发现,补血草盐腺分泌细胞内有大量的线粒体和丰富的内质网,缺少清晰的中央大液泡,但细胞内有许多液泡样的小囊泡,小囊泡大部分都靠近细胞质膜且经常出现与质膜的融合,推测囊泡运输参与了补血草的泌盐过程。由此推测补血草液泡膜Na+/H+逆向转运蛋白LsNHXs将对补血草的泌盐产生一定的影响。因此,本实验克隆了LsNHXs基因,并利用RNAi技术对其功能进行了研究。
     主要实验结果如下:
     1)采用RT-PCR和3’-RACE方法从补血草中克隆获得LsNHXs基因家族三个成员LsNHX1、LsNHX2和LsNHX3的保守区序列以及LsNHX2和LsNHX3的3’端特异序列。
     2)构建植物基因RNAi沉默表达载体并转化补血草,获得三个单基因和一个双基因的RNAi沉默表达植株,快繁转基因植株供分子鉴定和耐逆分析。
     3)LsNHX1转基因植株叶片表面分泌物中的Na+、K+离子含量比野生型对照显著增加;叶组织内Na+离子含量和K+离子含量均略高,但差异不显著;K+/Na+比没有显著差异。
     4)LsNHX2转基因植株叶片表面分泌物中的Na+离子含量比野生型对照有所下降,但差异不显著;K+离子含量比对照显著降低。LsNHX2转基因植株叶组织内Na+离子含量略高,但差异不显著;K+离子含量和K+/Na+比均降低。
     5)LsNHX3转基因植株叶片表面分泌物中的Na+离子含量比对照增加,但差异不显著,K+离子含量比对照增加,在400 mM NaCl条件下达到显著差异;叶组织内Na+离子含量和K+离子含量均略高;K+/Na+比没有显著差异。
     6)LsNHX1+LsNHX2双基因沉默植株叶片表面分泌物中的Na+离子含量比野生型对照增加,K+离子含量与野生型对照相比没有显著差异。转基因植株叶中Na+离子含量略高,但差异不显著;转基因植株叶中K+离子含量及K+/Na+比均降低。
     以上结果表明,LsNHX1、LsNHX2和LsNHX3的作用机制不同。LsNHX2可能定位于小囊泡上,沉默表达后,区隔化的Na+离子含量降低,导致通过囊泡运输分泌的Na+离子含量降低。LsNHX1和LsNHX3可能定位于中央大液泡上,主要负责Na+的区隔化;沉默表达后,液泡中区隔化的Na+离子含量降低,胞质中的Na+离子含量增加,刺激盐腺泌盐,导致叶片分泌的Na+离子含量增加。
     本研究的主要创新点:
     1.首次克隆了盐生植物—盐芥、盐地碱蓬的卤代甲烷甲基转移酶基因ThMCT和SsMCT,并对其序列特征进行了详细的分析。
     2.通过过量表达卤代甲烷甲基转移酶基因,提高转基因烟草释放甲基溴的能力,使转基因烟草微量、持续产生甲基溴,从而替代甲基溴土壤熏蒸。此技术在国内外尚属首创。
     3.首次克隆了补血草的液泡膜Na+/H+逆向转运蛋白LsNHXs基因家族三个成员LsNHX1、LsNHX2和LsNHX3的部分序列,并将这三个基因分别作了RNAi沉默表达。研究发现LsNHX1、LsNHX2、LsNHX3的作用机制不同。LsNHX2可能定位于小囊泡上,通过囊泡运输对补血草的泌盐起一定的作用,而LsNHX1和LsNHX3可能定位于中央大液泡上,主要负责Na+的区隔化。
Chapter 1: Transformation of tobacco with MCT gene
     Methyl bromide is one kind of highly effective fumigant used widely in the whole world, but it plays the destructive effect to the ozone layer and the environment. So methyl bromide was appealed to be eliminated by the International Organization as soon as possible. The development of alternative technologies for methyl bromide is imminent.
     The methyl halide is biosynthesized by an enzymatic reaction: SAM + X- (Cl-, Br-, I-)→CH3X + S-adenosylhomocysteine. This reaction is catalyzed by one kind of methyl transferase (methyl chloride transferase MCT). We cloned AtMCT (AtHOL, from glycophyte- Arabidopsis), ThMCT (from halophyte-Thellungiella halophila), and SsMCT (from halophyte - Suaeda salsa) and overexpressed them in tobacco, respectively.
     The use of methyl bromide in soil fumigation is to kill pathogens. Pathogens exist as spores or other dormant forms with the absence of host plants and they have high resistance, so high concentration of methyl bromide is required while fumigating. This is likely the main reason of the environmental pollution. If the transgenic tobaccos can generate methyl bromide spontaneously and duratively, and methyl bromide can play a direct role to the pathogens when plants are infecting. This alternative technology for methyl bromide is original.
     The main results were shown as follows:
     1) The full length sequences of ThMCT and SsMCT were obtained through RT-PCR and RACE. ThMCT gene, 923 bp, has an ORF of 681 bp, encoding 226 aa, and the molecular weight of it’s protein is approximately 25.1 kD. SsMCT gene, 1094 bp, has an ORF of 699 bp, encoding 232 aa, and the molecular weight of it’s protein is approximately 25.8 kD.
     2) The ORFs of AtMCT, ThMCT, and SsMCT were constructed into the vector pINT4 respctively, then transformed into tobacco through the leaf disc method mediated by Agrobacterium. And finally, 18 of AtMCT, 20 of ThMCT and 38 of SsMCT transgenic lines were obtained, repectively.
     3) Some transgenic lines of three genes were validated by molecular methods. PCR, Southern and Northern blotting confirmed that the three genes had been integrated into tobacco genomes and had transcripted normally.The translation was tested by Western blotting. Signals were shown in the three kinds of transgenic plants when Western blotting was done using the full protein. However, when Western blotting was done mainly using the soluble protein, only the AtMCT transgenic plants showed signals.
     4) After treated with the different concentration solution, the content of CH3Cl, CH3Br, and CH3I released by tobaccos were measured by GCMS. Only the AtMCT transgenic a12 line enhanced the content of CH3X than wild type, about 100 times. The others showed almost the same level as the wild type.
     5) Treated the AtMCT transgenic plants and wild type plants with root-knot nematodes, the AtMCT transgene plant showed enhanced nematode resistance.
     Chapter 2: The functional analysis of LsNHXs genes from Limonium sinense
     The tonoplast Na+/H+ antiportor, very usefull for plant stress tolerance, can use the H+ gradient as driving force built by tonoplat H+-ATPase and H+-PPase to sequestrate Na+ into the vacuole to eliminate Na+ toxic effect, also it is related to PH regulation, vesicle transport, vacuolar development, and protein sorting. Vacuole, is not only a material storage organelle, under certain physiological conditions, in specific cell types, or at determined developmental stages, the vacuole participates in the export of a variety of solutes ranging from simple sugars and organic acids to amino acids and mineral ions.
     The early observations of electromicroscope also found that the salt-secreting cells of Limonium contained numerous and well-defined mitochondria and were rich in endoplasmic reticulum, but lacked a conspicuous large central vacuole. Instead, the cells contained a series of smaller“vacuole-like”membrane vesicles, many of which were seen in close proximity to the cell membrane. More important, the tonoplast of the“vacuole-like”vesicles often appeared to fuse with the plasmalemma in agreement with a vesicle-mediated secretion process. So it is speculated that the Na+/H+ antiportor may be related to the salt secretion. Therefore, the LsHNXs genes were cloned in this study, and their function was studied by RNAi.
     The main results were shown as follows:
     1) The conservative sequences of three LsHNXs genes (LsHNX1, LsHNX2, and LsHNX3), and the 3’-terminal specific sequences of LsHNX2 and LsHNX3, were cloned by RT-PCR and 3’-RACE.
     2) The plant RNAi vectors were constructed and the transformation of Limonium sinense was done. The RNAi lines of three single-genes and one double-gene were obtained and were propogated rapidly for the molecular and the stress tolerance analysis.
     3) To be compared with wild type, the Na+ and K+ contents secreted by the leaves of LsNHX1 transgenic plants were remarkably higher. The Na+ and K+ contents in leaf were little higher and the ratio of K+/Na+ was almost the same as that of wild type.
     4) To be compared with wild type, the Na+ content secreted by the leaves of LsNHX2 transgenic plants was little lower, and the K+ content was remarkably lower. The Na+ content in leaf was little higher than wild type, while the K+ content and the ratio of K+/Na+ were reduced.
     5) To be compared with wild type, the Na+ and K+ contents secreted by the leaves of LsNHX3 transgenic plants were higher. The Na+ and K+ contents in leaf were little higher, and the ratio of K+/Na+ was not significantly different than wild type.
     6) To be compared with wild type, the Na+ content secreted by the leaves of the two genes co-RNAi plants was higher, and the K+ content was not remarkable different. The Na+ content in leaf was little higher, while the K+ content and the ratio of K+/Na+ were lower.
     It was shown from the above results that LsNHX1, LsNHX2 and LsNHX3 act on different ways. LsNHX2 may locate on the vesicle, and may affect the salt secretion of Limonium sinense by vesicle trafficking, while LsNHX1 and LsNHX3 may locate on the center vacuole, and sequestrate Na+ into vacuole.
     The main innovations of this research:
     1. We firstly cloned ThMCT and SsMCT genes form the halophyte, Thellungiella halophila and Suaeda salsa, respectively, and carried out the detailed analysis of their sequences.
     2. Through the genetic engineering, the transgenic tobacco could emit CH3Br spontaneously and duratively, so that could substitute CH3Br in soil fumigation. This alternative technology for methyl bromide is original.
     3. Three members of LsHNXs gene family (LsHNX1, LsHNX2, and LsHNX3) were firstly cloned and downexpressed by RNAi, respectively. We found that LsNHX1, LsNHX2 and LsNHX3 act on different ways. LsNHX2 may locate on the vesicle, and may affect the salt secretion of Limonium sinense by vesicle trafficking, while LsNHX1 and LsNHX3 may locate on the center vacuole, and sequestrate Na+ into vacuole.
引文
[1] Anderson J.G., Toohey D.W., Brune W.H., 1991. Free Radicals Wthin the Antarctic Vortex: The Role of CFC’s in Antarctic Ozone Loss. Science. 251, 39-45.
    [2] Platt U., Janssen C., 1996. Observation and Role of the Free Radicals NO3, ClO, BrO and IO in the Troposphere. Faraday Discussion. 100, 175-198.
    [3] Butler J.H., 2000. Better Budgets for Methyl Halides? Nature. 403, 261-261.
    [4] Moore R.M., Groszko W., Niven S.J., 1996. Ocean-atmosphere exchange of methyl chloride: results from NWAtlantic and Pacific Ocean studies. J. Geophys. Res. 101, 28529-28539.
    [5] Yokouchi Y., Noijiri Y., Barrie L.A., Toom-Sauntry D., Machida T., Inuzuka Y., Akimoto H., Li H.J., Fujinuma Y., Aoki S., 2000. A strong source of methyl chloride to the atmosphere from tropical coastal land. Nature. 403, 295-298.
    [6] Lovelock J.E., 1975. Natural halocarbons in the air and in the sea. Nature. 256, 193-194.
    [7] White R.H., 1982. Analysis of dimethyl sulfonium compounds in marine algae. Arch Microbiol. 132, 100-102.
    [8] HarperD.B.,1985. Halomethane from halide ion-a highly efficient fungal conversion of environmental significance. Nature. 315, 55-57.
    [9] Wuosmaa A.M., Hager L.P., 1990. Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science. 249, 160-162.
    [10] Saini H.S., Attieh J.M., Hanson A.D., 1995. Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction. Ptant Cell and Environment. 18, 1027-1033.
    [11] Gan J., Yates S.R., Ohr H.D., Sims J.J., 1998. Production of methyl bromide by terrestrial higher plants. Geophys Res Lett. 25, 3595-3598.
    [12] Rhew R.C., ?stergaard L., Saltzman E.S., Yanofsky M.F., 2003. Genetic Control of Methyl Halide Production in Arabidopsis. Current Biology. 13, 1809-1813.
    [13] Attieh J.,HansonA.D.,Saini H.S.,1995. Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol in Brassicaoleracea. J. Biol. Chem. 270, 9250–9257.
    [14] Attieh J., Sparace S.A., Saini H.S., 2000. Purification and properties of multiple isoforms of a novel thiol methyltransferase involved in the production of volatile sulfur compounds from Brassica oleracea. Arch Biochem Biophys. 380, 257–266.
    [15] Ni X.H., Hager, L.P., 1998. cDNA cloning of Batis maritima methyl chloride transferase and purification of the enzyme. Proc. Natl. Acad. Sci. USA 95, 12866-12871.
    [16] Ni X.H., Hager L.P., 1999. Expression of Batis maritima methyl chloride transferase in Escherichia coli. Proc Natl Acad Sci USA. 96, 3611–3615.
    [17] Rhew R.C., Miller B.R., Weiss R.F., 2000. Natural methyl bromide and methyl chloride emissions from coastal salt marshes. Nature. 403, 292–295.
    [18] Harper D.B., 2000. The global chloromethane cycle: Biosynthesis, biodegradation and metabolic role. Nat Prod Rep. 17, 337-348.
    [19] Joshi C.P., Chiang V.L., 1998. Conserved sequence motifs in plant S-adenosyl-L-methionine dependent methyltransferases. Plant Molec Biol. 37, 663–674.
    [20] Attieh J., Kleppinger-Sparace K.F., Nunes C., Sparace S.A., Saini H.S., 2000. Evidence implicating a novel thiol methyltransferase in the detoxification of glucosinolate hydrolysis products in Brassica oleraceal. Plant Cell Environ. 23, 165-174.
    [21] Dudareva N., Murfitt L.M., Mann C.J., Gorenstein N., Kolosova N., Kish C.M., Bonham C., Wood K., 2000. Developmental Regulation of Methyl Benzoate Biosynthesis and Emission in Snapdragon Flowers. The Plant Cell. 12, 949-961.
    [22] Bugos R.C., Chiang V.L.C., Campbell W.H., 1992. Characterization of Bispecific Caffeic acid/ 5-hydroxyferulic acid O-methyltransferase from Aspen. Phytochemistry. 31, 1495-1498.
    [23] Schr?der G., Wehinger E., Schr?der J., 2002. Predicting the substrates of cloned plant methyltransferases.Phytochem 59, 1–8.
    [24] Dudareva N., Raguso R.A., Wang J., Ross J.R., Pichersky E., 1998. Floral Scent Production in Clarkia breweri. Plant Physiology. 116, 599-604.
    [25] Maggie W., 2002. Metabolic Pathways of Methyl Halide Production in Terrestrial Plants. The UCI Undergraduate Research Journal.35, 59-65.
    [26] Tester M., Davenport R., 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 91, 503-507.
    [27]张荃,赵彦修,张慧, 1999.海水农业,梦想与现实.山东科学. 12: 1-5.
    [28] Serrano R., et al. 1999. A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50, 1023-1036.
    [29] Padan E., Venturi M., Gerchman Y., Dover, N., 2001. Na+/H+ antiporters. Biochim. Biophys. Acta. 1505, 144-157.
    [30] Prior C., Potier S., Souciet J.L., Sychrova H., 1996. Characterization of the NHA1 gene encoding a Na+/H+ antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett. 387, 89-93.
    [31] Nass R., Cunningham K.W., Rao R., 1997. Intracellular sequestration of sodium by a novel Na+/H+exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase: insights into mechanisms of sodium tolerance. J Biol Chem. 272, 26145-26152.
    [32] Garciadeblas B., Rubio F., Quintero F.J., et al. 1993. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet. 236, 363-368.
    [33] Laurent C., Jacques P., 2000. The Expanding Family of Eucaryotic Na+/H+ Exchangers. J. Biol. Chem. 275, 1-4.
    [34] Nakamura N., Tanaka S., Teko Y., Mitsui K., Kanazawa H., 2005. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J Biol Chem. 14,1561-1572.
    [35] Shi H., et al. 2000. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. PNAS USA. 97, 6896-6901.
    [36] Apse M.P., Aharon G.S., Snedden W.A., et al. 1999. Salt Tolerance Conferred by Overexpression of a Vacuolar Na+/H+ antiporter in Arabidopsis. Science. 285, 1256-1258.
    [37] Chun-Peng Song., Yan Guo., Quan-sheng Qiu., Georgina L., David W., Galbraith., Andre J., Jian-Kang Zhu. 2004. A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. PNAS. 101, 10211–10216.
    [38] Pardo J.M., Cubero B., Leidi E.O., Quintero F.J., 2006. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J. Exp. Bot. 57, 1181-1199.
    [39] Putney L.K., Denker S.P., Barber D.L., 2002. The changing face of the Na+/H+ exchanger, NHE1: structure, regulation, and cellular actions. Annual Review of Pharmacology and Toxicology. 42, 527–552.
    [40] Brett C.L., Donowitz M., Rao R., 2005. The evolutionary origins of eukaryotic sodium/proton exchangers. American Journal of Physiology– Cell Physiology. 288, 223–239.
    [41] Yokoi S., Quintero F.J., Cubero B., Ruiz M.T., Bressan R.A., Hasegawa P.M., Pardo J.M., 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 30, 529-539.
    [42] Fukuda A., Nakamura A., Tagiri A., Tanaka H., Miyao A., Hirochika H., Tanaka Y., 2004. Function intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol. 45, 146-159.
    [43] Venema K., Quintero F.J., Pardo J.M., Donaire J.P., 2002. The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. Journal of Biological Chemistry 277, 2413–2418.
    [44] Apse M.P., Sottosanto J.B., Blumwald E., 2003. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. The Plant Journal. 36, 229–239.
    [45] Venema K., Belver M., Marin-Manzano M.C., Rodriguez-Rosales M.P., Donaire J.P., 2003. A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants. Journal of Biological Chemistry. 278, 22453–22459.
    [46] Shrode L.D., Gan B.S., D’Souza S.J., Orlowski J., Grinstein S., 1998. Topological analysis of NHE1, the ubiquitous Na+/H+ exchanger using chymotryptic cleavage. Am J Physiol. 275,C431–C439.
    [47] Sardet C., Counillon C., Franchi A., Pouyssegur J., 1990. The Na+/H+antiporter is a glycoprotein of 110 kDa phosphorylated by growth factors in quiescent cells. Science. 247, 723-726.
    [48] Biemesderfer D., DeGray B., Aronson P.S., 1998. Membrane topology of NHE3. Epitopes within the carboxyl-terminal hydrophilic domain are exoplasmic. J Biol Chem. 273, 12391-12396.
    [49] Fafournoux P., Noel J., Pouyssegur J., 1994. Evidence that Na+-H+ exchanger isoforms NHE1and NHE3 exist as stable dimers in membranes with a high degree of specificity for homodimers. J. Biol. Chem. 269, 2589-2596.
    [50] Wakabayashi S., Fafournoux P., Sardet C., Pouysse′gur J., 1992. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls "H(+)-sensing". Proc.Natl. Acad. Sci. U.S.A. 89, 2424-2428.
    [51] Bertrand B., Wakabayashi S., Ikeda T., Pouysse′gur J., Shigekawa M., 1994. The Na+/H+ Exchanger Isoform 1 (NHEl) Is a Novel Member of the Calmodulin-binding Proteins. J. Biol. Chem. 269, 13703-13709.
    [52] Wakabayashi S., Bertrand B., Ikeda T., Pouysse′gur J., Shigekawa M., 1994. Mutation of Calmodulin-binding Site Renders the Na+/H+ Exchanger (NHEI) Highly H+-sensitive and Ca2+ Regulation-defective. J. Biol. Chem. 269, 13710-13715.
    [53] Wakabayashi S., Ikeda T., No?l J., Schmitt B., Orlowskii J., Pouysse′gur J., Shigekawa M.,1995. Cytoplasmic Domain of the Ubiquitous Na1/H1 Exchanger NHE1 Can Confer Ca21 Responsiveness to the Apical Isoform NHE3. J. Biol. Chem. 270, 26460-26465.
    [54] Kamauchi S., Mitsui K., Ujike S., Haga M., Nakamura N., Inoue H., Sakajo S., Ueda M., Tanaka A., Kanazawa H., 2002. Structurally and functionally conserved domains in the diverse hydrophilic carboxy-terminal halves of various yeast and fungal Na+/H+ antiporters (Nha1p). J Biochem Tokyo. 131, 821-31.
    [55] Kinclova O., Ramos J., Portier S., Sychrova H., 2001. Functional study of the C-terminus. Molecular Microbiology. 40, 656-668.
    [56] Simon E., Clotet J., Calero F., Ramos J., Arifio J., 2001. A screening for high-copy suppressors of the sit4 hal3 synthetically lethal phenotype reveals a role for the yeast Nha1 antiporter in cell cycle regulation. J.Biol.Chem. 276, 29740-29747.
    [57] Sato Y., Sakaguchi M., 2005. Topogenic Properties of Transmembrane Segments of Arabidopsis thaliana NHX1 Reveal a Common Topology Model of the Na+/H+ Exchanger Family. J. Biochem. 138, 425–431.
    [58] Yamaguchi T., Apse M. P., Shi H. Z., Blumwald E., 2003. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. PNAS. 100 , 12510-12515.
    [59] Yamaguchi T., Aharon G.S., Sottosanto J.B. Blumwald E., 2005. The vacuole Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+and pH-dependent manner. PNAS. 102, 16107–16112.
    [60] Hamada A., Hibino T., Nakamura T., et al. 2001. Na+/H+ Antiporter from Synechocystis Species PCC 6803, Homologous to SOS1, Contains an Aspartic Residue and Long C-Terminal Tail Important for the Carrier Activity. Plant Physiol. 125, 437-46.
    [61] Arkin I.T., Xu H., Jensen M.?., Arbely E., Bennett E.R., Bowers K.J., Chow E., Dror R.O., Eastwood M.P., Flitman-Tene R., Gregersen B.A., Klepeis J.L., Kolossváry I., Shan Y., Shaw D.E., 2007. Mechanism of Na+/H+ Antiporting. Science. 317, 799-803.
    [62] Blumwald E., Poole R.J., 1985. Na+/H+antiport in isolated tonoplast vesicles from storage tissue of Beta vnlgaris. plant physiol. 78, 163-167.
    [63] Staal M., Maathuis F.J.M., Elzenga T.M., et a1. 199l. Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritime and the salt sensitive Plantago media.Physiol Plantrum. 82, 179-184.
    [64] Barkla B.J., Zingrelli L., Blumwald E., Smith J.A., 1995. Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol. 109, 549-556.
    [65] Gaxiola R.A., Rao R., Sherman A., et al. 1999. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci. U S A. 96, 1480-1485.
    [66] Fukuda A., Nakamura A., Tanaka Y., 1999. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta. 1446, 149-155.
    [67] Akira Hamada., et al. 2001. Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Molocular Biology. 46, 35-42.
    [68] Ma X.L, Zhang Q., Shi H.Z., Zhu J.K., Zhao Y.X., Ma C.L., Zhang H., 2004. Molecular Cloning and Different Expression of a Vaculor Na+/H+ Antiporter Gene in Suaeda salsa Under Salt Stress. Biologia Plantarum. 48, 219-225.
    [69] Li J.Y., Jiang G.Q., Huang P., Ma J., Zhang F.C., 2007. Overexpression of the Na+/H+ antiporter gene from Suaeda alsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tiss Organ Cult. 90, 41–48.
    [70] Wu C.A., Yang G.D., Meng Q.W., Zheng C.C., 2004. The cotton GhNHX1 gene encoding a novel putative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress. Plant Cell Physiol. 45, 600-7.
    [71] Yamaguchi T., Fukada-Tanaka S., Inagaki Y., Saito N., Yonekura-Sakakibara K., Tanaka Y., Kusumi T., Iida S., 2001. Genes encoding the vacuolar Na(+)/H(+) exchanger and flower coloration. Plant Cell Physiol. 42, 451-461.
    [72] Ohnishi M., Fukada-Tanaka S., Hoshino A., Takada J., Inagaki Y., Iida S., 2005. Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory. Plant Cell Physiol. 46, 259-67.
    [73] Vasekina A.V., Yershov P.V., Reshetova O.S., Tikhonova T.V., Lunin V.G., Trofimova M.S., Babakov A.V., 2005. Vacuolar Na+/H+ antiporter from barley: identification and response to salt stress. Biochemistry (Mosc). 70, 100-7.
    [74] Zhang G.H., Su Q., An L.J., Wu S., 2008. Characterization and expression of a vacuolar Na(+)/H(+) antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem. 46, 117-26.
    [75] Zorb C., Noll A., Karl S., Leib K., Yan F., Schubert S., 2005. Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stres. J Plant Physiol. 162, 55-66.
    [76] Fukuda A., Yazaki Y., Ishikawa T., et al. 1998. Na+/H+ antiporter in tonoplast vesicles from rice roots. Plant cell physiol. 39, 196-201.
    [77] Zhang H.X., Blumwald E., 2001. Transgenic salt-tolerance tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol. 19, 765-768.
    [78] Zhang H.X., Hodson J.N., Williams J.P., Blumwald E., 2001. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. PNAS. 98, 12832-12836.
    [79] Ohta M., Hayashia Y., Nakashima A., Hamadaa A., Tanaka A., Nakamura T., Hayakawa T., 2002. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters. 532, 279-282.
    [80] Xue Z.Y., Zhi D.Y., Xue G.P., Zhang H., Zhao Y.X., Xia G.M., 2004. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+ Plant Science. 4, 849-859.
    [81] Chen H., An R., Tang J.H., Cui X.H., Hao F.S., Chen J., Wang X.C., 2007. Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice Mol Breeding. 19, 215–225.
    [82] LüS.Y., Jing Y.X., Shen S.H., Zhao H.Y., Ma L.Q., Zhou X.J., Ren Q., Li Y.F., 2005. Antiporter Gene from Hordum brevisubulatum (Trin.) Link and Its Overexpression in Transgenic Tobaccos. Journal of Integrative Plant Biology Formerly Acta Botanica Sinica. 47, 343?349.
    [83] Wu Y.Y., Chen Q.J., Chen M., Chen J., Wang X.C., 2005. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Science. 169, 65–73.
    [84] Zhao F., Wang Z., Zhang Q., Zhao Y., Zhang H., 2006. Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res. Jan 28; [Epub ahead of print]
    [85] Shi H.Zh., Zhu J. K., 2002. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Molecular Biology. 50, 543-550.
    [86] Fukuda-Tanaka S., Inagaki Y., Yamaguchi T., Saito N., Iida S., 2000. Colour-enhancing protein in blue petals. Nature. 407-581.
    [87] Neumann U., Brandizzi F., Hawes C., 2003. Protein transport in plant cells: in and out of the Golgi. Ann. Bot. 92, 167–180.
    [88] Robinson D.G., Hinz G., Holstein S.E., 1998. The molecular characterization of transport vesicles. Plant Mol. Biol. 38, 49–76.
    [89] Hillmer S., Movafeghi A., Robinson D.G., Hinz G., 2001. Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. Journal of Cell Biology. 152, 41–50.
    [90] Hara-Nishimura I., Shimada T., Hatano K., Takeuchi Y., Nishimura M., 1998. Transport of storage proteins to protein storage vacuoles is mediated by large precursor accumulating vesicles. The Plant Cell. 10, 825–836.
    [91] Gotte M., Lazar T., 1999. The ins and outs of yeast vacuole trafficking. Protoplasma. 209, 9–18.
    [92] Sollner T., Whiteheart S.W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J.E., 1993. SNAP receptors implicated in vesicle targeting and fusion. Nature. 362, 318–324.
    [93] Ungermann C., Sato K., Wickner W., 1998. Defining the functions of trans-SNARE pairs. Nature. 396, 543–548.
    [94] Weber T., Zemelmann B., McNew J.A.,Westermann B., Gmachl M., Parlati F., Sollner T.H., Rothman J.E., 1998. SNAREpins: minimal machinery for membrane fusion. Cell. 92, 759–772.
    [95] Strom M., Vollmer P., Tan T.J., Gallwitz D., 1993. A yeast GTPaseactivating protein that interacts specifically with a member of the Ypt/Rab family. Nature. 361, 736–739.
    [96] Quintero F.J., Blatt M.R., Pardo J.M., 2000. Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Letters. 471, 224–228.
    [97] Ali R., Brett C.L., Mukherjee S., Rao R., 2004. Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. Journal of Biological Chemistry. 279,4498–4506.
    [98] Brett C.L., Tukaye D.N., Mukherjee S., Rao R., 2005. The yeast endosomal Na+(K+)/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Molecular Biology of the Cell. 16, 1396–1405.
    [99] Bowers K., Levi B.P., Patel F.I., Stevens T.H., 2000. The sodium/ proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Molecular Biology of the Cell. 11, 4277–4294.
    [100] Dautry-Varsat A., Ciechanover A., Lodish H.F., 1983. pH and the recycling of transferrin during receptor-mediated endocytosis. Proceedings of the National Academy of Sciences, USA. 80, 2258–2262.
    [101] Aniento F., Gu F., Parton R.G., Gruenberg J., 1996. An endosomal beta COP is involved in the pH-dependent formation of transport vesicles destined for late endosomes. Journal of Cell Biology. 133, 29–41.
    [102] Chapman R.E., Munro S., 1994. Retrieval of TGN proteins from the cell surface requires endosomal acidification. EMBO Journal. 13, 2305–2312.
    [103] Maranda B., Brown D., Bourgoin S., Casanova J.E, Vinay P., Ausiello D.A., Marshansky V., 2001. Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. Journal of Biological Chemistry. 276, 18540–18550.
    [104] Halban P.A, Irminger J.C., 1994. Sorting and processing of secretory proteins. Biochemical Journal. 299, 1–18.
    [105] Stevens T.H., Forgac M., 1997. Structure, function and regulation of the vacuolar (H+)-ATPase. Annual Review of Cell and Developmental Biology. 13, 779–808.
    [106] Zeuzem S., Zimmermann P., Schulz I., 1992. Association of a 19- and a 21-kDa GTP-binding protein to pancreatic microsomal vesicles is regulated by the intravesicular pH established by a vacuolar-type H+-ATPase. Journal of Membrane Biology. 125, 231–241.
    [107] Maranda B., Brown D., Bourgoin S., Casanova J.E., Vinay P., Ausiello D.A., Marshansky V., 2001. Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. Journal of Biological Chemistry. 276, 18540–18550.
    [108] Orlowski J., Grinstein S., 2004. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pfluegers Archiv. 447, 549–565.
    [109] Brett C.L., Wei Y., Donowitz M., Rao R., 2002. Human Na+/H+ exchanger isoform 6 is found in recycling endosomes of cells, not in mitochondria. American Journal of Physiology– Cell Physiology. 282, 1031–1041.
    [110] Numata M., Orlowski J., 2001. Molecular cloning and characterization of a novel (Na+,K+)/H+ exchanger localized to the trans-Golgi network. Journal of Biological Chemistry. 276, 17387–17394.
    [111] Iwaki T., et al. 1998. Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae.Yeast. 14, 1167-1174.
    [112] Blumwald E., Aharon G.S., Apse M.P., 2000. Sodium transport in plant cells. Biochim Biophys Acta. 1465, 140-151.
    [113] Shono M., et al. 2001. Molecular cloning of Na+-ATPase cDNA from a marine alga, Heterosigma akashiwo. Biochim Biophys Acta. 1511,193-9.
    [114] Begona B., Rodriguez N., 2003. Molecular cloning and characterization of a sodium-pump ATPase of the mass Physcomitrella patens. Plant Journal. 36, 382-389.
    [115] Shi H., Quintero F.J., Pardo J.M., Zhu J. K., 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell. 14, 465-477.
    [116] Karen M., Hahnenberger., et al. 1996. Functional expression of the Schizosaccharomyces pombe Na+/H+ antiporter gene, sod2, in Saccharomyces cerevisiae. PNAS USA. 93, 5031-5036.
    [117] Shi H., Lee B., Wu S.J., Zhu J.K., 2003. Overexpression of a plasma membrane Na+/H+ antiporter improves salt tolerance in Arabidopsis. Nature Biotechnology. 21, 81-5.
    [118] Apse M. P., et al. 2002. Engineering salt tolerance in plants. Current Opinion In Biotechnology. 13,146-150.
    [119] Qiu Q.S., et al. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. PNAS USA. 99, 8436-41.
    [120] Liu J., Zhu J. K., 1998. A calcium sensor homology required for plant salt tolerance. Science. 280, 1943-1945.
    [121] Zhu J.K., 2000. Genetic Analysis of Plant Salt Tolerance Using Arabidopsis. Plant Physiol. 124, 941-948.
    [122] Liu J., et al. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. PNAS USA. 97, 3735-40.
    [123] Shi H., Xiong L., Stevenson B., et a1. 2002. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for Vitamin B6 in plant salt tolerance. PIant Cell. 14, 575—588.
    [124] Shi H., Zhu J.K., 2002. SOS4, a pyridoxal kinase gene,is required for root hair development in Arabidopsis. Plant Physiol. 129, 585-593.
    [125] Shi H., Kin Y.S., GuoY., et a1. 2003. Th eArabidopsis SOS5 locus encodes a putative cell surface adhesion protein and required for normal cell expansion. Plant Cell. 15, l9-32.
    [126]周晓馥,王兴智, 2002.植物耐盐相关基因: SOS基因家族研究进展.遗传. 24, l90-192.
    [127] Gong D., Guo Y., Jagendorf A.T., et a1. 2002. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol. 130, 256 64.
    [128] Halfter U., Ishitani M., Zhu J.K., 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. PNAS USA .97, 3735-3740.
    [129] Guo Y., et al. 2001. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell. 13, 1383-400.
    [130] Gong D., Gong Z., GuoY., et al. 2002. Biochemical and functional characterization of PKS II, a novel Arabidopsis protein kinase. J Biol Chem. 277, 28340-28350.
    [131] Ishitani M., Liu J., Halfter U. Kim C.S. Shi W., Zhu J.K., 2000. SOS3 function in plant salt tolerance requires N-myristoylation and calcium-binding. Plant Cell. 12, 1667–1677.
    [132] Zhu J.K., 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol. 53, 247-273.
    [133] Ward J.M., Hirschi K.D., Sze H., 2003. Plant pass the salt. Trends PIant Sci. 8, 200-201.
    [134] Xiong L., Schumaker K.S., Zhu J.K., 2002. Cell signaling during cold, drought, and salt stress.Plant Cell. 165-183.
    [135] Gong Z., Koiwa H., Cushman M.A. et a1., 2001. Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol. l26, 363-375.
    [136] Zhu J.K., 2001. Cell signaling under salt, water an d cold stresses. Curr Opin Plant Biol.4, 401-406.
    [137] Rus A., et al. 2001. AtHKT1 is a salt tolerance determinant that controls NaCl entry into plant roots. PNAS USA. 98, 14150-55.
    [138] Chinnusamy V., Jagendorf A., Zhu J.K., 2005. Understanding and Improving Salt Tolerance in Plants. Crop Science. 45, 437-448.
    [139]於丙军,刘友良, 2004. SOS基因家族与植物耐盐性.植物生理学通讯. 40, 409-413.
    [140] Mart?′nez-Atienza J., Jiang X.Y., Garciadeblas B., Mendoza I., Zhu J.K., Pardo J.M., Quintero F.J., 2007. Conservation of the Salt Overly Sensitive Pathway in Rice. Plant Physiology. 143, 1001–1012.
    [141] An R., Chen QJ., Chai MF., Lu PL., Su Z., Qin ZX., Chen J., and Wang XC., 2007. AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Lit/Ht antiporter. The Plant Journal. 49, 718–728.
    [142] De D.N., 2000. Plant Cell Vacuoles: An Introduction, (CSIRO Publishing, Collingwood, VIC, Australia,).
    [143] Bassham D.C., Raikhel N.V., 2000. Unique features of the plant vacuolar sorting machinery. Curr. Opin. Cell Biol. 12, 491–495.
    [144] Ueda T., Nakano., 2002. A. Vesicular traffic: an integral part of plant life. Curr. Opin. Plant Biol. 5, 513–517.
    [145] Martinoia E., Massonneau A., Frangne N., 2000. Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 41, 1175–1186.
    [146] Blumwald E., Aharon G.S., Apse M.P., 2000. Sodium transport in plant cells. Biochim. Biophys. Acta. 1465, 140–151.
    [147] Sze H., Liang F., Hwang I., Curran A.C., Harper J.F., 2000. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 433–462.
    [148] Wink M., 1993. The plant vacuole: a multifunctional compartment. J Exp Bot .44, 231-246.
    [149]Wink M., 1994. The cell culture medium-a functional extracellular compartment of suspension-cultured cells. Plant Cell Tissue Organ Cult. 38, 307–319.
    [150] Kunze I., Kunze G., Broker M., Manteuffel R., Mains F., Muntz K., 1998. Evidence for secretion of vacuolar a-mannosidase, class I chitinase and class I b-1,3-glucanase in suspension cultures of tobacco cells. Planta. 205, 92–99.
    [151] MacRobbie E.A.C., 1999. Vesicle trafficking: a role in trans-tonoplast ion movements. J Exp Bot. 50, 925-934.
    [152] Kronestedt-Robards E., Robards A.W., 1992. Exocytosis in gland cells. In CR Hawes, JOD Coleman, DE Evans, eds, Endocytosis, Exocytosis and Vesicle Traffic in Plants. Cambridge University Press, Cambridge, UK. 199-232.
    [153] Battey N.H., James N.C., Greenland A.J., Brownlee C., 1999. Exocytosis and endocytosis. Plant Cell. 11, 643-659.
    [154] Fahn A., 1988. Secretory tissues in vascular plants. New Phytol.108, 229-257.
    [155] Berry W.L., 1970. Characteristics of salts secreted by Tamarix aphylla. Am J Bot. 57, 1226-1230.
    [156] Ziegler H., Luttge U., 1967. Die Salzdruen von Limonium vulgare: II. Die lokalisierung des chlorids. Planta. 74, 1-17.
    [157] Echeverr?′a E.d., 2000. Vesicle-mediated solute transport between the vacuole and the plasma membrane. Plant Physiology. 123, 1217–1226.
    [158] Hill A.E., Hill B.S., 1976. Elimination process by glands: mineral ions. In U Luttge, MG Pitman, eds, Transport in Plants II: Encyclopedia of Plant Physiology, Vol 2. Springer-Verlag, Berlin, 225-243.
    [159] Thomson W.W., Liu L.L., 1967. Ultrastructural features of the salt gland of Tamarix aphylla. Planta. 73, 201-220.
    [160] Cardale S., Field C.D., 1971. The structure of the salt glad of Aegiceras corniculatum. Planta. 99, 183-191.
    [161] Shimony C., Fahn A., Reinhold L., 1973. Ultrastructure and ion gradients in the salt glands of Avicenia marina. New Phytol. 72, 27-36.
    [162] Thomson W.W., Berry W.L., Liu L.L., 1969. Localization and secretion of salt by the salt glands of Tamarix aphylla. Proc Natl Acad Sci USA. 63, 310-317.
    [163] Thomson W.W., Platt-Aloia K., 1985. The ultrastructure of the plasmodesmata of the salt glands of Tamarix as revealed by transmission and freeze-fracture electron microscopy. Protoplasma. 125, 13-23.
    [164] Hill A.E., 1970. Ion and water transport in Limonium: III. Time constants of transport systems. Biochem Biophys Acta. 196, 66–72.
    [165] Atkinson M.R., Findlay G.P., Hope A.B., Pitman M.G., Saddler H.D.W., West K.R., 1967. Salt regulation in the mangroves Rhyzophora mucronata Lam. and Aegialitis annulata R. Aust J Biol Sci. 20, 589-599.
    [166] Fitzgerald M., Orlovich D.A., Galloway W., 1982. Evidence that abaxial leaf glands are the sites of salt secretion in leaves of the mangrove Avicenia marina. New Phytol. 120, 1-7.
    [167] Robards AW., Oates K., 1986. X-ray microanalysis of ion distribution in Abutilon nectary hairs. J Exp Bot. 37, 940-949.
    [168] Blumwald E., Gelli A., 1997. Secondary inorganic ion transport at the tonoplast. Adv Bot Res. 25, 401-417.
    [169] Leigh R., 1997. The solute composition of vacuoles. Adv Bot Res. 25, 171-194.
    [170] Fahn A., 1979. Ultrastructure of nectaries in relation to nectar secretion. Am J Bot. 66, 977-985.
    [171] Caldwell D.L., Gerhardt K.O., 1986. Chemical analysis of peach extrafloral nectary exudate. Phytochemistry. 25, 411-413.
    [172] Rachmilevitz T., Fahn A., 1975. The floral nectary of Tropaeolum majus L.: the nature of thesecretory cells and the manner of nectar secretion. Ann Bot. 39, 721-728.
    [173] Figuereido A.C., Pais S., 1994. Ultrastructural aspects of the glandular cells from the secretory trichomes and from the cell suspension cultures of Achillea millefolium. Ann Bot. 74, 179-190.
    [174] Nepi M., Ciampolin F., Pacini E., 1996. Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Ann Bot. 78, 95-104.
    [175] Fahn A., Rachmilevitz T., 1975. An autoradiological study of nectar secretion in Lonicera japonica Thunb. Ann Bot. 39, 975-976.
    [176] Sawidis T., 1991. A histochemical study of nectaries of Hybiscus rosa-sinensis. J Exp Bot. 42, 1477-1487.
    [177] Bryant N., Piper R.C., Weisman L., Stevens T.H., 1998. Retrograde traffic out of the yeast vacuole to TGN occurs via pre-vacuolar/endosomal compartment. J Cell Biol. 142, 651-653.
    [178] Verbelen J.P., Tao W., 1998. Mobile arrays of vacuole ripples are common in plant cells. Plant Cell Rep. 17, 917-920.
    [179] Lazzaro M.D., Thomson W.W., 1992. Endocytosis of lanthanum nitrate in the organic acid-secreting trichomes of chickpea (Cicer arietinum). Am J Bot. 79, 1113–1118.
    [180] Lazzaro M.D., Thomson W.W., 1992. Ultrastructural localization of calcium in the organic acid secreting trichomes of chickpea (Cicer arietinum). Can J Bot. 70, 3219–2325.
    [181] Lazzaro M.D., Thomson W.W., 1996. The vacuolar-tubular continuum in living trichomes of chickpea (Cicer arietinum) provides a rapid means of solute delivery from base to tip. Protoplasma. 193, 181–190.
    [182] Echeverr?a E., Achor D., 1999. Vesicle mediated sucrose mobilization from the vacuole of red beet hypocotyl cells. Plant Physiol. 120, 152–157.
    [183] Cole L., Orlovich D.A., Asford A.E., 1998. Structure, function and motility of vacuoles in filamentous fungi. Fungal Genet Biol. 24, 86-100.
    [184] Echeverría E., Gonzalez P.C., 2000. ATP-induced sucrose efflux from red beet tonoplast vesicles. Planta. 211, 77-84.
    [185] Fromm J., Eschrich W., 1988. Transport processes in stimulated and non-stimulated leaves of Mimosa pudica: I. The movement of 14C-labeled photoassimilates. Trees. 2, 7-17.
    [186] Weintraub M., 1951. Leaf movements in Mimosa pudica L. New Phytol. 50, 357–382.
    [187] Gedalovich E., Kuijt J., 1987. An ultrastructural study of the viscin tissue of Phthirusa pyrifolia (A. B. K.) Eichler (Loranthaceae). Protoplasma. 187, 145-155.
    [188]张剑智, 2001.中国淘汰甲基溴的利弊分析.世界环境科学. 3, 30-31.
    [189]张猛,张天宇,张玉娜, 2004.植物寄生线虫生防因子研究进展.山东农业大学学报(自然科学版).35(2), 311-314.
    [190]杨秀娟,何玉仙, 1998.国外利用杀线植物防治植物寄生线虫.世界农业. 4, 37.
    [191]周三,韩军丽,赵可夫. 2001.泌盐盐生植物研究进展.应用与环境生物学报.7, 496-501.
    [192] Pollak G., Waisel Y., 1970. Salt Secretion in Aeluropus Luoralis (Willd). Parl Annals of Botany. 34, 879-888.
    [193] Thomson W.W., 1975. The Structare and Function of Salt Glands. In: Poljakoff-Mayber A., Gate J. eds. Plants in Satine Environments Berlin: Springer-Verlag. 118-146.
    [194] Hill A.E., 1976. Ion and War Transport in Limonium. II Short-Cireuit Analysis. Biochim Biophys Acta. 135, 461-465.
    [195] Dschida W.J., Platt-Alota K.A., Thomson W.W.,1992.Epidermal Peels of Avicenniin Germinans (L.) Stearn: A Useful System to Study the Function of Salt Gland. Annals of Botany. 70, 501-505.
    [196]韩军丽,赵可夫, 2001.植物盐腺的结构、功能和泌盐机理的探讨.山东师大学报(自然科学版). 16(2), 194-198.
    [197] Arise W.H., Camphuis I.J., Heikens H., Vantooren A.J., 1955. The secretion of the salt glands of Limonium Latifolium Ktze. Acta Bot Neerlandica. 4(3), 321-338.
    [198] Faraday C.D., Thomson W.W., 1986. Structural aspects of the salt glands of the Plumbaginaceae. Journal of Experimental Botany, 37 (177), 461-470.
    [199] Levering C.A., Thomson W.W., 1972. Studies on the ultrastructure and mechanismof secretion of the salt gland of the grass Spartina. In : Proc. 30th Electron Microscope Soc. of America. 222-223.
    [200] Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiology Plant. 15, 473-497.
    [201] Manley S.L., 2002. Phytogenesis of halomethanes: A product of selection or a metabolic accident? Biogeochemistry. 60, 163–180.
    [202] Dibrov P., Fliegel L., 1998. Comparative molecular analysis of Na+/H+ exchanger: a unified model for Na+/H+antiport? FEBS Lett. 424,1-5.
    [203] Orlowski J., Grinstein S., 1997. Na+/H+ exchangers of mammalian cells. J Biol Chem. 272, 22373-22376.
    [204]陈世华,张霞,赵彦修,张慧, 2006.中华补血草的组织培养和快速繁殖体系的优化.安徽农业科学. 34(19), 4885-4886.
    [205]马秀灵, 2002.盐地碱蓬SsNHX1基因的克隆及转基因拟南芥的培育(博士论文).
    [206]韩军丽, 2001二色补血草叶片盐腺的功能及其泌盐机理的探讨(山东师范大学硕士论文).
    [207]丁烽,王宝山, 2006. NaCl对中华补血草叶片盐腺发育及其泌盐速率的影响.西北植物报. 26(8), 1593-1599.
    [208]白由路,杨俐苹, 2004.基于图像处理的植物叶面积测定方法.农业网络信息. (1), 36-38.
    [209]李宏,王新力. 1999,植物组织RNA提取的难点及对策生物技术通报. (1), 36-39.
    [210] Graham G.C., 1993. A method for extraction of total RNA from Pinus radiata and other conifers. Plant Mol Biol Reptr. 11, 32-37.
    [211] Lewinsohn E., Steele C.L., Croteau R., 1994. Simple isolation of functional RNA from woody stems of gymnosperms. Plant Mol Biol Reptr. 12, 20-25.
    [212] Guo S.U., Kemphues K.J., 1995. par-1, a gene required for establishing polarity in C.elegans embryos,encodes a putative Ser/Thr kinase that is saymmetrically distributed. Cell. 81, 611- 620.
    [213] Fire A., et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700