用户名: 密码: 验证码:
紫外线诱导的细胞DNA损伤模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA是储存与传递遗传信息的重要生物大分子,其分子的完整性对生物体生命活动至关重要。过量的紫外辐射可引起细胞内DNA碱基发生突变、DNA断裂、DNA-DNA交联、DNA-蛋白交联以及染色体畸变等损伤。DNA损伤若不能及时修复,细胞将发生癌变或死亡。不同剂量紫外线对细胞DNA的损伤模式不同,可能引起的修复机制有差别。因此,研究不同剂量紫外线诱导细胞DNA损伤模式的变化对于进一步探讨DNA损伤修复机制,预防某些修复缺陷性疾病的发生有一定的现实意义,并对遗传学、肿瘤学、衰老学和毒理学等研究具有一定的理论价值。
     本文采用彗星电泳法检测紫外线对细胞DNA损伤的效应以及不同种类细胞的敏感性差异;应用彗星电泳、DCFH-DA荧光探针检测法以及NAC抗氧化剂等方法检测了低剂量紫外线对细胞DNA的损伤;采用流式细胞仪、MTT、细胞计数等方法检测了中等剂量UVC对细胞DNA的损伤;应用原子力显微镜和彗星电泳方法检测了高剂量紫外线对细胞DNA的损伤。
     主要内容:
     1、检测相同剂量不同功率紫外线诱导的细胞DNA损伤。彗星电泳和HE染色的实验结果表明:离体培养的K562细胞和原代培养的小鼠肝细胞经不同功率相同剂量的UVC或UVB照射后,DNA损伤程度无差异。
     2、检测不同波长UV照射白血病K562细胞DNA的损伤。彗星电泳的检测结果显示:照射剂量0-440 J/m~2的UVA不会对K562细胞DNA造成即时性损伤;UVB、UVC可以造成K562细胞DNA的损伤,并在一定范围内呈现照射剂量依赖效应。UVB在20~320 J/m~2照射剂量下与细胞DNA损伤的相关性为0.9344和0.956:UVC在3.2~180 J/m~2照射剂量下与细胞DNA损伤的相关性为0.9841和0.994:相同照射剂量下UVC对细胞DNA的损伤程度显著高于UVB。
     3、检测了不同细胞对UVC的敏感性。不同肿瘤细胞应答UVC损伤的敏感性存在差异:SMMC-7721细胞的敏感性高于HepG2细胞。正常细胞与肿瘤细胞应答UVC损伤的敏感性也存在差异:hepa1-6细胞的敏感性高于原代培养的小鼠肝细胞。不同活化程度的正常细胞对UVC损伤的敏感性不同:活化淋巴细胞比静息淋巴细胞敏感性高。
     4、检测了不同周期时相的K562细胞对于UVC的敏感性:彗星检测发现G2期的细胞最为敏感,其次为M期、S期和G1期。
     5、K562细胞和原代培养的小鼠肝细胞在低剂量UVB和UVC照射后经孵育,彗星电泳能够检测出即时检测不能发现的细胞DNA损伤。低剂量UV照射后,胞内ROS含量升高,并在细胞孵育后含量降低。实验组中加入ROS清除剂NAC后可以降低细胞DNA的损伤。这提示低剂量UV照射造成的延时损伤可能以ROS引发的损伤修复有关。
     6、K562细胞经中等剂量(60 J/m~2)UVC照射后的DNA损伤在20h内修复或消失。UVC致细胞DNA损伤具有延时效应。UVC照射细胞后,随孵育时间的延长细胞DNA损伤程度加剧,2小时后DNA损伤达到最大值,孵育4小时后DNA损伤程度开始下降,孵育至20小时损伤程度恢复至未照射细胞的水平。细胞计数的结果表明,照射后12h细胞数目降至最低,而后细胞数目丌始增加。UVC照射使K562细胞周期被阻滞于G1/S期或G2/M期。
     7、优化了用于原子力显微镜观察的细胞DNA提取系统。建立了用原子力显微镜观察DNA的阳性模型。
     8、K562细胞经高剂量UV照射后的DNA损伤严重。高剂量UVC照射后,K562细胞DNA损伤严重,发生断裂、交联(DNA链间或链内),K562细胞增殖能力减弱。高剂量UVB照射后,DNA小片段交联在一起。
     结论:相同剂量不同功率的UVC或UVB照射后,DNA损伤程度无差异。UV造成的细胞DNA损伤与照射波段、剂量密切相关。UVC对细胞DNA的损伤能力大于UVB。UVB、UVC造成的K562细胞DNA的损伤在一定范围内呈现照射剂量依赖效应。我们得到UVB、UVC在一定剂量范围与DNA损伤之间的线性方程。UBV:y=0.1196x-0.0534,R~2=0.9344或y=0.0814x-0.0627,R~2=0.956。UVC:y=0.2018x+0.9053,R~2=0.9841或y=0.1251x+0.6914,R~2=0.994。不同细胞应答UVC损伤的敏感性存在差异,这可能与细胞的增殖速度不同有关;周期时相的细胞对UVC的敏感性不同进一步证明了这一点。
     不同剂量紫外线诱导的细胞DNA损伤有不同的模式。实验发现低剂量UVB与UVC照射K562细胞和原代培养的小鼠肝细胞后经孵育,彗星电泳能够检测出即时检测不能发现的细胞DNA损伤并且细胞内ROS含量升高,进一步实验加入ROS清除剂NAC后可以降低细胞DNA的损伤,表明延时检测到的DNA损伤与ROS有一定关系。中等剂量UVC对K562细胞DNA的损伤具有延时效应并且在20小时内可以恢复。此剂量下的UVC照射后细胞周期被阻滞在G1/S期或G2/M期。应用原子力显微镜直接观测到高剂量UVC照射细胞后,K562细胞DNA损伤严重,发生断裂、交联。与UVB相比,UVC照射后细胞DNA链的直径变细,DNA链的交联可能多为链间交联。
DNA is an important biological macromolecule. The integrity of DNA is essential for cell or organism. Excessive ultraviolet radiation can cause damage in DNA, such as base pairs miss, DNA breakage, DNA-DNA cross-linking ,DNA-protein cross-linking, and chromosomal aberrations. If DNA damage can not be timely repaired, cell cancer or death would occur. Ultraviolet radiation (UV) with different energy lead to different DNA damage model, the repair mechanisms also may be not the same. Therefore, we study the DNA damage model induced by different energy UV. It has a certain practical significance for exploring DNA damage repair mechanisms and preventing some repair defective diseases.
     The effects of DNA damage induced by different waves and doses of ultraviolet radiation (UV) in different cells were tested by comet assay. The cell cycle distribution was detected by the flow cytometer (FCM). The effects of intermediate dose UVC on K562 cell was investigated by MTT test, cell count and comet assay. The effects of low dose UVC on K562 cell was investigated by DCFH-DA test and comet assay. The effects of high dose UVC on K562 cell was investigated by comet assay and atomic force microscopy (AFM).
     Results: 1. The primary cultured mouse hepatocyte and human leukemia K562 cells were irradiated by UVB or UVC with the same dose but different power. The experiment showed that the damage of DNA had no difference.
     2. The human leukemia K562 cells were irradiated by UVA, UVB and UVC. The experiment showed that UVA couldn't induce DNA damage immediately, while UVB and UVC could induce cellular DNA damage in a dose manner, and UVC could induce DNA damage most seriously. The relativity of UVB (20-320J/m~2) between DNA damage is 0.9344/0.956. The relativity of UVC (3.2-180J/m~2) between DNA damage is 0.9841/0.994.
     3. The sensitivities of different cells to UV were different. The lowest dose of UVC induced the human hepatoma SMMC-7721 cellular DNA damage was 10.4J/m~2, but the dose of UVC could induce DNA damage of h-hepatoma HepG2 cell was above 16.8J/m~2. The lowest dose of UVC induced mouse hepatoma hepal-6 cellular DNA damage was 1.6J/m~2, but for the primary cultured mouse hepatocyte was achieved to 2.4 J/m~2. The activated human lymphocyte was more sensitive than the resting human lymphocyte to UVC.
     4. When synchronized K562 cells were irradiated by 60J/m~2 UVC, the cells of G2/M phase showed that it was more sensitive than others.
     5. K562 and the mouse hepatocyte cells were irradiated by low dose UVC, the DNA damage was detected by comet assay after incubated 2h but not immediately. Irradiated with low dose UVB or UVC, the intracellular ROS content increased, and decreased after the cells were incubated. The DNA damage of experimental group cell can be reduced by adding NAC.
     6. After irradiated by intermediate dose (60 J/m~2) UVC, the DNA damage of K562 cells represented delayed effect, and it can be repaired during 20h. Cell count and morphological observation showed that the number of K562 cells declined least after incubated 12h, and some cells damaged severely. The results of comet assay showed that the highest damage was appeared after incubated 2-4h. The cell cycle distribution was also changed after irradiated. Cells were arrested in Gl/S or G2/M.
     7. After irradiated by high dose UVC or UVB, the DNA damage model of DNA breakage and DNA cross-linking was highly appeared in K562 cells.
     Conclusions: The comet assay results showed that UVA couldn't induce DNA damage immediately, while UVB and UVC could induce cellular DNA damage in a dose dependent manner, and UVC could induce DNA damage most seriously. The linear equation of DNA damage and UVB: y=0.1196x-0.0534, R~2=0.9344 or y=0.0814x-0.0627, R~2=0.956. The linear equation of DNA damage and UVC: y=0.2018x+0.9053, R~2=0.9841或y=0.1251x+0.6914, R~2=0.994. The sensitivities to UV were different in different cells. The cancer cells were more sensitive to UV, and the sensitivity of cells to UV was related to its proliferation speed. When irradiated by lower dose UVC, DNA damage of K562 cell just appeared in a delayed manner, but not immediately. The delay was related to ROS. When irradiated intermediately by UVC (60 J/m~2), damage of the cell represented delayed effect, and it can be repaired during 20h. The cell cycle distribution was also changed after irradiating; cells were arrested in G1/S or G2/M. After irradiated by high dose UVC or UVB, the DNA damage mode of DNA breakage and DNA cross-linking was highly appeared in K562 cells.
引文
[1] Einspahr J. G, Bowden G T., Alberts D. S.. Skin cancer chemoprevention: strategies tosave our skin[J]. Recent Results Cancer Res, 2003,163:151-164
    
    [2] Nocentini S. Apoptotic response of malignant rhabdoid tumor cells [J].Cancer cell lnt,2003, 3: 1-11
    
    [3] Steerenberg P. A., Daamen F., Weesendorp E., et al. No adaptation to UV-inducedimmunosuppression and DNA damage following exposure of mice to chronicUV-exposure[J]. Journal of Photochemistry and Photobiology B: Biology, 2006, 84:28-37
    
    [4] Fairbairn D. W., Walburger D. K., Fairbairn J. J., et al. Key morpHologic changes andDNA strand breaks in human lympHoid cells: Discriminating apoptosis from necrosis [J].Scanning, 1996,18: 407- 416
    
    [5]丁振华,范建中.紫外辐射生物学与医学[M].广州:人民军医出版社,2001,p1
    
    [6] Pfeifer G. P., You Y. H., Besaratinia A.. Mutations induced by ultraviolet light[J]. Mutat.Res., 2005, 571(1-2): 19-31
    
    [7] Sudheer K. M., Santosh K. K.. Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-κB signaling inhuman epidermal keratinocytes[J].Free Radical Biology & Medicine, 2006, 52(3): 78-84
    
    [8] Einspahr J. G, Bowden G T., Alberts D. S.. Skin cancer chemoprevention: strategies tosave our skin[J]. Recent Results Cancer Res, 2003,163:151-164
    
    [9] Nocentini S. Apoptotic response of malignant rhabdoid tumor cells[J].Cancer cell lnt,2003, 3:1-11
    
    [10] Steerenberg P. A., Daamen F., Weesendorp E., et al. No adaptation to UV-inducedimmunosuppression and DNA damage following exposure of mice to chronicUV-exposure[J]. Journal of Photochemistry and Photobiology B: Biology, 2006, 84:28-37
    
    [11]印木泉.遗传毒理学[M].北京:科学出版社,2002,p120
    
    [12] Hder D. P., Sinha R. P. Solar ultraviolet radiation-induced DNA damage in aquaticorganisms: potential environmental impact[J]. Mutat Res, 2005, 571(1-2): 221-233
    
    [13] Friedberg E. C. How nucleotide excision repair protects against cancer[J]. Nat. Rev.??Cancer, 2001,1: 22-33
    
    [14] Hanawalt P. C. Controlling the efficiency of excision repair[J].Mutat.Res., 2001, 485(1):3-13
    
    [15] Mullenders L. H., Berneburg M.. Photoimmunology andnucleotide excision repair:impact of transcription coupled and global genome excision repair[J]. Photochem.Photobiol. B, 2001, 65: 97-100.
    
    [16] Modrich P., Lahue R.. Mismatch repair in replication fidelity, genetic recombination, andcancer biology[J]. Annu. RevBiochem, 1996, 65: 101-133
    
    [17] Umar A., Kunkel T.A. DNA-replication fidelity, mismatchrepair and genome instabilityin cancer cells [J]. Eur. J. Biochem, 1996, 238: 297-307
    
    [18] Fang W. H., Modrich P. Human strand-specific mismatch repair occurs by a bidirectionalmechanism similar to that of the bacterial reaction [J]. Biol. Chem, 1993, 268:11838-11844
    
    [19]孙敬芬.DNA修复与人类疾病研究进展[J].癌变·畸变·突变,2002,14(4):261-265
    
    [20] Dikomey E., Dahm D. J., Brammer I., et al. Correlation between cellular radiosensitivityand non-repaired double-strand breaks studied in nine mammalian cell lines [J]. Int. J.Radiat. Biol, 1998, 73: 269-278
    
    [21] Lips J., Kaina B. DNA double-strand breaks trigger apoptosis in p53-deficient fibroblasts[J]. Carcinogenesis, 2001, 22: 579-585
    
    [22] Pfeiffer P., Goedecke W., Obe G.. Mechanisms of DNA double-strand break repair andtheir potential to induce chromosomal aberration[J]. Mutagenesis, 2000,15: 289-302
    
    [23] Rich T., Allen R. L., Wyllie A. H.. Defying death after DNA damage[J]. Nature, 2000,407: 777-783
    
    [24] Cromie G. A., Connelly J. C, Leach D. R.. Recombination at double-strand breaks andDNA ends: conserved mechanisms from phage to humans[J]. Mol. Cell, 2001, 8:1163-1174.
    
    [25] Haber J. E. Partners and pathways repairing a double-strand break[J]. Trends Genet, 2000,16 :259-264
    
    [26] Johnson R. D., Jasin M.. Sister chromatid gene conversion is a prominent double-strandbreak repair pathway in mammalian cells. EMBO J, 2000,19: 3398-3407
    
    [27] Takata M., Sasaki M. S., Sonoda E., et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells[J]. EMBO J. 1998,17: 5497-5508
    
    [28]李宏.微核试验的研究进展[J].安徽农业科学,2009,37(7):2864-2866
    
    [29] Betti C, Davini T., Giannessi L., et al .Comparative studies by comet test and SCE analysis in human lymphocytes from 200 healthy subjects[J]. Mutation Research, 1995, 343(4): 201-207
    
    [30] Hartley J. A., Berardini M. D., Souhami R. L.. An agarose gel method for determination of DNA interstrand corsslinking applicationable to the measurement fof the rate of total and second2armcrosslink reactions[J]. Analyt Biochem, 1991,193:131-134
    
    [31] Zhang K., Qi H., Li H., Liu Y, Chen W: F. Visualization of cellular DNA crosslinks by atomic force microscopy[J]. Scanning, 2009, 31(2): 75-82
    
    [32]申梓刚,李海,王化斌,等.用原子力显微镜观察水流处理后的DNA图案[J].现代仪 器,2007,13(1):19-20
    
    [33]袁明秀,张志宏,等.AFM观察小白鼠心肌核DNA片段的基因体外表达和垃圾DNA 的相互作用[J].中国科技导报,2005,23(12):20-25
    
    [34]马豫峰,蔡继业,赵秋香等.重铬酸钾和谷胱甘肽作用致小牛胸腺DNA损伤的原子 力显微镜研究[J].南方医科大学学报,2006,26(10):1427-1430
    
    [35] Keren K., Berman R. S., Braun E. Patterned DNA metallization by sequence-specificlocalization of a reducing agent[J]. Nano letters, 2004,4(2): 323-326
    
    [36] Nakao H., Shiigi H., Yamamoto Y, et al. Highly ordered assemblies of Au nanoparticlesorganized on DNA[J]. Nano letters, 2003,3(10): 1391-1394
    
    [37] Kaji N., Ueda M., Baba Y. Molecular stretching of long DNA in agarose gel usingalternating current electric fields[J].Biophys J, 2002, 82(1): 335-344
    
    [38] Kim J. M., Ohtani T., Park J. Y, et al: DC electric-field-induced DNA stretching for AFMand SNOM studies[J]. Ultramicroscopy, 2002, 91(1-4): 139-149
    
    [39] Collins A., Dusinska M., Franklin M., et al. Comet assay in human biomonitoring studies:reliability, validation, and applications[J]. Environ Mol Mutagen, 1997; 30(2): 139-46
    
    [40] (?)stling O., Johanson K. J.. Microelectrophoretic study of radiation- induced DNA??damages in individual mammalian cells[J]. Biochem Biophys Res Commun, 1984,123(1): 291-298
    
    [41] Singh N. P., McCoy M. T., Tice R. R., et al. A simple technique for quantitation of lowlevels of DNA damage in individual cells[J].Exp Cel Res, 1988,175(1): 184-191
    
    [42] Thierry G, Edwige D., Francois S., et al. Detection of topoisomerase inhibitor-inducedDNA strand breaks and apoptosis by the alkaline comet assay[J].Mutation Research,2002, 520: 47-56
    
    [43] Erdal K., Ulku Undeger, Musa B., et al. Assessment of DNA strand breakage by thealkaline COMET assay in dialysis patients and the role of Vitamin E supplementation [J].Mutation Research, 2002,520(1-2): 151-159
    
    [44] Andrew R. C. The comet assay for DNA damage and repair: Principles, applications andlimitations[J]. Molecular biotechnology, 2004, 26: 249-261
    
    [45]张显忠,苗苗,李艳玲,等.改良单细胞凝胶电泳技术在DNA损伤与修复检测中的 应用泰山医学院学报,2005,26(3):206-208
    
    [46] Mancini M. A., Shan B., Nickerson J. A., et al. The retinoblastoma gene product is a cell cycle-dependent nuclear matrix-associated protein[J]. Proc Natl Acad Sci USA, 1994, 91(1): 418-422
    
    [47] Anderson L. C, Ilsson K., Gahmberg C. G.. K562-a human erythroleukemic cell line[J].Int J Cancer, 1979,23(2): 143-147
    
    [48] Rojas E., Lopez M. C, Valverde M.. Single cell gel electrophoresis assay: methodology and applications[J]. Journal of Chromatography. B Biomedical Sciences and Applications (J. Chromatogr. B Biomed. Appl.), 1999, 722(1-2): 225-254
    
    [49]马爱国.不同细胞DNA氧化损伤及自身修复能力的分析[J].癌变畸变突变,1997, 9(3):138-142
    
    [50]薛文成,王宝勤,苑宾,等.彗星电泳用于肿瘤细胞辐射敏感性检测的研究[J].中华 放射医学与防护杂志,2002,22(4):263-265
    
    [51] Eman A. A. B., Michael O., Christopher J. H., et al. Analysis of UV-induced damage and repair in young and senescent human dermal fibroblasts using the comet assay[J].Mechanisms of Ageing and Development, 2005, 126(6-7): 664-672
    
    [52] Feynman R. P., Leighton S. M.. The Feynman Lectures on Physics, Vol.III,??Addison-Wesley, Reading, MA, 1967:pp. 15-7-15-12
    
    [53]闵玮,骆丹.中波紫外线与皮肤恶性肿瘤发生机制的研究进展[J].国外医学皮肤性 病学分册,2004,30(3):170-172
    
    [54]任建廷,桑建利.紫外线诱导的DNA损伤与皮肤癌的发生[J].生物学通报,2004, 39(1):4-6
    
    [55] Abraham R. T.. Cell cycle checkpoint signaling through the ATM and ATR kinases [J].Genes Develop, 2001,15(17): 2177-2196.
    
    [56]谢成英,蔡育军,丁健.损伤与肿瘤发生的研究进展[J].中国癌症杂志,2006,16(4): 313-317
    
    [57]王冰,藤田和子,山田武,等.谱紫外线对体外培养小鼠胚细胞的影响[J].辐射防 护,1997,17(3):200-207
    
    [58] Thomas S. R., Dieter P., Katrin W., et al. Analysis of UV-B-induced DNA damage and its repair in heat-shocked skin cells[J]. Photochem. Photobiol. B: Biol., 1999,53:144-159
    
    [59]王家骏,谢妮,于佳明,等.丁羟甲苯对紫外线抑制细胞免疫的保护作用[J].卫生毒 理学杂志,2001,15(2):65-68
    
    [60]李燕华,毕志刚.紫外线对豚鼠郎格汉斯细胞功能影响的研究[J].江苏临床医学杂 志,2000,4(3):177-179
    
    [61] Barbara I., Massimiliano N., Carlo I., et al. Ultraviolet B and A irradiation induces fibromodulin expression in human fibroblasts in vitro[J]. Biochimie, 2009,91: 364-372
    
    [62] Paul C. P., Denise R. C, Lisa D. M., et al. Telomerase-immortalized human fibroblasts retain UV-induced mutagenesis and p53-mediated DNA damage responses[J].DNA Repair, 2006,5(1): 61-70
    
    [63]李宇国,倪瑾,韩玲,等.紫外光照射下富勒醇对细胞的防护作用[J].辐射研究与辐 射工艺学报,2004,22(6):356-360
    
    [64] Lutzen A., Bisgaard H. C, Rasmussen L. J.. Cyclin Dl expression and cell cycle response in DNA mismatch repair- deficient cells upon methylation and UV-C damage[J] .Experimental Cell Research, 2004,292:123-134
    
    [65]段建明,张宗玉,童坦君.人衰老成纤维细胞经紫外线损伤后的DNA修复和细胞周 期调控[J].中国生物化学与分子生物学报,1999,15(4):646-650
    
    [66] Iwamoto K., Shinomiya N., Mochizuki H.. Different cell cycle mechanisms between??UV-induced and X-ray-induced apoptosis in WiDr colorectal carcinomacells[J].Apoptosis, 1999,4(1): 59-66
    
    [67] Gujuluva C. N., Baek J. H., Shin K. H., et al. Effect of UV-irradiation on cell cycle,viability and the expression of p53, gaddl53 and gadd45 genes in normal andHPV-immortalized human oral keratinocytes[J].Oncogene, 1994, 9(7):.1819-1827
    
    [68] Berton T. R., Pavone A., Fischer SM. Ultraviolet-B Irradiation Alters the Cell CycleMachinery in Murine Epidermis In Vivo[J] Journal of Investigative Dermatology, JinvestDermatol, 2001,117(5): 1171-1178
    
    [69] Norbury C. J., Zhivotovsky B.. DNA damage induced apoptosis[J]. Oncogen, 2004, 23:2797-2808
    
    [70] Lo H. L., Nakajima S., Ma L., et al. Differential biologic effects of CPD and 6-4PPUV-induced DNA damage on the induction of apoptosis and cell-cycle arrest[J]. BMCCancer., 2005,19(5): 135
    
    [71] Reardon J. T., Sancar A.. Nucleotide excision repair [J].Prog Nucleic Acid Res Mol Biol,2005; 79:183-235
    
    [72] Montserrat Cols Vidal, Williams G, Hoole D.. Characterisation of a carp cell line foranalysis of apoptosis[J]. Developmental and Comparative Immunology, 2009, 33:801-805
    
    [73] Lui's F.Z. Batista, Bernd Kaina, Roge rio Meneghini, et al. How DNA esions are turnedinto powerful killing structures:Insights from UV-induced apoptosis[J]. MutationResearch, 2009, 681:197-208
    
    [74]冯莉,苏奉发,李丽,等.紫外线致Hep2G2细胞调亡的分子机制初探[J].川北医学 院学报,2004,19(1):16-19
    
    [75] Kimura C, Zhao Q. L., Kondo X, et al. Mechanism of UV-induced apopotosis in human leukemia cells : role of Ca2+/Mg2+-dependent endonuclease , caspase-3 , and stress-acticated protein kinases[J]. Exp. Cell Res., 1998, 239(2): 411-422
    
    [76] Nishigaki R., Mitani H., Shima A.. Evasion of UVC-induced apoptosis by photorepair of cyclobutane pyrimidine dimmers [J].Exp.Cell Res., 1998, 244: 43-53
    
    [77] Gniadecki R., Hanson M., Wulf H. C. Two pathways for induction of apoptosis by ultraviolet radiation in cultured human keratinocytes[J].J. Invest. Dermatol., 1997, 109:??163-169
    
    [78] Iwasaki K., Izawa M., Mihara M. Involvement of caspases in apoptosis induced byultraviolet B irradiation in A431 human epithelioid tumor cells[J].Biochem. Mol. Biol.Int., 1997,42(6): 1271-1279
    
    [79] Sun N. K., Kamarajan P., Huang H. M., et al. Restoration of UV sensitivity inUV-resistant HeLa cells by antisensemediated depletion of damaged DNA-bindingprotein-(DDB2)[J]. FEBS Letters, 2002,512:168-172
    
    [80] Garcin G, Douki T., Stoebner P. E., et al. Cell surface expression of melanocortin-1receptor on HaCaT keratinocytes and alpha-melanocortin stimulation do not affect theformation and repair of UVB-induced DNA photoproducts[J]. Photochem Photobiol Sci,2007, 6(5): 585-593
    
    [81]朱应葆,赵剑,贾廷珍.辐射损伤修复与纽胞周期检定点调控[J].中华放射医学与防 护杂志,2004,24(6):491-493
    
    [82] Dupaigne P., Lavelle C, Justome A.,et al. Rad51 polymerization reveals a new chromatinremodeling mechanism[J]. PLoS ONE, 2008, 3(11): 3637-3643
    
    [83] Jun-Hyuk C, Ahmad B., Dong-Hyun L., et al. The role of DNA polymeraseiin UVmutational spectra[J]. Mutation Research, 2006,145(6): 1127-1132
    
    [84] Adayabalam S. B., Vilhelm A. B.. Genomic heterogeneity of nucleotide excision repair[J].Gene, 2000, 250(1-2): 15-30
    
    [85] Wood R. D.. DNA damage recognition during nucleotide excision repair in ammaliancells[J]. Biochimie, 1999, 81(1-2): 39-44
    
    [86] Sancar A., Lindsey-Boltz L. A., Unsal-Kacmaz K., et al. Molecular mechanisms ofmammalian DNA repair and the DNA damage checkpoints[J]. Annu Rev Biochem, 2004;73: 39-85
    
    [87] Errol C. Friedberg. DNA damage and repair[J].Nature, 2003,421: 436-440
    
    [88] Mullenders L. H. F., Berneburg M.. Photoimmunology and nucleotide excision repair:impact of transcription coupled and global genome excision repair[J].Journal ofPhotochemistry and Photobiology B: Biology, 2001, 65(2-3): 97-100
    
    [89]Hanawalt, P. C. Subpathways of nucleotide excision repairand their regulation[J].Oncogene, 2002, 21: 8949-8956
    
    [90] Balajee A. S., Bohr V. A.. Genomic heterogeneity ofnucleotide excision repair[J]. Gene2000, 250:15-30
    
    [91]Hanawalt, P. G. Subpathways of nucleotide excision repair and their regulation.Oncogene, 2002, 21: 8949-8956
    
    [92] Mullenders, L. H., Berneburg, M.. Photoimmunology and nucleotide excision repair:impact of transcription coupled and global genome excision repair[J]. J. Photochem.Photobiol. B, 2001, 65: 97-100
    
    [93] Amy T., Smith S., Lyndon L.. Chronic lymphocytic leukemia lymphocytes lack thecapacity torepair UVC-induced lesions[J]. Mutation Research, 2000,459(1): 73-80
    
    [94] Annekevan H., Balajee A. S., Albert A., et al. Nucleotide excision repair and its interplaywith transcription[J].Toxicology, 2003,193(1): 79-90
    
    [95]曲建慧,朱明华,文军慧,等.不同p53状态的肝癌细胞系DNA损伤修复能办的比较 [J].肿瘤2003,23(3):177-179
    
    [96]卓勤,徐琦.补肾益精药物对老年小鼠DNA双链结构及损伤修复能力影响[J].中国 中医基础医学杂志,1998,4(9):40-44
    
    [97]闫雪冬,张宗玉,童坦君.老年小鼠脾细胞DNA修复能力的变化及gadd45和 gadd153基因的可诱导性改变[J].北京医科大学学报,1999,31(4):289-292
    
    [98] Yamada M., Udono M. U., Hori M., et al. Aged human skin removes UVB-induced pyrimidine dimers from the epidermis more slowly than younger adult skin in vivo[J]. Arch Dermatol Res, 2006, 297(7): 294-302
    
    [1] Ostling O., Johanson K. J.. Microelectrophoretic study of radiation- induced DNA damages in individual mammalian cells[J]. Biochem Biophys Res Commun, 1984, 123(1): 291-298
    
    [2] Singh N. P., McCoy M. T., Tice R. R., et al. A simple technique for quantitation of low levels of DNA damage in individual cells[J].Exp Cel Res, 1988,175(1):.184-191
    
    [3]洪承皎,王静,童建.应用单细胞凝胶电泳技术检测辐射致外周血淋巴细胞DNA损伤 [J].中国工业医学杂志,1999,12(6):346-347
    
    [4] Kohn K. W.. Principles and practice of DNA filter elution. PHarmacol Ther, 1991 ,49: 55-77
    
    [5]田云,卢向阳,易克.单细胞凝胶电泳技术[J].生命的化学,2004,4(1):77-78
    
    [6] Mohankumar N. M., Janani S., Karthikeya P. B., et al. DNA damage and integrity ofUV-induced DNA repair in lymphocytes of smokers analysed by the cometassay[J].Mutation research, 2002, 520(1-2): 179-187
    
    [7] Kassie E, Parzefall W., Knasmiiller S.. Single cell gel electrophoresis assay: a newtechnique for human biomonitoring studies[J].Mutation Research/Reviews in MutationResearch, 2000,463(1): 13-31
    
    [8] Mahima B., Alok D., Devendra P., et al. Gender-related differences in basal DNA damagein lymphocytes of a healthy Indian population using the alkaline comet assay[J].Mutation research, 2002, 520(1-2): 83-91
    
    [9]杨东平,张美辨,何继亮.彗星试验对4种化学物质诱导人淋巴细胞DNA损伤的检测 [J].环境与健康杂志,2003,20(1):6-9
    
    [10] Thierry G, Edwige D., Francois S., et al. Detection of topoisomerase inhibitor-inducedDNA strand breaks and apoptosis by the alkaline comet assay [J].Mutation Research,2002, 520: 47-56
    
    [11] Erdal K., (?)lkü (?)ndeger, Musa B., et al. Assessment of DNA strand breakage by thealkaline COMET assay in dialysis patients and the role of Vitamin E supplementation[J].Mutation Research, 2002,520(1-2): 151-159
    
    [12]霍冠华,吕耀凤,张金凤,等.碱性彗星试验检测γ射线照射与维生素K3联合应用对 人宫颈癌HeLa细胞的细胞毒性影响[J].中国临床药理学与治疗学,2003,8(5): 530-532
    
    [13]罗明志.单细胞凝胶电泳——彗星实验方法的建立、改良与应用[D].西安:陕西师 范大学,2005
    
    [14] Konca K., Lankoff A., Banasik A., et al. A cross-platform public domain PCimage-analysis program for the comet assay[J].Mutation Research, 2003,534(1-2):.15-20
    
    [15] Hellman B., Vaghef H., Bostrom B.. The concepts of tail moment and tail inertia in thesingle cell gel electrophoresis assay[J].Mutation Research, 1995, 336(2): 123-131
    
    [16] Meyer G, Amer N. M.. Novel optical approach to atomic force microscopy. Appl PhysLett, 1988, 53(12): 1045-1017
    
    [17] Alexander S., Hellemans L., Mart O., et.al. An atomic-resolution atomic-force??microscope implemented using an optical lever[J]. Appl Phys, 1989, 65(1): 164-167
    
    [18] Santos N. C, Castanho Miguel A. R. B.. An overview of the biophysical applications ofatomic force microscopy[J]. Biophysical Chemistry, 2004,107(2): 133-149
    
    [19] Psonka K., Gudowska-Nowak E., Brons S., et al. Ionizing radiation-inducedfragmentation of plasmid DNA - Atomic force microscopy and biophysical modeling.Advances in Space Research, 2007,39(6): 1043-1049
    
    [20] Keren K., Berman R. S., Braun E.: Patterned DNA metallization by sequence-specificlocalization of a reducing agent. Nano letters , 2004,4(2):.323-326
    
    [21] Nakao H., Shiigi H., Yamamoto Y., et al. Highly ordered assemblies of Au nanoparticlesorganized on DNA. Nano letters, 2003, 3(10):.1391-1394
    
    [22] Kaji N., Ueda M., Baba Y. Molecular stretching of long DNA in agarose gel usingalternating current electric fields[J].Biophys J, 2002, 82(1):.335-344
    
    [23] Kim J. M., Ohtani T., Park J. Y, Chang S. M., Muramatsu H: DC electric-field-inducedDNA stretching for AFM and SNOM studies. Ultramicroscopy, 2002, 91(1-4): 139-149
    
    [24]张益,陈圣福,欧阳振乾,等.单个DNA分子的拉直操纵和成像[J].科学通报,2000, 45(5):490-493
    
    [25]Bustamante C, Vesonka J., Tang C. L., et al. Circular DNA molecules imaged in air byscanning force microscopy [J]. Biochemistry , 1992,31(1): 22-26
    
    [26] Crampton N., Bonass W. A., Kirkham J., et al: Collision events between RNApolymerases in convergent transcription studied by atomic force microscopy. NucleicAcids Res 2006, 34(19): 5416-5425
    
    [27] Wu A. G., Li Z., Yu L. H., et al. Plasmid DNA network on a mica substrate investigatedby atomic force microscopy[J]. Anal Sci, 2001,17(5):583-584
    
    [28] Tiner WJ Sr, Potaman V.N., Sinden R.R., et al The structure of intramolecular triplexDNA: atomic force microscopy study[J]. Jmol Biol, 2001, 314(3): 353-357
    
    [29] Kiselyova O. I., Yaminsky I. V., Karger E. M., et al.Visualization by atomic forcemicroscopy of tobacco mosaic virus movement protein-RNA complexes formed invitro[J].J Gen Virol, 2001, 82(6): 1503-1508
    
    [30] Hoyt P. , Doktycz M. J., Warmack R. J., et al. Spin-column isolation of DNA -proteininteractions from complex protein mixtures for AFM Imaging[J]. Ultramicroscopy.2001,??86(1-2):139-143
    
    [31]孟庆勇,徐美奕,高莉莉.低剂量γ射线对小鼠胸腺细胞和脾细胞周期进程的影响[J]. 中国辐射卫生,2005,14(4):258-259
    
    [32]孙爱民,王群英,陈龙华,等.X射线辐射诱导HepG2细胞的凋亡及对核因子κB的激 活作用[J].中国临床康复,2005,9(43):75-77
    
    [33]王晓艳,沈守荣,刘芬,等.NGX6基因对人结肠癌细胞HT-29细胞周期的影响[J]. 生物化学与生物物理进展,2006,33(1):45-50
    
    [34]章静波,张世馥,黄东阳.组织和细胞培养技术[M].北京:人民卫生出版社,2002, p146
    
    [35]李雪松,刘莹,张杰,等.蛋白激酶在NIH3T3细胞中对促成熟因子的作用[J].中国 医科大学学报,2005,34(3):193-194
    
    [36]叶红,郝天玲,金咸.红细胞生成素3’端增强子在肺动脉平滑肌细胞低氧性增殖调控 中的作用[J].生理学报,2000,52(5):355-359
    
    [37]陈智.乙型肝炎病毒cccDNA研究现状[J].中华传染病杂志,2003,21(1):8-10
    
    [38]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000,p366
    
    [39]郑新亮.K562细胞增殖和凋亡过程[Ca~(2+)]_i的荧光检测分析[D].西安:西北大学,2004
    
    [40] Mosman T.. Rapid colorimetric assay for cellar growth and survival: Application to proliferation and cytotoxicity saasys[J].Immuno Methods, 1983, 65(1): 55-58
    
    [41]陈文芳.稳恒磁场对肿瘤细胞杀伤作用的研究[D].西安:陕西师范大学,2005
    
    [42] Lozzio C. B., Lozzio B. B..Human chronic myelogenous leukemia cell-line with positivePhiladelphia chromosome[J]. Blood, 1975,45(3): 321-334
    
    [43] Lozzio B. B., Lozzio C. B.. Properties and usefulness of the original K-562 humanmyelogenous leukemia cell line[J]. Leuk. Res., 1979,3(6): 363-370
    
    [44] Anderson L. C., Ilsson K., Gahmberg C. G.. K562-a human erythroleukemic cellline[J].Int J Cancer, 1979, 23(2): 143-147
    
    [45] Lozzio B. B., Lozzio C. B., Bamberger E. G, et al. A multipotential leukemia cell line(K-562) of human origin[J].Proc. Soc.Exp.Biol.Med., 1981,166(4): 546-550
    
    [46]董春荣,周荣华,吕发度.SMMC-7721人体肝癌细胞建立及其细胞生物学特性的初 步观察[J].第二军军医大学学报.1980,1:5-9
    
    [47] Darlington G. J., Hans P. B., Rechard A. M., et al. Expression of liver phenotypes in??cultured mouse hepatoma cells[J]. J Natl Cancer Inst, 1980, 64: 809-819
    
    [48]张炜.紫外线对细胞DNA损伤与损伤中的钙离子信号变化的荧光检测分析[D].西 安:西北大学,2005
    
    [1]蔡晓宏,赵晏,白艳红,等.褪黑素对人肝癌SMMC-7721细胞的抑制作用[J].西安 医科大学学报,2000,21(3):202-204
    
    [2]罗诗樵,罗亿治.人肝肿瘤耐药细胞亚系建立及生物学特性研究[J].重庆医科大学学 报,2004,29(5):601-604
    
    [3] Lozzio B.B., Lozzio C.B.. Properties and usefulness of the original K-562 human myelogenous leukemia cell line[J]. Leuk. Res., 1979, 3(6): 363-370
    
    [4]武立鹏,朱卫国.DNA甲基化的生物学应用及监测方法进展[J].中华检验医学杂志, 2004,27(7):468-474
    
    [5]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002,p507
    
    [6] Yoke W. K.. DNA Damage and Human Diseases[J].Oxidative Stress,Dojindo Newsletter,2004,2:124-130
    
    [7] Amy T., Smith S., Lyndon L.. Chronic lymphocytic leukemia lymphocytes lack the capacity torepair UVC-induced lesions[J]. Mutation Research, 2000,459(1): 73-80
    
    [8]马爱国.不同细胞DNA氧化损伤及自身修复能力的分析[J].癌变畸变突变,1997,9(3): 138-142
    
    [9] Lozzio C.B., Lozzio B.B..Human chronic myelogenous leukemia cell-line with positivePhiladelphia chromosome[J]. Blood, 1975,45(3): 321-334
    
    [10] Lozzio B.B., Lozzio C.B., Bamberger E.G, et al. A multipotential leukemia cell line(K-562) of human origin[J].Proc. Soc.Exp.Biol.Med., 1981, 166(4): 546-550
    
    [11] Michael D. C, David W. M.. The formation of UV-induced chromosome aberrationsinvolves ERCC1 and XPF but not other nucleotide excision repair genes[J]. DNA Repair, 2002,1(4):335-340
    
    [1] Rafferty T. S., Beckett G. J., Walker C, et al. Selenium protects primary human keratinocytes from apoptosis induced by exposure to ultraviolet radiation [J]. Clin Exp Dermatol, 2003, 28(3): 294-300
    [2] Maeda T., Sim A. B., Leedel D. A., et al. UV induces GADD45 in a p53-dependent and -independent manner in human keratinocytes[J]. J Cutan Med Surg, 2003, 7(2): 119-123
    [3] Norbury C.J., Zhivotovsky B.. DNA damage induced apoptosis[J]. Oncogen, 2004, 23:2797-2808
    [4] Gujuluva C. N., Baek J. H., Shin K. H., et al. Effect of UV-irradiation on cell cycle,viability and the expression of p53, gadd153 and gadd45 genes in normal and HPV-immortalized human oral keratinocytes[J].Oncogene, 1994,9(7): 1819-1827
    [5] Scanchez Y., Elledge S. J.. Stopped for repairs[J].Bio Essays, 1995,17(6): 545-548
    [6] Geyer R. K., Nagasawa H., Little J. B., et al. Role and regulation of p53 during an ultraviolet radiation-induced G1 cell cycle arrest[J], Cell Growth Differ., 2000, 11(3):149-156
    [7] Taga M., Shiraishi K., Shimura T.. The effect of caffeine on p53-dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after X-ray and UV-irradiations[J].J Radiat Res (Tokyo), 2000,41(3): 227-241
    [8] Jonathan W. A., Nigel J. O., Patricia E. K.. Nucleotide excision repair and the degradation of RNA pol Ⅱ by the Caenorhabditis elegans XPA and Rsp5 orthologues, RAD-3 and WWP-1[J]. DNA repair, 2008, 7: 267-280
    [9] Friedberg E. C. How nucleotide excision repair protects against cancer[J].Nat. Rev. Cancer, 2001,1:22-33
    [10] Hanawalt P. C.. Controlling the efficiency of excision repair[J].Mutat.Res., 2001, 485(1):3-13
    [11] Mullenders L. H., Berneburg M.. Photoimmunology andnucleotide excision repair:impact of transcription coupled and global genome excision repair[J]. J. Photochem.Photobiol. B, 2001, 65: 97-100
    [12] Markus C., Maja T. T., Wynand P. R., et al. Mechanisms of human DNA repair:an update[J]. Toxicology, 2003,193(1-2): 3-34
    
    
    [1] Chien Y. H., Bau D. T., Jan K.Y.. Nitric oxide inhibits DNA-adduct excision in nucleotide excision repair, Free Radical Biology& Medicine, 2004,36(8): 1011-1017
    
    [2]刘颖.磁场与抗癌药物对肿瘤细胞联合效应的原子力显微镜研究[D],陕西师范大学 硕士学位论文,陕西师范大学,2005
    
    [3]申梓刚,李海,王化斌,等.用原子力显微镜观察水流处理后的DNA图案[J].现代仪 器,2007,13(1):19-20
    
    [4]袁明秀,张志宏.AFM观察小白鼠心肌核DNA片段的基因体外表达和垃圾DNA的相 互作用[J].中国科技导报,2005,23(12):18-20
    
    [5]马豫峰,蔡继业,赵秋香,等.重铬酸钾和谷胱甘肽作用致小牛胸腺DNA损伤的原 子力显微镜研究[J].南方医科大学学报,2006,26(10):1427-1430
    
    [6] Keren K., Berman R. S., Braun E: Patterned DNA metallization by sequence-specific??localization of a reducing agent[J]. Nano letters, 2004,4(2): 323-326
    
    [7] Nakao H., Shiigi H., Yamamoto Y, et al. Highly ordered assemblies of Au nanoparticlesorganized on DNA. Nano letters, 2003, 3(10): 1391-1394
    
    [8] Kaji N., Ueda M., Baba Y. Molecular stretching of long DNA in agarose gel usingalternating current electric fields[J].Biophys J, 2002, 82(1): 335-344
    
    [9] Kim J. M., Ohtani T., Park J. Y, et al. DC electric-field-induced DNA stretching for AFMand SNOM studies[J]. Ultramicroscopy, 2002, 91(1-4): 139-149
    
    [10]张益,陈圣福,欧阳振乾,等.单个DNA分子的拉直操纵和成像[J].科学通报,2000, 45(5):490-493
    
    [11] Wu A. G., Li Z., Yu L. H., et al. Plasmid DNA network on a mica substrate investigatedby atomic force microscopy[J]. Anal Sci, 2001,17(5): 583-584
    
    [12] Tiner W. S., Potaman V. N., Sinden R.R., et al The structure of intramolecular triplexDNA: atomic force microscopy study[J]. Jmol Biol, 2001,314(3): 353-357
    
    [13] Kiselyova O. I., Yaminsky I. V, Karger E. M., et al. Visualization by atomic forcemicroscopy of tobacco mosaic virus movement protein-RNA complexes formed invitro[J].J Gen Virol, 2001, 82(6): 1503-1508
    
    [14]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002,p507
    
    [15] Oliver M., Kristin R., Gunter S., et al. Analysis of chromate-induced DNA-protein crosslinks with the comet assay[J]. Mutation Research, 2000,471: 71-80
    
    [16] Clifford C. C, John W., Lynne K. V., et al. Formaldehyde Mechanistic Data and Risk Assessment :Endogenous Protection From DNA Adduct Formation[J]. Elsevier Science, 1996, 71 (1/2): 29-55
    
    [1] Yoke W. K.. DNA Damage and Human Diseases[J].Oxidative Stress, Dojindo Newsletter,2004,2:124-130
    
    [2] Girard P. M, Boiteux S. Repair of oxidized DNA bases in the yeast Saccharomycescerevisiae[J]. Biochemistry, 1997,79: 559-566
    
    [3] Dizdaroglu M. Chemical determination of free radical-induced damage to DNA[J]. FreeRadical Biology Medicine, 1991,10(3-4): 225-42
    
    [4] Basu A. K., Loechler E L, Leadon S A, et al. Genetic effects of thymine glycol: sitespecific mutagenesis and molecular modeling studies[J]. Proc. Natl. Acad. Sci. USA,1989, 86: 7677-7682
    
    [5] Frenkel K. Carcinogen-mediated oxidant formation and oxidative DNA damage[J].Pharmacology Theory, 1992,53:127-166
    
    [6] Loeb L. A. Apurinic sites as mutagenic intermediates[J]. Cell, 1985,40:483-486
    
    [7] Lori A. R., Natalya D. A., Paul W. D. DNA damage-induced reactive oxygen species(ROS) stress response in Saccharomyces cerevisiae[J]. Free Radical Biology & Medicine,2008,45:1167-1177
    
    [8] Nishigori C, Hattori Y, Arima Y, et al. Photoaging and oxidative stress[J]. ExpressDermatology, 2003,12(2): 18-21
    
    [9] Hiroyuki Yasui, Hiromu Sakurai. Chemiluminescent detection and imaging of reactiveoxygen species in live mouse skin exposed to UVA[J]. Biochemical and BiophysicalResearch Communications, 2000, 269(2): 131-136
    
    [10] Mittal A., Elmets C. A., Katiyar S. K. CD11b+cells are the major source of oxidativestress in UV radiation-irradiated skin:possible role in photoaging and photocarcino genesis[J]. Photochemistry Photobiology, 2003, 77(3): 259-264
    [11] Bruge F., Tiano L., Cacciamani T., et al. Effect of UV-C mediated oxidative stress in leukemia cell lines and its relation to ubiquinone content[J]. Biofactors, 2003, 18(1-4):51-63
    [12] Aruoma O. K., Halliwell B., Hoey B. M., et al: The antioxidant action of N -acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide and hypochlorous acid[J]. Free Rad BiolMed, 1989, 6: 593-599
    [13] Shattuck K. E., Rassin D. K., Grinnell C. D.: N-acetylcysteine protects from glutath ione depletionin rats exposed to hyperoxia[J]. Japen. J Parenteral & EnteralNutrition, 1998,22: 228-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700