用户名: 密码: 验证码:
青藏高原及其周边区域夏季上对流层水汽变化和输送特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上对流层-下平流层(UT/LS)水汽分布和变化过程对全球地气系统的辐射能量平衡有重要的影响。发生在UT/LS区域的水汽输送过程是影响该区域水汽组成的重要物理过程,对未来的全球气候变化具有很好的指示意义。亚洲季风区作为夏季北半球对流层向下平流层水汽输送和交换的"窗口",虽然引起了研究者的强烈兴趣,但至今为止其研究仍然薄弱。
     为此,本文以卫星反演产品综合分析为基础,结合相关观测资料、NCEP再分析数据等,借助基于拉格朗日方法求解方案的大气模式(FLEXPART),采用诊断分析和数值模拟相结合的途径,对亚洲季风区夏季UT/LS水汽分布、输送过程及其相关机理进行了研究。主要结论如下:
     (1)多年的再分析资料表明,北半球夏季青藏高原及其周边区域上空为强大的南亚高压所控制,该区域具有全球最高的对流层顶高度,夏季往往小于100hPa。UT/LS区域大气温度波动垂直方向呈现出“正-负-正”的变化,UT区域的加热可以通过温度波动的向上传播到下平流层中。南亚高压主体的东南侧为强的上升运动区,此大气流场的气候态特征为对流层向平流层水汽输送提供了有利的环流背景条件。
     (2)利用最新的卫星资料,对亚洲季风区夏季UT/LS大气水汽及其他大气痕量成分季节内变化特征进行分析,发现上对流层主要存在两个振荡周期,即10-20天和30-60天,而下平流层主要表现为30-60天的季节内周期振荡,这两个周期振荡分别和青藏高原及其南部区域的夏季对流加热以及南亚高压的位置变化具有同位相特征,说明青藏高原及其周边区域的夏季对流抬升和南亚高压闭合环流的共同作用是影响该区域水汽及其大气痕量成分分布、变化的主要动力过程。
     (3)通过对流层-平流层交换诊断分析发现,发现夏季向上穿越对流层顶的对流层向平流层质量和水汽输送(TST)主要发生在青藏高原东南侧及其临近的UT/LS区域的上空。穿越对流层顶气块4天前后的轨迹分析表明,向上穿越对流层顶以后,可以向热带地区继续输送,表明青藏高原上空以南亚高压为主要环流特征的UT/LS区域水汽输送对全球平流层水汽平衡具有重要的影响。
     (4)初步探讨了南亚高压在亚洲季风区夏季UT/LS输送过程及水汽等异常分布形成中的动力作用。理想的集合数值模拟实验研究表明,南亚高压水平方向上的动力屏障作用主要表现在14~16km高度。一般而言,而水平方向上,近地层大气在南亚高压闭合环流内滞留时间甚至可超过一个月,这也是亚洲季风区上空夏季水汽等异常和维持形成的原因之一。
     (5)通过高分辨的拉格朗日输送模式,诊断了进入亚洲季风区夏季平流层水汽的主要对流源区。研究表明,亚洲季风区夏季对流层向对流层向平流层质量输送的主要源区主要分布在热带西太平洋的中国南海、孟加拉湾、印度半岛东及其青藏高原区域。而对流层向平流层水汽输送的近地层对流源区主要为青藏高原及其周边区域,该区域贡献了整个亚洲季风区的进入平流层水汽的三分之一多。青藏高原及其周边区域的对流加热和较高的对流层顶温度是青藏高原地区成为夏季UT/LS水汽输送主要对流源区的可能原因。
     (6)结合中尺度气象模式和拉格朗日输送模式对南亚高压内水汽进入平流层的一次天气尺度输送过程和机理进行了分析。对流抬升作用下,湿空气可向上输送到位温320-340K高度,然后在南亚反气旋大尺度平流作用下,在反气旋的西侧向北输送。而在反气旋的东部及南侧经过对流层的冷点,进入到平流层中。南亚高压系统内辐射加热引起的大尺度的输送过程是亚洲季风区反气旋内部水汽进入平流层且水汽异常中心得以维持的主要原因,而对流加湿的作用较小。
The distributions and variations of atomosphere water vapor in upper troposphere– lower stratosphere (UT/LS) play an important role in the radiation energy balance of global earth-atmosphere, therefore exert an greatly affect on global climate changes. Asian monsoon region is a“window”of water vapor transport and exchange between troposphere and stratosphere in Northern Hemisphere in summer. As an important physical process to affect water vapor and other trace gases of UT/LS, the mass transport and exchange over this area has been focused on, but till now the research is at its early stage.
     Therefore, in this paper, based on the synthesis analysis of updata satellite products, related observation and re-analysis data, etc., and by utilizing lagrangian FLEXPART model, the method of combining diagnostic analysis with numerical simulation, the process to transport water vapor transport from troposphere to stratosphere and associated possible mechanism in summer over Asian monsoon region are studied. Several conclusions are listed as followings:
     (1)Multiyear re-analysis data show that, Tibetan plateau and its peripheral areas in Northern Hemisphere is controlled by strong south asian high in summer season. The air temperature wave pattern in UT/LS area show that the temperature changed can transfer from UT to LS verticaly. Compare to the same latitudeal areas, this region has the highest tropopause height, which is often lower than 100 hPa in summer. The strongest ascent motion is located at the southeast side of the south asian high. The climatology feature of atmospheric stream field provides favorable circumfluence background condition for TST.
     (2)The intra-seasonal oscillation characteristics of UT/LS atmosphere components in asian monsoon in summer are analyzed by utilizing the tested reversion data collected from Microsoft Limb Sound(MLS) and Atmospheric Infrade Sounder (AIRS). It is found that two osillation periods role for UT atmosphere components changes, i.e., 10-20 dyas and 30-60 days, while the intra-seasonal oscillation period for LS is 30-60 days. These two periodic oscillations are in phase with the convective heating above Tibetan plateau and its southern area in summer, and the location changes of south asian high, respectively. It indicates that, the convection over Tibetan plateau and its surrounding regions in summer, and the south asian high are two main dynamical processes to affect the TST transport of UT/LS atmosphere.
     (3)The diagnostic analysis of troposphere stratosphere mass exchange(STE) shows that TST mainly presents in the southeast side of Tibetan plateau, and its surrounding UT/LS height. Satellite products also indicate the areas controled by south Asian high is the mainly transport pathway of TST. By computing the residence time of air particles, two sinks of TST transport across the tropopause are found: one is tropical, the other is high-latitude region. It illuminates that the TST process in UT/LS region above Tibetan plateau where the south asian high is the main atmosphere circulation feature has great influence on global STE.
     (4)In this paper, the effect of south asian high in the UT/LS trace distribution and transportation also be studied. Idealized ensemble numerical simulation illuminates the influence of south asian high on the anomaly distribution of trace gases mostly in the height between 14km and 16km. It takes about 3-6 days to transport air contamination from near-surface layer upwards to the lower troposphere near south asian high region vertically. While in horizontal direction, the close circumfluence of south asian high makes near-surface-layer air contamination stay inside the anticyclone about more than one month. It indicates that short-lifecycle photochemical reaction process of air contamination may also affect the lower-troposphere atmosphere components. This may be one of the explanaitons for which the low-value center of ozone and anomaly distribution characteristics of other atmosphere components present above Tibetan plateau in summer.
     (5)Back trajectories driven by large-scale analyzed wind fields are used to investigate the mainly water vapor convective soure which can contribute to the water balance in asian summer monsoon UT/LS region, as well as the air mass sources for tropospher to stratospher mass transport (TSMT), defined in terms of the locations where each trajectory last left the atmospheric boundary layer. Results show us that the mainly mass source is different from of the water vapor. The tropical western Pacific Ocean, the bengal bay, India areas, the south of Tibetan plateau and its adjoints are the main mass convective sources, which is consistent with the horizontal distribution of near-surface-layer summer convection. While the Tibetan plateau and its surrounding areas is the most important water vapor source for LS. Streathen convection over this area and the more warm tropoapause temperature can be used to explain this phenomena.
     (6) By combined the meso-scale weather forcast model and the lagrangian transport model, this paper presented a study on the process and possible mechanism of the vapor transport from near PBL to LS in the south Asian monsoon anticycloon. The mositened air can be lifted to the 320-340K potential temperater levels firstly, and then transport toward North-West conved by largen scale advection. The air parcels experienced their cold point temperature at the east and south part of the anticycloon and then be transported into strotospher. The maxmium water vapor in UTcan be exist and transported into stratosphere mainly due to not the convection moisten but the anticycloon large scale advection.
引文
1. Alcala,C. M.,and A. E. Dessler (2002),Observations of deep convection in the tropics using the TRMM precipitation radar,J. Geophys. Res.,107(D24),4792,doi:10.1029/2002JD002457.
    2. Angell, J., and J. Korshover, 1976: The Relation Between Equatorial Tropopause Temperature and Water Vapor Mixing Ratio in the Low Stratosphere at Washington, D.C. Mon. Wea. Rev., 104, 756–760.
    3. Annamalai,H.,and J. M. Slingo (2001),Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon,Clim. Dyn.,18,85-102.
    4. B. Barret1,P. Ricaud,C. Mari. : Transport pathways of CO in the African upper troposphere during the monsoon season: a study based upon the assimilation of spaceborne observations,Atmos. Chem. Phys. Discuss.,8,2863–2902,2008
    5. Bannister R N, O’Neill A, Gregory A R, et al. The role of the S. E. Asian Monsoon and other seasonal features in creating the‘taperecorder’signal in the unified model. Q J R Meteorol Soc, 2003, 130: 1531—1554, doi:10.1256/qj.03.106
    6. Berthet,G.,J. G. Esler,and P. H. Haynes (2007),A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere,J. Geophys. Res.,112,D18102,doi:10.1029/2006JD008295.
    7. Bian Jianchun,Chen Hongbin,Zhao Yanliang,and Lu Daren, Variation features of total atmospheric ozone in Beijing and Kunming based on Dobson and TOMS data. Adv. Atmos. Sci.,2002,19(2),279-286.
    8. Bonazzola,M.,and P. H. Haynes,A trajectory-based study of the tropical tropopause region,J. Geophys. Res.,109,doi:10.1029/2003JD004356,2004.
    9. Bosilovich,M. G.,Y. C. Sud,S. D. Schubert,and G. K. Walker. 2003. Numerical simulation of the largescale North American monsoon water sources. J. Geophys. Res. 108,8614.
    10. Bosilovich,M.,and S. Schubert. 2002. Water vapour tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeorol. Pp. 149–165.
    11. Bowman KP (2006). "Transport of carbon monoxide from the tropics to the extratropics". Journal of Geophysical Research-Atmosphere 111: D02107. doi:10.1029/2005JD006137.
    12. Bradshaw,N. G. ,G. Vaughan,R. Busen,S. Garcelon,R. L. Jones,T. Gardiner and J. Hacker(2002). Tracer filamentation generated by small-scale Rossby wave breaking in thelower stratosphere. J. Geophys. Res.,107 (D23),doi: 10.1029/2002JD002086,ACL 12-1 to 12-14,4689.
    13. Brewer, A. W.( 1949), Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere, Quart. J. Roy. Meteor. Soc., 75, 351-363.
    14. Bridgeman,C. H.,J. A. Pyle,and D. E. Shallcross (2000),A three dimensional model calculation of the ozone depletion potential of 1-bromopropane (1-C3H7Br),J. Geophys. Res.,105,26,493– 26,502.
    15. Brubaker,K. L.,P. A. Dirmeyer,A. Sudradjat,B. S. Levy,and F. Bernal. 2001. A 36-yr climatological description of the evaporative sources of warm-season precipitation in the Mississippi river basin. J. Hydromet. 2,537–557.
    16. Cape J.N.,Methven J.,Hudson L.E.,2000,The Use of Trajectory Cluster Analysis to Interpret Trace Gas Measurements at Mace Head,Ireland,Atmos. Environ. 34,3651-3663.
    17. Chen P. Isentropic cross-tropopause mass exchange in the extratropics. J Geophys Res, 1995, 100: 16661—16673
    18. Clark, D.V., Sabl, J.F., Henikoff, S. (1998). Repetitive arrays containing a housekeeping gene have altered polytene chromosome morphology in Drosophila. Chromosoma 107(2): 96--104.
    19. Cong Chunhua,Li Weiliang,and Zhou Xiuji,2001: Regional mass exchange between stratosphere and troposphere over Tibetan and neighborhood area. Chinese Science Bulletin.,46(22),1914-1918.
    20. Deeter M N, Emmons L K, Francis G L, et al. Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument. J Geophys Res, 2003, 108, doi: 10.1029/2002JD003186
    21. Dessler, A. E., and K. Minschwaner (2007), An analysis of the regulation of tropical tropospheric water vapor, J. Geophys.Res., 112, D10120, doi:10.1029/2006JD007683.
    22. Dessler,A. E. (2002),The effect of deep,tropical convection on the tropical tropopause layer,J. Geophys. Res.,107(D3),4033,doi:10.1029/2001JD000511.
    23. Dessler,A. E. and Sherwood,S. C.: The effect of convection on the summertime extratropical lower stratosphere,J. Geophys. Res.,109,D23301,doi:10.1029/2004JD005209,2004.
    24. Dethof A, O'Neill A, Slingo J M, et al. A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Q JR Meteorol Soc, 1999, 125: 1079-1106.
    25. Dobson, G. M. B., Origin and distribution of polyatomic molecules in the atmosphere, Proc. Roy. Soc. London, A236, 187-193, 1956.
    26. Drummond JR, Mand GS (1996). "The measurements of pollution in the troposphere (MOPITT) instrument: Overall performance and calibration requirements". Journal of Atmospheric and Oceanic Technology 13: 314–320. doi:10.1175/1520-0426(1996)013<0314:TMOPIT>2.0.CO;2.
    27. Eguchi, N., and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, Journal of Geophysical Research, 109, D12106, doi:10.1029/2003JD004314.
    28. Filipiak,M. J.,R. S. Harwood,J. H. Jiang,Q. Li,N. J. Livesey,G. L. Manney,W. G. Read,M. J. Schwartz,J. W. Waters,and D. L. Wu (2005),Carbon monoxide measured by the EOS Microwave Limb Sounder on Aura: First results,Geophys. Res. Lett.,32,L14825,doi:10.1029/2005GL022765.
    29. Fischer,H.,de Reus,M.,Traubet,M.,et al.: Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes,Atmos. Chem. Phys., 3,739–745,2003.
    30. Forster, C., A. Stohl, and P. Seibert, 2007: Parameterization of Convective Transport in a Lagrangian Particle Dispersion Model and Its Evaluation. J. Appl. Meteor. Climatol., 46, 403–422.
    31. Froidevaux,L.,N.J. Livesey,W.G. Read,Y.B. Jiang,C.J. Jimenez,M.J. Filipiak,M.J. Schwartz,M.L. Santee,H.C. Pumphrey,J.H. Jiang,D.L. Wu,G.L. Manney,B.J. Drouin,J.W. Waters,E.J. Fetzer,P.F. Bernath,C.D. Boone,K.A. Walker,K.W. Jucks,G.C. Toon,J.J. Margitan,B. Sen,C.R. Webster,L.E. Christensen,J.W. Elkins,E. Atlas,R.A. Lueb,R. Hendershot,"Early validation analyses of atmospheric profiles from EOS MLS on the Aura satellite",vol 44,num no. 5,2006.
    32. Fromm,M. D.,and R. Servranckx (2003),Transport of forest fire smoke above the tropopause by supercell convection,Geophys. Res. Lett.,30(10),1542,doi:10.1029/2002GL016820.
    33. Fu,R.,Y. Hu,J. S. Wright,J. H. Jiang,R. E. Dickinson,M. Chen,M. Filipiak,W. G. Read,J. W. Waters,and D. L. Wu (2006),Shortcircuit of water vapor and polluted air to the global stratosphere byconvective transport over the Tibetan Plateau,Proc. Natl. Acad. Sci.U. S. A.,103,5664– 5669.
    34. Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter (2005), Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics, J. Geophys. Res., 110, D08107, doi:10.1029/2004JD005516.
    35. Fueglistaler,S.,M. Bonazzola,P. H.Haynes,T. Peter,Stratospheric water vapour predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics,J. Geophys. Res.,110,doi:10.1029/2004JD005516,2005.
    36. Fueglistaler,S.,Wernli,H.,Peter,T.,Tropical troposphere-to-stratosphere transport inferred from trajectory calculations,J. Geophys.Res.,109,doi:10.1029/2003JD004069,2004.
    37. Fujinami,H.,and T. Yasunari (2004),Submonthly variability of convection and circulation over and around the Tibetan Plateau during the boreal summer,J. Meteor. Soc. Japan,82,1545-1564.
    38. Gettelman,A.,and A. H. Sobel,Direct diagnoses of stratosphere-troposphere exchange,J. Atmos. Sci.,57,3– 16,2000.
    39. Gettelman,A.,D. E. Kinnison,T. J. Dunkerton,and G. P. Brasseur (2004a),Impact of monsoon circulations on the upper troposphere and lower stratosphere,J. Geophys. Res.,109,D22101,doi:10.1029/2004JD004878.
    40. Gettelman,A.,et al. (2004b),Validation of Aqua satellite data in the upper troposphere and lower stratosphere with in situ aircraft instruments,Geophys. Res. Lett.,31,L22107,
    41. Gettelman,A.,M. L. Salby,and F. Sassi (2002),Distribution and influence of convection in the tropical tropopause region,J. Geophys. Res.,107(D10),4080,doi:10.1029/2001JD001048.
    42. Gill,A. E. (1980),Some simple solutions for heat-induced tropical circulation,Q. J. R. Meteorol. Soc.,106,447– 462.
    43. Guo Dong, LüDaren, Sun Zhaobo. Seasonal variation of global stratosphere2t roposphere mass exchange. Progress in Natural Science , 2007 , 17 (12) : 1466~1475.
    44. Hartmann, D. L., J. R. Holton, and Q. Fu (2001), The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, Geophys. Res. Lett., 28, 1969–1972.
    45. Hatsushika,H.,Yamazaki,K.,Stratospheric drain over Indonesia and dehydration within the tropical tropopause layer diagnosed by air parcel trajectories,J.Geophys.Res.,doi:10.1029/2002JD002986,2003.
    46. Hegglin,M. I.,et al. (2004),Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system,Atmos. Chem. Phys. Discuss.,4,169– 206.
    47. Hess,P.G.: A comparison of two paradigms: The relative global roles of moist convective versus nonconvective transport,J. Geophys. Res.,110,D20302,doi:10.1029/2004JD005456,2005.
    48. Highwood,E. J.,and B. J. Hoskins (1998),The tropical tropopause,Q. J. R. Meterol. Soc.,124,1579– 1604.
    49. Holloway, T., Levy, H., and Kasibhatla, P.: Global distribution of carbon monoxide, J. Geophys. Res., 105, D10, 12 123–12 147, 2000.
    50. Holton,J. R.,P. H. Haynes,M. E. McIntyre,A. R. Douglass,R. B. Rood,and L. Pfister (1995),Stratosphere-troposphere exchange,Rev. Geophys.,33,403–439.
    51. Hoskins,B. J.,and M. J. Rodwell (1995),A model of the Asian summer monsoon. Part I: The global scale,J. Atmos. Sci.,52,1329-1340.
    52. http://www.ncep.noaa.gov/
    53. Huang Ronghui , and Sun Fengying , Impact of the tropical western Pacific on the East Asian summer monsoon , J . Meteor.Soc. Japan , 1992 , 70 (1B) , 243~256.
    54. James, R., M. Bonazzola, B. Legras, K. Surbled, and S. Fueglistaler (2008), Water vapor transport and dehydration above convective outflow during Asian monsoon, Geophys. Res. Lett., 35, L20810, doi:10.1029/2008GL035441.
    55. James,P.,A. Stohl,C. Forster,S. Eckhardt,P. Seibert,and A. Frank,A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model: 1. Methodology and validation,J. Geophys. Res.,108(D12),8519,doi:10.1029/2002JD002637,2003.
    56. James,P.,A. Stohl,N. Spichtinger,S. Eckhardt,and C. Forster (2004), Climatological aspects of the extreme European rainfall of August 2002 and a trajectory method for estimating the associated evaporative source regions,Nat. Hazards Earth Syst. Sci.,4,733– 746.
    57. Jiang,J. H.,N. J. Livesey,H. Su,L. Neary,J. C.McConnell,and N. A. D. Richards (2007),Connecting surface emissions,convective uplifting,and long-range transport of carbon monoxide in the upper troposphere: New observations from the Aura Microwave Limb Sounder,Geophys. Res. Lett.,34,L18812,doi:10.1029/2007GL030638.
    58. Keil,C.,H. Volkert,D. Majewski,1999: The Oder flood in July 1997: Transport routes of precipitable water diagnosed with an operational forecast model.– Geophys. Res. Let. 40,2,235–238.
    59. Knippertz,P.,and J. E. Martin (2007),A Pacific moisture conveyor belt and its relationship to a significant precipitation event in the semiarid southwestern United States,Weather Forecasting,22,125–144.
    60. Ko,M. K. W.,et al. (2003),Very short-lived halogen and sulfur substances,in Scientific Assessment of Ozone Depletion: 2002,Tech. Rep. 47,World Meteorol. Organ.,Geneva.
    61. Komhyr, W. D., R. A. Barnes, G. B. Brothers, J. A. Lathrop, and D. P. Opperman (1995), Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989, J. Geophys. Res., 100(D5), 9231–9244.
    62. Koster,R.,J. Jouzel,R. Souzzo,G. Russell,W. Broecker,D. Rind,and P. Eagleson. 1986. Global sources of local precipitation as determined by the NASA/GISS GCM. Geophys. Res. Lett. 13,121–124.
    63. Kremser, S., Rex, M., Langematz, U., Dameris, M., and Wohltmann, I.: Validation of water vapour transport in the tropical tropopause region in coupled Chemistry Climate Models, Atmos. Chem. Phys. Discuss., 8, 10999-11037, 2008.
    64. Krishnamurti, T., and H. Bhalme, 1976: Oscillations of a Monsoon System. Part I. Observational Aspects. J. Atmos. Sci., 33, 1937–1954.
    65. Krishnamurti,T. N.,and P. Ardanuy (1980),The 10 to 20-day westward propagating mode and“Breaks in the Monsoons”,Tellus,32,15-26.
    66. Krishnamurti,T.N. et al.,Tibetan high and upper tropospheric tropical circulation during northern summer,Bull. Amer. Meteor. Soc.,54,1234-1248,1973.
    67. Kurihara , K. , A climatological study on the relationship between the summer weather and the subtropical high in the westernnorthern Pacific , Geophys . Mag. , 1989 , 43 , 45~104.
    68. Lelieveld, J., Berresheim, H., Borrmann, S., et al.: Global Air Pollution Crossroads over the Mediterranean, Science, 298, 794–799, 2002.
    69. Levine,J. G.,P. Braesicke,N. R. P. Harris,N. H. Savage,and J. A. Pyle (2007),Pathways and timescales for troposphereto-stratosphere transport via the tropical tropopause layer and their relevance for very short lived substances,J. Geophys. Res.,112,D04308,doi:10.1029/2005JD006940.
    70. Li, Q. L., Jacob, D. J., Logan, J. A., et al.: A Tropospheric Ozone Maximum Over the Middle East, Geophys. Res. Lett., 28(D17), 3235–3238, 2001.
    71. Li, Q. L., Jiang, J. H., Wu, D. L., et al.: Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations, Geophys. Res. Lett., 32, L14826, doi:10.1029/2005GL022762, 2005.
    72. Li,Q.,et al. (2005a),Trapping of Asian pollution by the Tibetan anticyclone: A global CTM simulation compared with EOS MLS observations,Geophys. 1 Res. Lett.,32,L14826,doi:10.1029/2005GL022762.
    73. Li,Q.,et al. (2005b),North American pollution outflow and the trapping of convectively lifted pollution by upper-level anticyclone,J. Geophys. Res.,110,D10301,doi:10.1029/2004JD005039.
    74. Liu Yimin , Wu Guoxiong , Liu Hui et al . Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the eastern Hemisphere. Climate Dynamics , 2001 ,17 :327~338.
    75. Liu, C., E. Zipser, T. Garrett, J. H. Jiang, and H. Su (2007), How do the water vapor and carbon monoxide‘‘tape recorders’’start near the tropical tropopause?, Geophys. Res. Lett., 34, L09804, doi:10.1029/2006GL029234.
    76. Liu,C.,and E. J. Zipser (2005),Global distribution of convection penetrating the tropical tropopause,J. Geophys. Res.,110,D23104,doi:10.1029/ 2005JD006063.
    77. LiuYu,LiWeiliang,ZhouXiuji,etal. Mechanism of formation of the ozone valley over Tibetan Plateau in summer: transport and chemical process of ozone. Adv Atmos Sci,2003,20(1):103-109.
    78. Livesey,N. J.,et al. (2005),“Data Quality Document for the EOS MLS Version 1.5 Level 2 Data Set,”distributed with MLS data by the GES DAAC and available at longwave radiation dataset. Bull. Am. Meteorol. Soc.,77,1275-1277.
    79. Livesey,N. J.,et al. (2007),Validation of Aura microwave limb sounder O3 and CO observations in the upper troposphere and lower stratosphere,J. Geophys. Res.,doi:10.1029/2007JD008805.
    80. Livesey,N. J.,W. V. Snyder,W. G. Read,and P. A. Wagner (2006),Retrieval algorithms for the EOS Microwave Limb Sounder (MLS) instrument,IEEE Trans. Geosci. Remote Sens.,44(5),1144– 1155.
    81. Longinelli,A.,E. Selmo,2003: Isotopic composition of precipitation in Italy: a first overall map.– J. Hydrol.,270,75–88.
    82. Moody,J.,and J. Galloway (1988),Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda,Tellus,Ser. B,40,463– 479.
    83. Mote,P. W.,H. L. Clark,T. J. Dunkerton,R. S. Harwood,and H. C. Pumphrey (2000),Intraseasonal variations of water vapor in the tropical upper troposphere and tropopause region,J. Geophys. Res.,105,17,457-17,470.
    84. Nieto,R.,L. Gimeno,and R. Trigo (2006),A Lagrangian identification of major sources of Sahel moisture,Geophys. Res. Lett.,33,L18707,doi:10.1029/2006GL027232.
    85. Olivier,J.G.J.,J.J.M. Berdowski,J.A.H.W. Peters,J. Bakker,A.J.H. Visschedijk en J.-P.J. Bloos (2001) Applications of EDGAR. Including a description of EDGAR 3.0: reference database with trend data for 1970-1995. RIVM,Bilthoven.
    86. Oltmans .S. J, Hofmann D. J.(1995) , Increase in lower-stratospheric water vapor at a mid-latitude Northern Hemisphere site from 1981 to 1994, Nature 374, 146 - 149; doi:10.1038/374146a0
    87. Oltmans, S. J., H. V?mel, D. J. Hofmann, K. H. Rosenlof, and D. Kley (2000), The Increase in Stratospheric Water Vapor from Balloonborne, Frostpoint Hygrometer Measurements at Washington, D.C., and Boulder, Colorado, Geophys. Res. Lett., 27(21), 3453–3456.
    88. Pan,L.,B.Randel,et al.,Intergrated Study do Dynamics,Chemistry,Clouds and Radiation of the Upper Troposphere and Lower Stratosphere,NCAR UT/LS White Paper Draft,2003.
    89. Park,M.,Randel,W.J.,Emmons,L.K.,Bernath,P.F.,Walker,K.A.,and Boone,C.D.(2008): Chemical Isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data,Atmos. Chem. Phys. Discuss.,7,13839-13860.
    90. Park,M.,W. J. Randel,A. Gettelman,S. T. Massie,and J. H. Jiang (2007),Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers,J. Geophys. Res.,112,D16309,doi:10.1029/2006JD008294.
    91. Park,M.,W. J. Randel,D. E. Kinnison,R. R. Garcia,and W. Choi (2004),Seasonal variation of methane,water vapor,and nitrogen oxides near the tropopause: Satellite observations and model simulations,J. Geophys. Res.,109,D03302,doi:10.1029/2003JD003706.
    92. Poulida,O.,R. R. Dickerson,and A. Heymsfield (1996),Stratosphere troposphere exchange in a midlatitude mesoscale convective complex:1. Observations,J. Geophys. Res.,101,6823– 6836.
    93. Pumphrey,H.C.,M.J. Filipiak,N.J. Livesey,M.J. Schwartz,C. Boone,K.A. Walker,P. Bernath,P. Ricaud,B. Barret,C. Clerbaux,R.F. Jarnot,G.L. Manney,J.W. Waters,"Validation of middle-atmosphere carbon monoxide retrievals from MLS on Aura",vol 112,pgs. D24S38,2007
    94. Rande, W. J., F. Wu, A. Gettelman, J. M. Russell III, J. M. Zawodny, and S. J. Oltmans (2001), Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data, J. Geophys. Res., 106(D13), 14,313–14,325.
    95. Randel, W., et al., 2004. Interannual Changes of Stratospheric Water Vapor and Correlations with Tropical Tropopause Temperatures, J. Atmos. Sci., 61,2133--2148.
    96. Randel, W.J., F. Wu, S.J. Oltmans, K. Rosenlof, and G.E. Nedoluha, 2004: Interannual variability of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci., 61, 2133-2148.
    97. Randel,W. J.,and M. Park (2007),Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS),J. Geophys. Res.,111,D12314,doi:10.1029/2005JD006490.
    98. Reale,O.,L. Feudale,and B. Turato (2001),Evaporative moisture sources during a sequence of floods in the Mediterranean region,Geophys. Res. Lett.,28(10),2085– 2088.
    99. Reichler, T., M. Dameris, and R. Sausen, Determining the tropopause height from gridded data, Geophys. Res. Lett., 30(20), 2042, doi:10.1029/2003GL018240, 2003.
    100. Rosenlof, K. H., et al. (2001), Stratospheric Water Vapor Increases Over the Past Half-Century, Geophys. Res. Lett., 28(7), 1195–1198.
    101. Rosenlof, K.H., et al., 2001: Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett., 28, 1195-1198.
    102. Shepherd T G. Issues in stratosphere-troposphere oupling.J.Meteor.Soc.Japan,2002,80:769~792
    103. Sinha A, Harries J E, Water-vapour and greenhouse trapping - the role of far-infrared absorption. Geophysical Research Letters,.22, no.16, 2147-2150, 1995.
    104. Skamarock,W. C.,J. G. Powers,M. Barth,J. E. Dye,T. Matejka,D. Bartels,K. Baumann,J. Stith,D. D. Parrish,and G. Hubler (2000),Numerical simulations of the July Stratospheric-Tropospheric Experiment: Radiation,Aerosols,and Ozone/Deep Convection Experiment convec-tive system—Kinematics and transport,J. Geophys. Res.,105,19,973–19,990.
    105. Sodemann,H. (2006),Tropospheric Transport of Water Vapour: Eulerian and Lagrangian Perspectives,Diss. ETH 16623,Logos
    106. Sodemann,H.,C. Schwierz,and H. Wernli (2008),Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence,J. Geophys. Res.,113,D03107,doi:10.1029/2007JD008503.
    107. Spichtinger, N., M. Wenig, P. James, T. Wagner, U. Platt, and A. Stohl(2001), Satellite detection of a continental-scale plume of nitrogen oxides from boreal forest-fires, Geophys. Res. Lett., 28(24), 4579-4582.
    108. Sprenger,M.,and H. Wernli (2003),A Northern Hemispheric climatology of cross-tropopause exchange for the ERA15 time period (1979– 1993),J. Geophys. Res.,108(D12),8521,doi:10.1029/ 2002JD002636.
    109. Stohl A,Bonasoni P,Cristofanelli P,et al. Stratosphere-troposphere exchange:A review,and what we have learned form TACCATO. J. Geophys. Res. ,2003, 108(D12): 8516, doi:10.1029/2002JD002490
    110. Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa (2005): Technical Note : The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 5, 2461-2474.
    111. Stohl,A.,and D. J. Thomson(1999),A density correction for Lagrangian particle dispersion models,Boundary Layer Meteorol.,90,155– 167.
    112. Stohl,A.,and P. James (2004),A Lagrangian analysis of the atmospheric branch of the global water cycle: 1. Method description,validation,and demonstration for the August 2002 flooding in Central Europe,J. Hydrometeorol.,5,656– 678.
    113. Stohl,A.,and P. James (2005),A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between Earth’s ocean basins and river catchments,J. Hydrometeorol.,6(12),961–984.
    114. Stohl,A.,et al. (2003),Stratosphere-troposphere exchange: A review,and what we have learned from STACCATO,J. Geophys. Res.,108(D12),8516,doi:10.1029/2002JD002490.
    115. Stohl,A.,M. Hittenberger,and G. Wotawa (1998),Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data,Atmos. Environ.,32,4245– 4264.
    116. Trenberth,K. E.,and C. J. Guillemot (1998),Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses,Clim. Dyn.,14,213– 231.
    117. Trenberth,K. E.,and D. P. Stepaniak (2003),Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales,J. Clim.,16,3706– 3722.
    118. Van Aardenne,J.A.,F.D. Dentener,J.G.J. Olivier,J.A.H.W. Peters and L.N. Ganzeveld (2005). The EDGAR 3.2 Fast Track 2000 dataset (32FT2000).http://www.mnp.nl/edgar/model/v32ft2000edgar/
    119. Vogelezang, D. H. P. and Holtslag, A. A. M.: Evaluation and model impacts of alternative boundary-layer height formulations, Bound.-Layer Met., 81, 245–269, 1996
    120. W. J., F. Wu, A. Gettelman, J. M. Russell III, J. M. Zawodny, and S. J. Oltmans (2001), Seasonal variation of water vapor in the lower stratosphere observed in Halogen Occultation Experiment data, J. Geophys. Res., 106(D13), 14,313–14,325.
    121. Wang J X, Deeter M N, Gille J C, et al. Retrieval of tropospheric carbon monoxide profiles from MOPITT: Algorithm description and retrieval simulation. J Geophys Res, 1999, 56: 219—232
    122. Wang, B., and Z. Fan, 1999: Choice of South Asian Summer Monsoon Indices. Bull. Amer. Meteor. Soc., 80, 629–638.
    123. Wang,P. K. (2003),Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes,J. Geophys. Res.,108(D6),4194,doi:10.1029/2002JD002581.
    124. Waters,J. W. (2006), The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite,IEEE Trans. Geosci. Remote Sens.,44(5),1106– 1121.
    125. Wei,M.-Y.,1987: A new formulation of the exchange of mass and trace constituents between the stratosphere and Troposphere. J. Atmos. Sci.,44,3079-3086.
    126. Werner,M.,M. Heimann,and G. Hoffman (2001),Isotopic composition and origin of polar precipitation in present and glacial climate simulations,Tellus,Ser. B,53,53– 71.
    127. Wernli,H. (1997),A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study,Q. J. R. Meteorol. Soc.,123,1677– 1706.
    128. Wernli,H.,S. Dirren,M. A. Liniger,and M. Zillig (2002),Dynamical aspects of the life cycle of the winter storm‘Lothar,’,Q. J. R. Meteorol. Soc.,128(580),405– 429.
    129. Wernli.H and Bourqui1.M A Lagrangian‘1-year climatology’of (deep) cross-tropopause exchange in the extratropical Northern Hemisphere ,JGR,vol.107,no. D2,4021,10.1029/2001JD000812,2002
    130. Wirth,V. and J. Egger,1999: Diagnosing extratropical synoptic-scale stratosphere-troposphere exchange: A case study. Q.J.R. Meteorol. Soc.,125,635-655.
    131. Wirth,V.,Comments on‘A new formulation of the exchange of mass and trace constituents between the stratosphere and troposphere’,J. Atmos. Sci.,52,2491– 2493,1995.
    132. WMO, 1995:‘Scientific assessment of ozone depletion: 1994’. Global ozone research and monitoring project, Report No. 37 World Meteorological Organization, Geneva, Switzerland.
    133. Xu Xiangde,Miao Qiuju,Wang Jizhi,et al. The water vapor transport model at the regional boundary during meiyu period.Advances in Atmospheric Sciences. 2003,20(3): 333~342.
    134. Yasunari,T. (1981),Structure of an Indian summer monsoon system with a period around 40 days,J. Meteor. Soc. Japan,59,336–354.
    135. Zeng,X.,M. A. Brunke,M. Zhou,C. Fairall,and N. A. Bond (2004),Marine atmospheric boundary layer height over the eastern Pacific: Data analysis and model evaluation,J.Clim.,17,4159– 4170.
    136. Zou Han , Gao Yongqi. Vertical ozone profile over Tibet using SA GEⅠandⅡdata (J ) , Adv. Atmos. Sci. ,1997 ,14 (4) :5052512.
    137.柏晶瑜,徐祥德,刘瑞云.对晴空TBB资料的变分订正在青藏高原地温研究中的应用.计算物理2001 18(04), 991-1.
    138.卞建春,李维亮,周秀骥.青藏高原及其邻近地区流场结构季节性变化的特征分析.见:周秀骥主编.中国地区大气臭氧变化及其对气候环境的影响(二) .北京:气象出版社,1997. 257~273
    139.陈洪滨,卞建春,吕达仁.上对流层下平流层交换过程研究的进展与展望,大气科学,2006,130(15),813~820.Vol130,No15
    140.丛春华,李维亮,周秀骥.青藏高原及其邻近地区上空平流层—对流层之间大气的质量交换.科学通报,2001 ,46 (22) : 1914~1918
    141.樊雯璇,王卫国,卞建春等.青藏高原及其邻近区域穿越对流层顶质量通量的时空演变特征,大气科学,2008,32(6):1309-1318.
    142.付超李维亮.夏季青藏高原上空臭氧总量低值区形成的模拟实验(A).周秀骥.中国地区大气臭氧及其对气候环流的影响Ⅱ(C).北京:气象出版社,1997.274-284.
    143.付超李维亮.夏季青藏高原上空臭氧总量低值区形成的模拟实验(A).周秀骥.中国地区大气臭氧及其对气候环流的影响Ⅱ.北京:气象出版社, 1997,274-284.
    144.郭冬,吕达人,孙照渤.全球平流层、对流层质量交换的季节变化特征.自然科学进展, 2007, 17(10): 1391—1400
    145.黄荣辉、李维京,夏季热带西太平洋上空的热源异常对东亚上空副热带高压的影响及其物理机制,大气科学,1988 ,特刊, 95~107.
    146.李维亮,于胜民.青藏高原地区气溶胶的时空分布特征及其辐射强迫和气候效应的数值模拟.中国科学(D辑), 2001,31(增刊):300-307.
    147.李维亮,于胜民.青藏高原地区气溶胶的时空分布特征及其辐射强迫和气候效应的数值模拟.中国科学(D辑),2001,31(增刊):300-307.
    148.刘屹岷,吴国雄,刘辉等.空间非均匀加热对副热带高压形成和变异的影响Ⅲ:凝结潜热加热与南亚高压及西太平洋副高.气象学报,1999 , 57 (5) : 525~538
    149.刘煜,李维亮,周秀骥.青藏高原臭氧变化趋势的预测.中国科学(D辑),2001b,31(增刊):308-311.
    150.吕达仁,陈泽宇,卞建春,等.平流层2对流层相互作用的多尺度过程特征及其与天气气候关系———研究进展.大气科学, 2008 , 32 (4) : 782~793
    151.苏东玉,李跃清,蒋兴文,南亚高压的研究进展及展望,干旱气象,24(3),68-74,2006。
    152.吴国雄,刘新,张琼等.青藏高原抬升加热气候效应研究的新进展.气候与环境研究, 2002,7 (2) : 184~201
    153.吴国雄,刘屹岷,刘平.空间非均匀加热对副热带高压形成和变异的影响Ⅰ:尺度分析.气象学报,1999 , 57(3) : 257~263.
    154.吴国雄;毛江玉;段安民等,青藏高原影响亚洲夏季气候研究的最新进展,2004,62(5),528-539.
    155.徐祥德,陈联寿;王秀荣等.长江流域梅雨带水汽输送源-汇结构.科学通报, 2003, 48(21), 2288~2294.
    156.徐祥德,周明煜,陈家宜,等.青藏高原地-气过程动力、热力结构综合物理图象.中国科学D辑:地球科学, 2001, 31(5): 428—440
    157.杨健,吕达仁. 2000年北半球平流层、对流层质量交换的季节变化.大气科学,2004 ,28 (2) : 294~300.
    158.杨健,吕达仁.平流层-对流层交换研究的进展.地球科学进展,2003,18 (3):380~385
    159.杨伟愚,叶笃正,吴国雄,夏季青藏高原热力场和环流场的诊断分析I.盛夏高原西部地区的水汽状况,大气科学,1992, 16(1):41-51
    160.叶笃正,高由禧.青藏高原气象学.北京:科学出版社,1979.
    161.叶笃正、高由禧、陈乾,青藏高原和它周围上空大气环流的若干特征,大气科学, 1977 , 1 , 289~299.
    162.占瑞芬,李建平.青藏高原地区大气红外探测器(AIRS)资料质量检验及揭示的上对流层水汽特征.大气科学, 2008, 32(2),242~259.
    163.占瑞芬,李建平.青藏高原和热带西北太平洋大气热源在亚洲地区夏季平流层-对流层水汽交换的年代际变化中的作用,2008 ,38 (8): 1028 ~ 1040.
    164.周任君陈月娟,青藏高原和伊朗高原上空臭氧变化特征及其与南亚高压的关系,中国科学技术大学学报,2005,35(6),899-908.
    165.周秀骥史久恩.中国地区臭氧总量变化与青藏高原低值中心(J).科学通报,1995,40(15):1396-1398.
    166.邹捍,郜永祺,周立波(1998).大尺度山地上空的臭氧低值和地面加热(J).气候与环境研究,3(3):209-217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700