用户名: 密码: 验证码:
陕西关中强暴雨中尺度对流系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暴雨一直是业务天气预报服务重点,更是预报难点,在陕西汛期日常预报中暴雨预报就有失败或不理想的状况,因为受特定地理环境影响,陕西暴雨具有历时短、强度大、局地性和突发性强的特征,大气环流表现为不同的形势。所以,要做好陕西的暴雨预报,不仅要研究其普遍性,还要研究其特殊性,加强预报的针对性和预见性,有助于做好防灾减灾等预报服务。
     2007年8月8—9日陕西关中暴雨天气过程历时短、强度大、突发性强为历史罕见,暴雨发生前影响系统不明显,关中处于中纬度高压坝控制之中,南部没有急流存在,没有明显的水汽和能量输送,给暴雨的预报带来极大的困难,加之对该类暴雨研究极少,预报员很难找到暴雨预报的着眼点,从而使暴雨的预报出现了较大的误差。为了揭示该类暴雨的发生发展规律,提高该类暴雨的预报准确率,本文以此暴雨个例做为研究对象。在过去研究和实际业务天气预报中发现,研究中NCEP资料等虽然有较好的预报能力,但在时效和获取方面有时存在问题,难于在实际中及时应用,影响研究的应用效果,T213资料对陕西暴雨是有一定的预报能力,产品及时有效,在实时业务天气预报中使用方便。所以,本文综合利用T213(0.5625°×0.5625°)资料和近年来高时空分辨率观测资料(包括地面区域逐时加密观测资料、分钟降水资料、FY—2C卫星、多普勒雷达资料以及分钟地闪等资料),通过天气学分析、动力和热力诊断、数值模拟等方法,对上述个例进行了细致的分析研究,总结了该类强暴雨发生发展的有利环境背景,分析了其形成的可能原因,揭示了强暴雨中小尺度对流系统的发生发展规律、三维结构,特别是暴雨过程中三个大暴雨中心的MβCS(MγCS)的细微结构特征,为该类强暴雨的短时临近预报预警提供思路和预报着眼点。主要结论有:
     1、“07.8”关中强暴雨是在高中低空有利的环流配置下,不同纬度天气系统共同作用的结果,对流层中层青藏高原高压和西太平洋副热带高压形成的高压坝在陕西中部断裂对暴雨的形成至关重要,它与低层东西向切变线和高层西风急流入口区右侧发散场的相互配合为强暴雨的形成提供了有利的大尺度环流背景。
     2、关中周围水汽的集中为暴雨形成提供了水汽和位势不稳定条件,水汽的聚集是通过偏东气流的输送实现的,而水汽的快速变化形成关中暴雨的突发性和历时短而强的特征;强降水的发生和减弱与水汽的局地变化、水汽平流和近地层水汽的增加和减少密切关联。高空反气旋涡度的发展形成强烈的“抽吸作用”和次级环流圈是暴雨形成的动力机制。
     3、关中强暴雨过程的东西向雨带与秦岭山脉和关中地区喇叭口地形有关,雨带上的降水非均匀分布,强暴雨集中在岐山、礼泉和高陵三个中心,它们是由一个MαCS的发生发展产生的,MαCS又是由2个MβCS合并发展而成,其内部对流单体的发展合并和独立加强形成不同的降水中心,这些对流单体的发展是由地面中尺度辐合系统产生的,强降水落区与地面中尺度辐合系统有很好的对应关系。
     4、地闪的发生和急剧增加对暴雨发生和发展加强有很好指示意义,初闪的发生提前于强降水发生,地闪急剧增加与降水强度猛增密切关联,负地闪发生密集区是未来强降水发生区。
     5、非静力中尺度WRF模式能成功地模拟出关中地区的突发性强暴雨过程。模拟结果表明,此次强暴雨与一个中α尺度低涡的生成密切相关,其内部强烈发展的中β(或中γ)尺度对流系统直接产生了岐山、礼泉、高陵强暴雨中心的对流降水。产生这3个强暴雨中心的MβCS有不同的流场、动力、热力垂直结构。在日常天气预报中,把握这些结构特征,为预报提供参考。
     垂直结构上,中低层不同的方向和不同层次的气流流入中β尺度降水云塔,在不同高度上形成了不同的垂直环流支,云塔中的上升气流一直伸展到200 hPa(或150 hPa)后向东南、东北流出。
     动力、热力垂直结构上,歧山暴雨中心450 hPa以上为强辐散,450 hPa以下暴雨中心南、北两侧结构相反,南侧为弱辐散、辐合,北侧为辐合、弱辐散。垂直上升运动先向南、后向北倾斜、再直至对流层顶;涡度柱与相当位温的双高能、双重不稳定层结柱和中层两个暖心、上下冷心的温度柱互相耦合。礼泉和高陵暴雨中心:整层强上升运动柱与强散度柱和正涡度柱耦合;礼泉上升运动柱是一个高、低层冷而中上层强暖心的近饱和水汽柱,具有典型“鞍”型场的不稳定层结结构;高陵暴雨中心南缘550 hPa以下是强能量和温度离差锋区,其上空400 hPa以下为近饱和的水汽柱。
     根据上述研究结果,可以得出关中该类强暴雨短时临近预报预警的着眼点:1)500hPa上空,中纬度地区为青藏高原高压和副热带高压形成的高压坝控制时,高压坝能否断裂形成切变线是暴雨预报的关键;高空南亚高压东北侧发散流场的形成对暴雨的发生有指示意义。2)水汽的局地变化、水汽平流和近地层水汽的增加和减少对该类暴雨的发生发展和减弱消亡有较好的指示意义。3)根据初闪发生的时间、负地闪发生密集区和地闪的急剧增加可估计未来强降水可能发生的时间、地点和强度。4)将卫星、地闪和雷达资料以及NWP与引导气流和地面中尺度系统等结合起来,分析推断未来MCS的发展演变,可以提前短时临近预报预警的时效。
     今后还应当不断地对产生陕西暴雨的特殊个例进行分析研究,使预报人员对暴雨发生发展的规律有更多的认识,从而提高暴雨预报的准确率。
The rainstorm has been the key to operational weather forecast service,which is still difficult to forecast.And rainstorm predicetion of Shaanxi is failing or dissatisfactory.Due to the influence of specific geographical environment,rainstorms of Shaanxi usually happen in small area,and the atmospheric circulation may also present different situation.Therefore,we must study the particularity besides the universality,in order to improve the rainstorm prediction.
     A process of the heavy rainstorm on 8-9 August 2007 in the Central Shaanxi Plain,with characterictics a short time,heavy rainfall and abrupt occurrence,is rare for the history.Its prediction is very difficult owing to disadvantageous large-scale environment background. In order to research the law of occurrence and development of this kind rainstorm,to enhances the rainstorm forecast the rate of accuracy,this article take this example as the object of study.Founded in the past research and operational weather forecast,although the NCEP data and so on has good ability for rainstorm forecast,but there is still some problem in obtaining the data.While the T213 data has certain forecast ability to the rainstorm,which is easy to operate in real-time operational weather forecast,and its product has been prompt effective.Therefore,the T213(0.5625×0.5625) data and the observed data with high space and time resolution in recent years(including denser surface data for 1-hour interval,automatic meteorological observing stations precipitation data for 1-minute interval, FY-2C satellite data,Doppler radar data as well as lightning position observation for 1-minute interval and so on),have been used in this research.Through the synoptic meteorology analysis,dynamic and thermodynamic diagnosis as well as numerical simulation,a process of the heavy rainstorm in a short time on 8-9 August 2007 in the Central Shaanxi Plain was analyzed in detail.We have found the favorable large-scale environment background and the possible reason for formation of the strong rainstorm.Evolution and the three-dimensional structure of MCS,especially the slight structural feature of three cloud burst centers M[JCS(M_γCS) in the rainstorm process were revealed.The findings may provide the scientific basis and the forecast objective point for short-term weather forecast. The main conclusion includes:
     1.The "07.8" strong rainstorm in the Central Shaanxi Plain was the result of interaction among the different weather system,under a favorable large-scale circulation disposition.In the middle level,the break of high-pressured dam which was resulted from the development merge of Qinghai-Tibet Plain high pressure and west the Pacific Ocean subtropical high in the middle Shaanxi is very important.The mutual coordination of the high-pressured dam's break in the middle level,right flank divergence's formation of westerly jet entrance region in the upper level and the shear line's development in the low level had provided the advantageous large-scale environment background for the strong rainstorm formation.
     2.The vapor accumulation from around the Central Shaanxi Plain had provided sufficient water vapor and potential instability for occurrence of the heavy rainfall.And the vapor accumulation was achieved through the easterly current.The water vapor increased so fast that rainstorm happened suddenly,and the rapid-decreasing of water vapor made the rainfall last short.The occurrence and weakening of the strong precipitation had close relationship with the local change of water vapor,water vapor advection and the change of vapor in surface layer.The formation of intense "pavement pumping" effect and the secondary circulation circle owing to the development of the upper anticyclone vorticity were the dynamic mechanism of rainstorm formation.
     3.In this event,the zonal distribution from west to east of the rainfall is related with the Qin ling mountain and trumpet-shaped terrain in the Central Shaanxi Plain.And the rainfall was not distributed uniformly in the space,which was mostly centered in the areas of the Qishan,Liquan and Gaoling.It was resulted from the occurrence and development of MαCS, which was also formed by the mergence and development of 2 MβCS.The convective cells merged and developed,and enhanced individually to form the different precipitation centers. The development of the convective cells was resulted from the surface mesoscale convergence system,and the precipitation areas had a good corresponding relationship with the surface mesoscale convergence system.
     4.The occurrence and sharp growth of the ground lightning has very good indicative significance to the development and strengthens of the rainstorm.The occurrence of the first flash occurs ahead of the strong precipitation happening.The sharp increase of ground lightning has close connection with the sudden increase of the precipitation intensity.And the concentrated regions of the negative ground lightning may indicate the area where strong precipitation happen.
     5.The simulation using the Weather Research and Forecasting(WRF) model were successful in reproducing the strong rainfall in the Central Shaanxi Plain.The simulation result indicated that,the strong rainfall was related to occurrence of a mesoscale-αvortex,in which the rapid developing MβCS(M_γCS) formed the three strong rainstorm centers.MβCS had different stream field,vertical dynamical and thermal structure.In the daily weather forecast,the numerical forecasting product(NWP) can be used as a forecast reference,by which we may analyze the mesoscale structural feature under the large-scale circulation background.
     The vertical structure of the stream field:there were different current in different levels in the troposphere that flowed into the ascendant current of theβ-scale precipitation cloud tower,forming different vertical circulations in different levels.And the ascendant current had extend to 200 hPa(or 150 hPa),and flowed out to the southeast and northeast above the level.
     The vertical dynamical and thermal structure:in Qishan,there was a strong divergence center above 450 hPa,while below 450 hPa the structure over the rainstorm center is opposite from north side and the south.There was weak divergence or convergence on the south side, and convergence or divergence on the north side;The vertical ascent movement inclined to the south,then to the north,and finally to the tropopause;The vorticity column was mutually coupled with double energy center of the potential equivalent temperature,dual unstable stratification columns and two warm centers in middle level,and temperature column with high-low cold center;In the other two precipitation centers,Liquan and Gaoling:the entire column of ascent movement was coupled with thestrong divergence column,as well as the positive vorticity column;In Liquan,the ascent movement column was a saturated vapor column with one strong warm center in the mid-high levels while cold in the high and low levels,which has the unstable stratification structure as "the saddle" field.In Gaoling:there is the strong energy center and frontal zone of temperature deviation below 550 hPa,and below 400 hPa there was a saturated water vapor column.
     According to the research results above,we may obtain some vantage points for the short-term forecast of this kind of strong rainstorm:when 1) above 500 hPa in the troposphere, when the middle latitude region was controlled by a high-pressure dam,which was formed by the connection between Tibetan Plateau High and the subtropical high,whether does the high-pressure dam break to form the shear line is the key to the rainstorm forecast;the formation of divergence stream field in the northeast of the upper South Asia High has a indicative significance to the occurrence of rainstorm.2) the local change of water vapor, water vapor advection and the change of water vapor in surface layer have a indicative significance to the occurrence and development of the rainstorm,as well as its weakening and extinction.3) according to the time that first fresh occurred,the concentrated regions of the negative ground lightning and the sharp increase of ground lightning,we may predict the occurrence,location and intensity of the strong precipitation in the future.4) comprehensive analysis of the satellite data,radar data and NWP,as well as the steering current and the ground mesoscale system and so on,we may predict the development evolution of MCS and have more time to make short-term forecast of this kind of rainstorm to avoid disaster.
     Must to investigate a lot of special example of Shaanxi rainstorm and understand law of occurrence and development of heavy rainfall unceasingly in the future,we are able to enhances the rainstorm forecast the rate of accuracy.
引文
北京大学地球物理系气象专业.1976.一次黄河气旋特大暴雨过程分析.大气科学,(1):5-15
    贝耐芳,赵思雄.2002.1998年“二度梅”期间突发强暴雨系统的中尺度分析.大气科学,26(4):526-540
    贝耐芳,赵思雄.2005.一次引发台湾地区强降水的锋面及中尺度系统分析研究.气候与环境研究,10(3):474-491
    毕宝贵.2004.中尺度地形对陕南暴雨的影响研究.南京气象学院博士学位论文,122-175
    毕宝贵,鲍媛媛,李泽椿.2006.“02.6”陕南大暴雨的结构及成因分析.高原气象,25(1):34-44
    毕宝贵,刘月巍,李泽椿.2004.2002年6月8—9日陕南大暴雨系统的中尺度分析.大气科学,128(15):747-761
    毕宝贵,刘月巍,李泽椿.2005.地表热通量对陕南强降水的影响.地理研究,24(5):681-691
    毕宝贵,刘月巍,李泽椿.2006.秦岭大巴山地形对陕南强降水的影响研究.高原气象,25(3):485-494
    毕宝贵,刘月魏,李泽椿.2005.2002年6月8—9日陕南大暴雨数值模拟研究.大气科学,25(9):814-826
    毕旭,张弘,刘慧敏,等.2007.陕西北部一次暴雨过程的中尺度对流系统分析.陕西气象,(2):13-15
    毕研盟,毛节泰,李成才,等.2006.利用GPS的倾斜路径观测暴雨过程中的水汽空间分布.大气科学,30(6):1169-1176
    蔡晓云,焦热光,卞素芬,等.2001.多普勒速度图暴雨判据和短时预报工具研究.气象,27(7):13-15
    蔡晓云,宛霞,郭虎.2001.北京地区闪电定位资料的应用分析.气象科技,29(4):33-38
    巢纪平.1952.对流发展局部气象条件的初步理论分析.气象学报,32(1):87-90
    巢纪平.1962.小尺度对流的发展和环境简相互作用的一个近似分析.气象学报,32(1):11-18
    曹云昌,方宗义,李成才,等.2005.利用GPS和云图资料监测北京地区中小尺度降水的研究.高原气象,24(1):91-96
    曹云昌,方宗义,夏青.2005.GPS观测的大气可降水量与局地降水关系的初步分析.应用气象学报,16(1):54-59.
    曹治强,李万彪.2005.两个中尺度对流系统的降水结构和闪电特征.气象学报,63(2): 243-249
    楚艳丽,郭英华,张朝林,等.2007.地基GPS水汽资料在北京“7·10”暴雨过程研究中的应用.气象,3(12):16-22
    崔春光.闽爱荣,胡伯威.2002.中尺度地形对“98·7”鄂东特大暴雨的动力作用.气象学报,60(5):602-612
    陈柏纬,李卓民,黄锦鸿.2008.多普勒天气雷达谱宽数据监测机场湍流强度的可行性初探.暴雨灾害,27(1):54-58
    陈汉耀.1957.1954年长江淮河流域洪水时期的环流特征.气象学报,28(1):1-12
    陈红,赵思雄.2000.第一次全球大气研究计划试验期间华南前汛期暴雨过程及其环流特征的诊断研究.大气科学,24(2):238-254
    陈红,赵思雄.2004.海峡两岸及邻近地区暴雨试验(HUAMEX)期间暴雨过程及环流特征研究.大气科学,28(1):32-47
    陈静,矫梅燕,李川.2003.青藏高原东侧一次β中尺度对流系统的数值模拟.高原气象,22(suppl):90-101
    陈菊英,王玉红,王文.2001.1998及1999年乌山阻高突变对长江中下游大暴雨过程的影响.高原气象,20(4):388-394
    陈力强,陈受钧.2005.东北冷涡诱发的一次MCS结构特征数值模拟.气象学报,63(2):173-183
    陈敏,郑永光,王洪庆,等.2005.一次强降水过程的中尺度对流系统模拟研究.气象学报,63(3):313-324
    陈乾.1989.夏季中国副热带湿区中尺度α类对流云团的统计特征.高原气象,8(3):252-260
    陈少应,王凡.2000.风廓线雷达测量精度分析.现代雷达,10(5):11-17
    程麟生,郭英华等,1993.中国暴雨中尺度系统发生与发展的诊断分析与数值模拟(Ⅰ)诊断分析.应用气象学报,4(3):257-268
    程麟生,郭英华等.1993.中国暴雨中尺度系统发生与发展的诊断分析与数值模拟(Ⅱ)诊断分析,应用气象学报,4(3):269-277
    丁金才,叶其欣.2003.长江三角洲地区近实时GPS气象网.气象,29(2):26-29
    丁伟钰,陈子通.2004.利用TRMM资料分析2002年登陆广东的热带气旋降水分布特征.应用气象学报,5(4):436-444
    丁一汇.1989.天气动力学中的诊断分析和方法.北京:科学出版社,174-177
    丁一汇.1993.1991年江淮流域持续性特大暴雨研究.北京:气象出版社,255-270
    丁一汇.1996.中尺度天气和动力学研究.北京:气象出版社,127-137
    丁一汇.2005.高等天气学.北京:气象出版社,309-321
    丁一汇,蔡则怡,李吉顺.1978.1975年8月上旬河南特大暴雨的研究.大气科学,2(4):276-289
    丁一汇,李吉顺,孙淑清,等.1980.影响华北夏季暴雨的几类天气尺度系统分析.中国科学院大气物理研究所集刊(第9号),暴雨及强对流天气的研究.北京:科学出版社,1-13
    杜秉玉.1979.湘中地区4—6月对流性暴雨的雷达回波特征.南京气象学院学报,2(1):61-67
    杜秉玉.1985.梅雨期暴雨的雷达回披特征.南京气象学院学报,8(3):306-315
    杜秉玉,夏家虎.1983.梅雨期暴雨中强雷达回波的中尺度组织化.南京气象学院学报,6(2):222-229
    杜继稳,等.2005.青藏高原东北侧突发性暴雨分析研究与应用.北京:气象出版社,1-235
    杜继稳,等.2007.陕西短期天气预报技术手册.北京:气象出版社,65-181
    杜继稳,张弘,孙伟,等.2005.关于突发性研究暴雨的初步研究,青藏高原东北侧突发性暴雨分析研究与应用.北京:气象出版社,1-7
    段旭,张秀年,许美玲.2004.云南及其周边地区中尺度对流系统时空分布特征.气象学报,26(2):243-249
    冯伍虎,程麟生,程明虎.2001.“96·8”特大暴雨和中尺度系统发展结构的非静力数值模拟.气象学报,59(3):294-307
    冯桂力,郄秀书,周筠君.2006.一次中尺度对流系统的闪电演变特征.高原气象,25(2):220-228
    方翔,许健民,张其松.2000.高密度云导风资料所揭示的发展和不发展热带气旋的对流层上部环流特征.热带气象学报,16(3):218-224
    方宗义.1982.台风发生发展过程中的云型特征与高空环境流场的关系.大气科学,6(3):274-282
    方宗义.1986.夏季长江流域中尺度云团的研究.大气科学进展,2(3):334-340
    方宗义,许健民,赵凤生.2004.中国气象卫星和卫星气象研究的回顾和发展.气象学报,62(5):550-560
    方宗义,覃丹宇.2006.暴雨云团的卫星监测和研究进展.应用气象学报,17(5):583-593
    方宗义,项续康,方翔,等.2005.2003年7月3日梅雨锋切变线上的β-中尺度暴雨云团分析.应用气象学报,16(5):569-575
    方宗义,周连翔.1980.用地球同步气象卫星红外云图估计热带气旋的强度.气象学报,38(2):150—159
    高坤,黄安丽.1984.低空急流暴雨系统的湿斜压诊断分析.杭州大学学报,11(3):369-380
    高由禧.1952.1946年长江流域梅雨.气象学报,23(1、2):61-84
    葛正谟,郭昌明,言穆弘.1995.灾害性天气中的地闪特征.高原气象,14(1):39-45
    顾雷,陈露,陶祖钰等.1998.影响首都机场的一次雷暴过程的红外云图和闪电分析.高原气象,17(2):198-203
    顾映欣,陶祖钰.1993.1989—1990年UHF风廓线雷达资料的分析和应用.中尺度气象文集.北京:气象出版社,194-201
    古志明,冯瑞权,吴池胜,等.2000.一次华南暴雨过程的数值模拟及结果分析.热带气象学报,16(2):173-179
    郭林,陈礼斌,施碧霞,等.2003.闽南地区短时区域暴雨的天气及多普勒雷达资料概念模型.气象,29(5):41-45
    何立富,陈涛,李泽椿.2006.2004年北京“7.10”暴雨中β尺度对流系统分析.气象与减灾研究,29(1):7-16
    侯建忠.1997.台风与陕西区域性暴雨的关系与环流特征.陕西气象.(2):10-13
    侯建忠,王川,鲁渊平,等.2006.台风活动与陕西极端暴雨的相关特征分析.热带气象学报,22(2):203-208
    侯建忠,张弘,杜继稳,等.2006.台风与高原东北侧冷锋暴雨的环境场及云图特征.气象科技,34(1):41-46
    侯青,许健民.2006.卫星导风所揭示的对流层上部环流形势与我国夏季主要雨带之间的关系.应用气象学报,17(2):138-144
    胡伯威,彭广.1996.暖切变型江淮梅雨锋结构及其形成和维持机制.大气科学,20(4):463-472
    胡国权,丁一汇.2003.1991年江淮暴雨时期的能量和水汽循环研究.气象学报,61(2):146-163
    胡宏达,尤晓敏,陈丽芳.1997.北上热带气旋对东北地区暴雨洪水的影响分析.东北水利水电,14(1):1-25
    胡亮,何金海,高守亭.2007.华南持续性暴雨的大尺度降水条件分析.南京气象学院学报,30(3):345-351
    黄士松,李真光,包澄澜,等.1986.华南前汛期暴雨.广州:广东科技出版社,58-63
    黄士松,林元弼,韦统健,等.1976.江淮气旋发生发展和暴雨过程及有关预报问题的研究.(1):27-41
    黄永明,倪允琪.2005.长江中下游一次非典型梅雨锋中尺度暴雨过程的分析研究.气象学报,63(1):100-114
    矫梅燕,毕宝贵,鲍媛媛,等.2006.2003年7月3—4日淮河流域大暴雨结构和维持机制分析.大气科学,30(3):474-490
    蒋尚城.1983.远距离台风影响西风带特大暴雨的过程模式.气象学报,41(2):147-158
    蒋尚城,戴志远.1998.卫星观测的西太平洋副热带高压的气候学特征.科学通报, 34(19):1492-1493
    蒋尚城,林楠.1988.85年9号台风暴雨辽宁特大暴雨的卫星云图分析.北京大学学报,24(3):351-362
    蒋尚城,张镡,周鸣盛,等.1981.登陆北上减弱的台风所导致的暴雨—半热带系统暴雨.气象学报,(1):243-249
    江吉喜.1986.增强显示红外卫星云图在热带气旋分析中的应用.气象学报,44(4):482-487
    江吉喜等:“96.8”河北特大暴雨成因的中尺度分析
    江吉喜,陈美珍.1992.OLR资料在华南前汛期特大暴雨过程分析和预报中的应用.热带气象,8(1):93-96
    江吉喜,范梅珠.2002.夏季青藏高原上的对流云和中尺度对流系统,大气科学,26(2):263-270
    江吉喜,叶惠明,陈美珍.1990.华南地区中尺度对流性云团.应用气象学报,1(3):233-241
    江晓燕,倪允琪.2005.一次梅雨锋暴雨过程的β中尺度对流系统发展机理的数值研究.气象学报,63(1):77-92
    井喜,薛凤英,艾丽华等.2005.2004年6月29日西安市突发性暴雨成因分析.陕西气象,(4):9-12
    李晨光,刘淑媛,陶祖钰.2003.华南暴雨试验期间香港风廓线雷达资料的评估.热带气象学报,19(3):269-276
    李成才,毛节泰,李建国,等.1999.全球定位系统遥感水汽总量.科学通报,9(4):333-336
    李建辉.1982.华南初夏的超低空急流及其对暴雨的影响.气象学报,40(3):319-326
    李麦村.1978.重力波对特大暴雨的触发作用.大气科学,2(3):201-209
    李青春,张朝林,楚艳丽,等.2007.GPS遥感大气可降水量在暴雨天气过程分析中的应用.气象,33(6):51-58
    李社宏,胡淑兰,王式功.2006.西北东部一次暴雨天气过程的数值模拟研究.兰州大学学报,42(6):33-38
    李廷福,廖晓农,俞连芬.1999.“98·67”北京大暴雨的中尺度分析.气象,25(4):44-48
    李玉兰,陶诗言,杜长萱.1993.梅雨锋上中尺度对流云团的分析.应用气象学报,4(3):270-278
    李玉兰,王婧熔,郑新江,等.1989.我国西南—华南地区中尺度对流复合体(MCC)的研究.大气科学,13(4):417-422
    李泽椿,陈德辉.2002.国家气象中心集合数值预报业务系统的发展及应用.应用气象学报,13(1):1-15
    李泽椿,郭进修,董立清.1998.天气预报在1998年夏抗洪防灾中的作用—暴雨成灾引起的气象科学问题的思考.气候与环境研究,3(4):335-338
    李真光,梁必骐,包澄澜.1981.华南前汛期暴雨的成因与预报问题.华南前汛期暴雨文集.北京:气象出版社,1-8
    廖捷,谈哲敏.2005.一次梅雨锋特大暴雨过程的数值模拟研究:不同尺度天气系统的影响作用.气象学报,63(5):771-789
    练江帆,梁必骐.1999.“9416”与“9417”华南致洪暴雨的对比分析.中山大学学报,38(4):102-106
    梁丰,李成才,王迎春,等.2003.应用区域地基全球定位系统观测分析北京地区大气总水汽量.大气科学,27(2):236-244
    梁生俊,宁志谦,左爱文,等.2002.青藏高原东侧大暴雨数值分析及截断水汽场数值试验.陕西气象,(4):1-3
    柳林,张国胜.1999.鲁西北中尺度对流复合体环境场特征.气象,26(11):40-44
    柳艳菊,丁一汇,赵南.2005.1998年南海季风爆发时期中尺度对流系统的研究Ⅱ中尺度对流系统发生发展的大尺度条件.气象学报,63(4):431-442
    刘盎然,郭大敏,辛宝恒,等.1979.关于“75.7”华北暴雨的水汽问题.气象学报,37(2):80-82
    刘健文,郭虎,李耀东,等.2005.天气分析预报物理量计算基础.北京:气象出版社,64-69
    刘黎平.2003.用双多普勒雷达反演降水系统三维风场试验研究.应用气象学报,14(4):502-504
    刘淑媛,孙健,陶祖钰.2003.用香港风廓线雷达资料看中尺度数值模式MM5的模拟能力.北京大学学报,39(3):375-380
    刘淑媛,孙健,王洪庆,等.2007.香港特大暴雨β中尺度线状对流三维结构研究.大气科学,131(12):353-363
    刘淑媛,孙健,杨引明.2007.上海2004年7月12日飑线系统中尺度分析研究.气象学报,65(1):84-93
    刘淑媛,陶祖钰.1999.从单多普勒雷达速度场反演散度场.应用气象学报,10(1):41-48
    刘淑媛,郑永光,陶祖钰.2003.利用风廓线雷达资料分析低空急流的脉动与暴雨关系.热带气象学报,19(3):285-290
    刘勇.2005.急流次级环流对局地持续强风暴天气的作用.气象科技,33(3):214-217
    刘勇,杜川利.2006.黄土高原一次突发性大暴雨过程的诊断分析.高原气象,25(2):302-308
    刘勇,薛春芳.2007.“6·29”西安突发性特大短时暴雨过程分析.陕西气象,(1): 1-4
    刘勇,张科翔.2005.2002年6月8日佛坪突发性特大暴雨天气过程分析.应用气象学报,16(1):60-69
    刘子臣,梁生俊,张建宏.1997.登陆台风对黄土高原东部暴雨的影响.高原气象,16(4):402-409
    刘子臣,张健宏.1995.黄土高原上两次低空东北急流大暴雨的诊断分析.高原气象,14(1):107-113
    陆尔,丁一汇.1996.1991年江淮特大暴雨与东亚大气低频振荡.气象学报,54(6):730-736
    陆尔,丁一汇.1997.1991年江淮持续性特大暴雨的夏季风活动分析.应用气象学报,8(3):316-324
    陆尔,丁一汇,Murakami M,等.1997.1991年江淮特大暴雨的降水性质与对流活动.气象学报,55(3):318-333
    陆尔,丁一汇,李月洪.1994.1991年江淮特大暴雨的位涡分析与冷空气活动.应用气象学报,5(3):266-274
    卢乃锰,吴蓉璋.1997.强对流降水云团的云图特征分析.应用气象学报,8(3):269-275
    吕达仁,王普才,邱金桓,等.2003.大气遥感与卫星气象学研究的进展与回顾.大气科学,27(4):552-565
    吕梅,成新喜,陈中一,等.1998.1994年华南暴雨期间夏季风的特征及其对水汽的输送.热带气象学报,14(2):135-141
    吕艳彬,郑永光,李亚萍,等.2002.华北平原中尺度对流复合体发生的环境和条件.应用气象学报,13(4):406-412
    马大安,田文斌,丁渭兴,等.1989.对流层风廓线雷达的研制.京津冀中尺度气象试验基地文集.中国气象科学研究院中尺度气象研究所
    马鹤年.1982.高原东北侧暴雨期间的四股气流.陕西气象,(8):
    马鹤年,刘子臣,徐达生.1981.次天气尺度Q暴雨系统发展和消亡的诊断分析.北方天气文集(1)
    马鹤年,马廷标,等.1987.云系叠加和区域性暴雨.北方天气文集.6:
    马禹,王旭,陶祖钰.1997.中国及其邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展,7(6):701-706
    蒙伟光,王安宇,李江南,等.2003.华南前汛期一次暴雨过程中的中尺度对流系统.中山大学学报(自然科学版),42(3):73-77
    蒙伟光,王安宇,李江南,等.2004.华南中尺度对流系统的形成及湿位涡分析.大气科学,28(3):330-341
    慕建利,杜继稳,梁生俊,等.2006.中β尺度系统造成的大暴雨过程数值模拟与诊断 分析.气象,32(8):23-29
    慕建利,杜继稳,张弘,等.2005.一次诱发山地灾害突发性暴雨数值模拟及诊断分析.气象,31(12):36-40
    慕建利,王建捷,李泽椿.2008.2005年6月华南特大连续性暴雨的环境条件和中尺度扰动分析.气象学报,66(3):437-451
    帕特里克·桑特里特,克里斯托·G.乔治夫.方翔等译.2008.卫星水汽图像和位势涡度场在天气分析和预报中的应用.北京:科学出版社,23-74
    裴丽丝.2006.云娜台风加强及特大暴雨过程的多普勒速度场特征研究.科技导报,24(10):11-15
    彭贵康,柴复新,曾庆存,等.1994.“雅安天漏“研究 Ⅰ:天气分析.大气科学,18(4):466-475
    齐琳琳,赵思雄.2003.利用非常规观测资料对上海特大暴雨过程的模拟研究.气候与环境研究,8(4):417-435
    阮征,葛润生,吴志根.2001.风廓线仪探测降水云体结构方法的研究.应用气象学报,13(3):330-338
    史学丽,丁一汇.2000.1994年中国华南大范围暴雨过程的形成与夏季风活动的研究.气象学报,58(6):666-678
    斯公望,杜立群.1987.南亚高压北缘的高空气流发散与梅雨锋暴雨发展的关系.杭州大学学报,14(2):233-244
    宋丽莉,毛慧琴,黄浩辉.2005.登陆台风近地层湍流特征观测分析.气象学报,63(6)(6):915-921
    宋淑丽,朱文耀,廖新浩.2004.地基GPS气象学研究的主要问题及最新进展.地球科学进展,19(2):250-259
    孙健,刘淑媛,陶祖钰,等.2004.1998年6月8—9日香港特大暴雨中尺度对流系统分析.大气科学,28(5):713-721
    孙健,刘淑媛,陶祖钰,等.2004.1998年6月8—9日香港特大暴雨中尺度对流系统分析.大气科学,12(15):713-721
    孙健,赵平,周秀骥.2002.一次华南暴雨的中尺度结构及复杂地形的影响.气象学报,60(3):333-342
    孙建华,赵思雄.2000.华南946特大暴雨的中尺度对流系统及其环境场研究Ⅰ.引发暴雨的BETA尺度对流系统的数值模拟研究.周秀骥,海峡两岸及邻近地区暴雨试验研究.北京:气象出版社,370PP
    孙建华,赵思雄.2002.华南946特大暴雨的中尺度对流系统及其环境场研究11.物理过程、环境场以及地形对中尺度对流的作用.大气科学,26(5):633-646
    孙建华,张小玲,齐琳琳,等.2004.2002年6月20—24日梅雨锋中尺度对流系统发生发展分析.气象学报.62(4):423-438
    孙力,郑秀雅,王琪,等.1994.东北冷涡的时空分布特征及其东亚大型环流系统之间的关系.应用气象学报,5(3):297-303
    孙淑清.1983.低空急流对内重力波不稳定发展的作用.大气科学,7(2):136-144
    孙淑清,杜长董.1996.梅雨锋的维持与其上扰动的发展特征.运用气象学报,7(2):153-159
    孙淑清,马廷标,孙纪改.1979.低空急流与暴雨相互关系的对比分析.气象学报,37(4):36-44
    孙淑清,翟国庆.1980.低空急流的不稳定性及其对暴雨的触发作用.大气科学,4(4):327-337
    单寅,林珲,付慰慈,等.2003.夏季青藏高原上中尺度对流系统初生阶段特征.热带气象学报,19(1):61-66
    施曙,赵思雄.1994.梅雨锋上与强暴雨有关的中低压及其三维环境流场的诊断研究.大气科学,18(4):476-484
    师春香,江吉喜,方宗义.2000.1998年长江大水期间对流云团活动特征研究.气候与环境研究,5(3):279-286
    石定朴,朱文琴,王洪庆,等.1996.中尺度对流系统红外云图云顶黑体温度的分析.气象学报,54(5):600-611
    寿绍文.2003.中尺度气象学.北京:气象出版社,1-10
    寿绍文,王祖锋.1998.1991年7月上旬贵州地区暴雨过程无力机制的诊断研究.气象科学,18(3):231-238
    寿亦萱,许健民.2007.“05.6”东北暴雨中尺度对流系统研究Ⅰ:常规资料和卫星资料分析.气象学报,65(2):160-170
    寿亦萱,许健民.2007.“05.6”东北暴雨中尺度对流系统研究Ⅱ:MCS动力结构特征的雷达卫星资料分析.气象学报,65(2):171-182
    陶诗言.1977.有关暴雨分析预报的一些问题.大气科学,1(1):64-72
    陶诗言,等.1980.中国之暴雨.北京:科学出版社,35-43
    陶诗言,陈隆勋.1957.夏季亚洲大陆上空大气环流的结构.气象学报,28(3):234-247
    陶诗言,丁一汇,周晓平.1979.暴雨对强对流天气的研究.大气科学,3(3):227-238
    陶诗言,方宗义,李玉兰,等.1979.气象卫星资料在中国天气分析和预报上的应用.大气科学,3(3):239-246
    陶诗言,方宗义,李玉兰.1983.四年来我国气象卫星资料应用研究.气象学报,41(3):263-274
    陶诗言,倪允琪,赵思雄,等.2001.1998夏季中国暴雨的形成机理与预报研究.北京:气象出版社,43-100
    陶诗言,张庆云,张顺利.1998.1998年长江流域洪涝灾害的气候背景和大尺度环流条 件.气候与环境研究,3(4):290-299
    陶诗言,赵立佳,陈晓敏.1958.东亚的梅雨期与亚洲上空大气环流季节变化的关系.气象学报,29(2):119-134
    陶祖钰.1995.从单多普勒雷达观测资料反演冷锋流场的试验.热带气象学报,11(2):142-149
    陶祖钰.1980.湿急流的结构及形成过程.气象学报,38(4):331-340
    陶祖钰,黄伟.1994.大暴雨过程中与急流相关气块的三维运动分析.气象学报,52(3):359-367
    陶祖钰,黄伟,顾雷.1996.常规资料揭示的中尺度对流复合体的环流结构.热带气象学报,12(4):372-379
    陶祖钰,王洪庆,王旭等.1998.1995年中国的中-α尺度对流系统.气象学报,56(2):166-177
    田生春,刘苏红.1988.一次快速发展气旋的诊断分析.气象学报,46(3):285-293
    王峰,许健民.2001.卫星风资料所揭示的对流层上部环流形势与1998年夏季我国南方雨带的关系//1998年长江嫩江流域特大暴雨的成因及预报应用研究.北京:气象出版社,142-147
    王欢,倪允琪.2006.2003年淮河汛期一次中尺度强暴雨过程的诊断分析和数值模拟研究.气象学报,64(6):754-742
    王建捷,郭肖容.1997.1996年初次华南暴雨过程的数值模拟及其分析.应用气象学报,8(3):257-266
    王建捷,李泽椿.2002.1998年一次梅雨锋暴雨中尺度对流系统的模拟与诊断分析.气象学报,60(2):146-155
    王建捷,陶诗言.2002.1998梅雨锋的结构特征及形成与维持.应用气象学报,13(5):526-534
    王立琨,郑永光,王洪庆,等.2001.华南暴雨试验过程的环境场和云团特征的初步分析.气象学报,59(1):115-119
    王丽荣,汤达章,胡志群,等.2006.多普勒雷达的速度图像特征及其在一次降雪过程中的应用.应用气象学报,17(4):452-458
    王式功,杨德保,张武.1994.甘肃河西中部地区“87·6”罕见暴雨成因分析.中国沙漠,14(2):24-29
    王维国,饶晓琴,康志明,等.2005.2004年我国重大灾害性天气和大尺度环流特征.气象,31(5):26-32.
    王欣,卞林根,彭浩,等.2005.风廓线仪系统探测试验与应用.应用气象学报,16(5):693-698
    王向东,罗四维.1989.1979年5—7月青藏高原及其附近地区热源与水汽的诊断分析.8(1):13-26
    王兴荣,郑媛媛,高守亭,等.中纬度突发性暴雨的可能先兆特征.热带气象学报,22(6):612-617
    汪永铭.1996.“94.6”华南连续暴雨的分析,1994年华南特大暴雨洪涝学术研讨会论文集.北京:气象出版社,50-56.
    魏锦成,陈泽面.1997.闪电定位资料应用于雷暴天气监测与诊断的个例分析.气象,23(12):39-42
    文莉娟,程麟生,隆霄.2005.“98.5”华南前汛期暴雨的非静力数值模拟和中尺度系统分析.高原气象,24(2):223-231
    武麦凤,王旭仙,孙健康,等.2007.2003年渭河流域5次致洪暴雨过程的水汽场诊断分析.应用气象学报,18(2):225-231
    《西北暴雨》编写组.1992.西北暴雨.北京:气象出版社,30-50
    夏茹娣,赵思雄,孙建华.2006.一类华南锋前暖区暴雨β中尺度系统环境特征的分析研究.大气科学,30(5):988-1008
    项续康,江吉喜.1995.我国南方地区的中尺度对流复合体.应用气象学报,6(1):1-17
    项续康,马岚,王大昌.1993.1991年梅雨锋系的中尺度分析.应用气象学报,4(3):286-292
    谢义炳.1956.中国夏半年几种降水天气系统的分析研究.气象学报,27(1):1-23
    谢义炳.1978.湿斜压大气的天气动力学问题.暴雨文集.长春:吉林人民出版社,1-15
    谢义炳,张镡.1980.暴雨文集.长春:吉林人民出版社,22-44
    徐海明,何金海,周兵.2001.“倾斜”高空急流轴在大暴雨过程中的作用.南京气象学院学报,24(2):155-161
    徐夏囡.1982.夏季华北冷锋暴雨个例分析.大气科学,6(1):71-76
    徐亚梅,高坤.2002.1998年7月22日长江中游中-β低涡的数值模拟及分析.气象学报,60(1):85-95
    许晨海,倪允琪,朱福康.2001.OLR资料描述西太平洋副热带高压的一种方法.应用气象学报,12(3):377-382
    许健民,钮寅生,董超华,等.2006.风云气象卫星的地面应用系统.中国工程科学,8(11):13-25
    许健民,张其松.2006.卫星风推导和应用综述.应用气象学报,17(5):574-582
    许新田,李明,陶建玲,等.2006.陕西2003年持续性暴雨高低空急流特征分析.气象科学,26(6):682-688
    薛纪善.1999.1994年华南夏季特大暴雨研究.北京:气象出版社,68-69
    薛秋芳,丁一汇,王建中.1995.一次强降水系统的演变和细结构分析.应用气象学报,6(1):56-62
    薛秋芳,刘金良,丁一汇.1997.一次暴雨过程中天气尺度与次天气尺度系统的相互作用.应用气象学报,8(1):114-118
    阎凤霞,寿绍文,张艳玲,等.2005.一次江淮暴雨过程中干空气侵入的诊断分析.南京气象学院学报,28(1):117-124
    姚建群,丁金才,王坚捍,等.2005.用GPS可降水量资料对一次大—暴雨过程的分析.气象,31(4):48-52
    杨本湘,陶祖钰.2005.青藏高原东南部MCC的地域特点分析.气象学报,63(2):326-242
    杨红梅,何平,徐宝祥.1999.用GPS资料分析华南暴雨的水汽特征.气象,28(5):17-21
    杨军.2008.我国“风云”气象卫星及其应用的回顾与展望.航天器工程,17(3):23-28
    叶笃正,高由禧,刘匡南.1951.1945—1946年亚洲南部与美国西南部急流进退之探对.中国地球物理学报,2(3):255-278
    银川气象台.1977.宁夏盛夏大雨和暴雨时的气流分析.大气科学,1(3):244-245
    游景炎.1965.暴雨带内的中尺度系系统.气象学报,35(3):293-304
    俞小鼎,姚秀萍,熊庭南,等.2006.多普勒天气雷达原理与业务应用.北京:气旋出版社,1-229
    俞樟孝,翟国庆,王泽厚,等.1983.长江中下游低空急流中心产生暴雨的条件.气象学报,4l(3):365-371
    郁淑华,藤家漠,何光碧.1998.高原地形对四川盆地突发性暴雨影响的数值试验.大气科学,22(3):379-383
    袁佳双,寿绍文.2001.1998年华南大暴雨冷空气活动的位涡场分析.南京气象学院学报,24(1):92-98
    袁招洪.2005.GPS可降水资料应用于MM5模式的变分同化试验.气象学报,63(4):391-404
    岳治国,牛生杰,梁谷.2008.陕西渭北中尺度对流系统组织模型及灾害分析.南京气象学院学报,31(3):395-402
    翟国庆.1998.对流层上层青藏高压东侧偏北气流在梅雨暴雨中的作用.气象学报,56(1):68-76
    翟国庆,高坤.2001.青藏高压东侧偏北大风对梅雨暴雨影响的合成分析.浙江大学学报,28(3):337-343
    湛芸,李泽椿.2005.青藏高原东北部区域性大到暴雨的诊断分析及数值模拟.气象学报,63(3):289-300
    赵录宇.2004.陕西省水灾损失特征.西北水力发电,20(3):42-44
    赵思雄,贝耐芳,孙健华,等.2002.亚澳中低纬度区域暴雨天气系统研究.气候与环 境研究,7(4):377-385
    赵思雄,孙建华,陈红,等.1998.1998年7月长江流域特大洪水期间暴雨特征的分析研究.气候与环境研究,113(4):368-381
    赵玉春,李泽椿,王叶红,等.2008.2006年6月5—8日梅雨锋上中尺度对流系统引发福建北部暴雨的诊断分析.大气科学,132(13):598-614
    张朝林,王迎春.2002.北京地区风廓线仪布网方案的数值研究.气象学报,60(6):786-791
    张弘,孙伟,陈卫东.2003.中尺度对流系统(M CSs)散度场的特殊结构.陕西气象,(2):1-5
    张弘,梁生俊,侯建忠.2006.西安市两次突发暴雨成因分析.气象,32(5):80-86
    张弘,侯建忠,杜继稳.2007.陕西突发性暴雨监测预警系统研究.陕西气象,(6):6-11
    张家国,吴翠红,王珏,等.2006.一次冷锋大暴雨过程的多普勒雷达观测分析.应用气象学报,17(2):224-231
    张列锐,侯建忠,王川,等.1999.陕西大暴雨时空分布特征及减灾对策.灾害学,14(2):38-42
    张烈锐,侯建忠,郑泳宜.1997.藏北高原东北侧一次MCC环境流场特征分析.甘肃气象,15(2):4-6
    张玲,李泽椿.2003.1998年8月嫩江流域一次大暴雨的成因分析.29(8):7-12
    张沛源,陈荣林.1995.多普勒速度图上的暴雨判据研究.应用气象学报,6(3):373-378
    张雁,丁一汇,马强.2001.持续性梅雨锋暴雨的环流特征分析.气候与环境研究,6(2):161-167
    张胜军,徐祥德,吴庆梅,等.2004.“中国登陆台风外场科学试验”风廓线仪探测资料在四维同化中的初步应用研究.应用气象学报,15(增刊):101-109
    张小玲,陶诗言,张庆云.2002.1998年7月20~21日武汉地区梅雨锋上突发性中-β系统的发生发展分析.应用气象学报,13(4):385-397
    张小玲,陶诗言,张顺利.2004.1996年7月洞庭湖流域持续性暴雨过程分析.应用气象学报,15(1):21-31
    张义军,华贵义,言穆弘.1995.对流和层状云系电活动、对流及降水特性的相关分析.高原气象,14(4):396-405
    张勇,王欣,徐祥德,等.2004.大气廓线综合探测系统及其应用技术.气象科技,32(4):263-268
    张裕华.1984.华南冷锋活动过程中冷空气的一种补充来源.气象学报,42(2):252-253
    张玉玲.1999.中尺度大气动力学引论.北京:气象出版社,1-3
    章国才,毕宝贵,鲍媛媛,等.2004.2003年淮河流域强降水大尺度环流特征及成因分析.地理研究,23(6):795-804
    章国才,矫梅燕,李延香,等.2007.现代天气预报技术和方法.北京:气象出版社,24-34
    郑栋,张义军,吕伟涛,等.2005.大气不稳定度参数与闪电活动的预报.高原气象,24(2):196-203
    郑秀雅,张延治,白人海.1992.东北暴雨.北京:气象出版社,19-43
    郑永光,陈炯,陈明轩,等.2007.北京及周边地区5—8月红外云图亮温的统计学特征及其天气学意义.科学通报,52(14):1700-1706
    郑永光,陈炯,费增坪,等.2007.2003年淮河流域持续暴雨的云系特征及环境条件.北京大学学报(自然科学版),43(2):157-165
    郑永光,陈炯,朱佩君.2008.中国及周边地区夏季中尺度对流系统分布及其日变化特征.科学通报,53(4):471-481
    郑永光,陶祖钰,王洪庆,等.2002.黄海及周边地区α中尺度对流系统发生的环境条件.气象学报,60(5):613-619
    郑媛媛,傅云飞,刘勇等.2004.热带测雨卫星对淮河一次暴雨降水结构与闪电活动的研究.气象学报,62(6):790-802
    郑媛媛,俞小鼎,方羽中,等.2004.一次典型超级单体风暴的多普勒天气雷达观测分析.气象学报,62(3):317-327
    钟晓平,杨淑群,朱远琼.1994.青藏高原东部地区中尺度对流复合体的降水特征.高原气象,13(2):113-121
    周兵,徐海明,吴国雄,等.2002.卫星风资料同化对暴雨预报影响的数值模拟.气象学报,60(3):309-317
    周筠君,郄秀书,张义军,等.1999.地闪与对流性天气系统中降水关系的分析.气象学报,,57(1):103-111
    周鸣盛.1986.我国北方次区域性特大暴雨的环流分析.气象,19(7):14-18
    朱官忠,刘恭淑,1997.鲁中生成中尺度对流复合体的环境条件分析.山东气象,17(3):8-13
    朱乾根,洪永庭,周军.1985.大尺度低空急流附近的水汽输送与暴雨.南京气象学院学报,(2):131-139
    朱乾根,林锦瑞,寿绍文,等.2007.天气学原理和方法.北京:气象出版社,85-400
    庄荫模,徐玉貌,程茂荣.1985.华南前汛期低空西南急流一锋面暴雨过程初期的中一中间尺度波状降水过程.大气科学,9(2):148-155
    Anderson C J,Arritt R W.1998.Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993.Mon Wea Rev,126(3):578-599
    Arlene G,Laing,Michael J F.2000.The Large-scale environments of the global populations of mesoscale convective complexes.Mon Wea Rev,128(8):2756-2776
    Askne J,Nordius H.1987.Estimation of tropospheric delay for microwaves from surface weather data.Radio Science,22(3):379-386
    Augustine J A,Howard K W.1988.Mesoscale convective complexes over United States during 1985.Mon Wea Rev,116(3):685-701
    Augustine J A,Howard K W.1991.Mesoscale convective complexes over the United States during 1986 and 1987.Mon Wea Rev,119(7):1575-1589
    Bartels D L,Maddox R A.1991.Midlevel cyclonic vortics generated by mesoscale convective systems.Mon Wea Rev,1190:104-118
    Bevis M,Businger S,Chiswell S,et al.1994.GPS meteorology:Mapping zenith wet delays onto precipitable water.J Appl Meteorol,33(3):379-386
    Bevis M,Businger S,Herring T A,et al.1992.GPS meteorology:Remote sensing of atmospheric water vapor using the global positioning system.J Geophys Res,97(15):787-801
    Blanchard D O,Cotton W R,Brown J M.1998.Mesoscale circulation growth under conditions of weak inertial instability.Mon Wea Rev,126(1):118-140
    Brian A C.2004.Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries:An idealized modeling perspective.Mon Wea Rev,132:588-606
    Browning K A.1964.Airflow and precipitation trajectories within severe local storm which travel to the right of the winds.J Atmos Sci,21(11):634-639
    Browning K A.1964.The evolution of tornadic storms.J Atmos Sci,22(11):664-668
    Browning K A,Collier C G,Larke P R,et al.1982.On the Forecasting of frontal rain using a weather radar network.Mon Wea Rev,110(6):534-552
    Browning K A,Donaldson R J,Jr.1963.Airflow and structure of a tornadic storm.J Atmos Sci,20(11):533-545
    Browning K A.Wexler R.1968.The determination of kinematic properties of a wind field using Dopple-radar.J Appl Meteorol,7(1):105-113
    Carey L D,Rutledge S A.2000.The relationship between precipitationand lightning in tropical island convection:A C-band polarimetric radar study.Mon Wea Rev,128(8):2687-2710
    Chan J C L,Wang Y,Xu J.2000.Dynamic and thermodynamic characteristics associated with the onset of the 1998 South China Sea summer monsoon.J Meteor Soc Japan,78:367-380
    Charba J.1974.Application of gravity current model to analysis of squall-line gust front.Mon Wea Rev,102(2):140-156 陈秋士.1982.J.Met.Soc.Jap.,(60):1041-1057
    Chen Shou Jun,Kuo Ying-Hwa,Wang Wei,et al.1997,A modeling case study of heavy rainstorms along the MeiYu Front.Mon Wea Rev,126:2330-2351
    Chen S-J,Wang W,Lau K-H,et al.2000.Mesoscale convective systems along the Meiyu front in a numerical model.Meteor Atmos Physics,75:149-160
    Cheng L S,Kuo Y H.1992.Mesoscal numerical simulation of the influence of PBL parameterization and moist process on development of a shear line vortex.C J Atmos Sci,16:90-100
    Chiao S,Lin Yuh—Lang.2003.Numerical modeling of an orogoraphically enhanced precipitation event associated with tropical storm Rachel over Taiwan.Mon Wea Rev,18:325-344
    Chiao S,Lin Yuh—Lang,Kaplan M L.2004.Numerical study orographic forcing precipitation during MAP IOP-2B Mon Wea Rev,132:2184-2202
    Contton W R,M-S,Lin R L.,et al.1989.A composite model of mesoscale convective complexes.Mon Wea Rev,117:765-783
    Davies F,Collier C G,Pearson G N,et al.2004.Doppler lidar measurements of turbulent structure function over an urban area.J Atmos Ocean Tech,21(5):753-761
    Ding Y H,Liu Y J.2001.Onset and the evolution of the summer monsoon over the South China Sea during the SCSMEX field experiment in 1998.J Meteor Soc Japan,79(1B):255-276
    Dorman C E,Holt T,Rogers D P,et al.2000.Large-scale structure of the June-July 1996 marine boundary layer along California and Oregon.Mon Wea Rev,128(6):1632-1652
    Droegemeier K K,Wilhelmon R B.1985.Three-dimensional numerical modeling of convection produced by interacting thunderstorm out-flows.Part I:Control simulation and low level moisture variations.J Atmos Sci,42(22):2381-2403
    Duan J,Bevis M,Peng Fang,et al.1996.GPS meteorology:direct estimation of the absolute value of precipitable water.J Appl Meteorol,35(6):830-838
    Dvorak V F.1975.Tropical syclone intensity analysis and forcasting from satellite imagery.Mon Wea Rev,103(5):420-430
    Emanuel K A.1983.On the dynamical defmition(s)of“mesoscale”.Mesoscale Meteorology-Theories,Observations and Model,Reidel Publishing Company,Boston Mass,1-11
    Fang Zongyi.1985.The preliminary study of medium-scale cloud clusters over the Changjiang basin in summer.Adv Atmos Sci,2(3):334-340
    Fett R W.1966.Upper-level structures of the formative tropical cyclone.Mon Wea Rev, 94(1):9-18
    Flores A,Ruffini G,Rius A.2000.4D tropospheric tomography using GPS slant wet delays.Annal of Geophysicae,18:223-234
    Fritz S L,Huburt F A,Timchalk.1966.Some inferences satellite picture of tropical disturbances.Mon Wea Rev,94(4):231-236
    Gage K S,Williams C R,Ecklund W L.1994.UHF wind profilers:a new tool for diagnosing tropical convective cloud systems.B Am meteorol soc,75(12):2289-2294
    Galina Dick,Gerd Gendt,Christoph Reigber.1999.Operational Water Vapor Estimation in a Dense German Network.IGS 1999 Technical Report,375-384
    Gendt G,C Reigber,G Dick.2001.Near Real-Time Water Estimation in a German GPS Network-First Result s f rom the Ground Program of the HGF GASP Project.Phys Chem Earth[A],26(628):413-416
    Goff R C.1976.Vertical structure of thunderstorm outflows.Mon Wea Rev,104(11):1429-1440
    Goodman S J,Christian H J,David W R.1988.A comparison of the optical pulse characteristics of intracloud and cloud-to-ground lightning as observed above clouds.J App Meteorol,27(12)1369-1381
    Gossard E E,Gutman S,Stankov B B,et al.1999.Profile of radio refractive index and humidity derived from radar wind profilers and the Global Positioning System.Radio Sci,34(2):371-383
    Gossard E E,Wolfe D E,Moran K P,et al.1998.Measurement of clear-air gradients and turbulence properties with radar wind profilers.J Atmos Ocean Tech,15(2):321-342
    Grijn G,Garcia-Mendez A.2002.Monitoring of Atmospheric Motion Vectors at ECMWF.Proceedings of the 6th International Winds Workshop,Madison,USA,7—10 May,EUMETSAT Publication,EUM 35:81-86
    Healey J V.1985.The Influence of spectrum functions and filters on crossing frequency of atmospheric turbulence.J Atmos Ocean Tech,2(4):590-597
    Hocking W K,Mu P K L.1997.Upper and middle tropospheric kineticenergy dissipation ratesfrom measurements of Cn~2—review of theories,in-situ investigations,and experimental studies using the Buckland Park atmospheric radar in Australia.Atmos Terr Phys,59:1799-1803
    Holle R L,Watson A L,Lopez R E,et al.1994.The life cycle of lightning and severe weather in a 3-4 June 1985 PRE-STORM mesoscale convective system.Mon Wea Rev,122(8):1798-1808
    Johnston B W,Marwitz J D,Carbone R E.1999.Single Doppler radar analysis of banded precipitation structures.J Atmos Oceanic Tech,17:866-875
    Johnston E C.1981.Mesoscale vorticity centers induced mesoscal convective complexes.M.S.thesis,University of Wisconsin,54pp
    Jorgensen,David P,Pu Zhaoxia,et al.2002.Observations and numerical simulations of the structure of a narrow cold-frontal rain-band.International Conference on Mesoscale Convective Systems and Heavy Rainfall/ Snowfall in East Asia,29 31 October,Tokyo,Japan
    Joseph G,Sobel A.2005.Moist dynamic and orographic precipitation in northern and central California during the new year's flood of 1997.Mon Wea Rev,133:1594-1612
    Keighton S J,Bluestein H B,Donald R M.et al.1991.The evolution of a severe mesoscale convective system:cloud-to-ground lighting location and storm structure.Mon Wea Rev,119(7):1533-1556
    Kinzer G D.1974.Cloud-to-ground lightning versus radar reflectivity in Oklahoma thunderstorms.J Atmos Sci,31(3):787-799
    Korner U,Sonnemann G R.2001.Global three-dimensinal modeling of the water vapor concentration of the mesosphere-mesopause region and implications with respect to the noctilucent cloud region.J Geophys Res,106(29):639-651
    Koscielny A J,Doviak R J,Rabin R.1982.Statistical considerations in the estimation of divergence from single-Doppler radar and application to prestorm boundary layer observations.J Appl Meteorol,21(2):197-210
    Krehbiel P R,Brook M,Lhermitte R L,et al.1983.Lightning charge structure in thunderstorms.Proc Atmos Electr.Deepak Publ,Hampton,Virginia,408-410
    Kuo Y H,Cheng L S,Anthes R A.1986.Mesoscale analyses of the Sichuan flood catastrophe,11-15 July 1981.Mon Wea Rev,114(11):1984-2003
    Laing A,Fritsch J M.1993.Mesoscale convective complexes in Africa.Mon Wea Rev,121(8):2254-2263
    Laing A G,Fritsch J M.1997.The global population of mesoscale convective complexes.Quart J Roy Meteor Soc,123:389-405
    Laing A G,Fritsch J M.2000.The large-scale environments of the global populations of mesoscale convective complexes.Mon Wea Rev,128(8):2756-2776
    Laing A G,Michael J F.1993.Mesoscale convective complexes over the Indian Monsoon Region.J Climate,6(5):911-919
    Lang T J,Rutledge S A,Dye J E,et al.2000.Anomalously low negative cloud-to-ground lightning flash rates in intense convective storms observed during STERAO-A.Mon Weather Rev,128:160-173
    Lemon L R,Charles A,Donswell Ⅲ.1979.Severe Thunderstorm Evolution and Mesocyclone Structure as Related to Tornadogenesis.Mon Wea Rev,107(9):1184-1197
    Lemon L R,Ralph J,Donaldson Jr,et al.1977.Doppler Radar Application to Severe Thunderstorm Study and Potential Real-Time Warning.B Am Meteorol Soc,58(11):1187-1193
    Li Chengcai,Mao Jietai,Guo Y R,et al.2000.Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case.Mon.Wea.Rev.,128:619-643
    Ligda M G H.1951.Radar Storm Observation.Compendium of Meteorology,B Am Meteor Soc,1265-1282
    Lin S C,Kueh M T.2003.A modeling diagnosis of the development of mesoscale convective system over South China Sea during the summer monsoon onset in 1998.TAO,14:369-399
    Lin Y-L,Chiao S,Wang T-A,et al.2001.Some common ingredients for orographic flooding and heavy rainfall.Wea Forecasting,16:633-660
    Maddox R A.1980.Mesoscale convective complexes.B Am Meteorol Soc,61(11):1374-1387
    Maddox R A.1983.Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes.Mon Wea Rev.111(7):1475-1493
    MacGorman D R,Burgess D W,Mazur V,et al.1981.Lightning rates relative to toraadic storm evolution on 22 May 1981.J Atmos Sci,46(2):221-251
    Martner B E.1997.Vertical velocities in a thunderstorm gust front and outflow.J Appl Meteorol,36(5):615-622
    McAnelly R L,Cotton W R.1986.Meso-β_scale characteristics of an episode of meso-α-scale convective complexes.Mon Wea Rev,114:1740-1770
    McAnelly R L,Cotton W R.1992.Early growth of mesoscale convective complexes:A meso-β-scale cycle of convective precipitation?.Mon Wea Rev,120(9):1851-1877
    McAnelly R L,Nachamkin J E,Cotton W R,et al.1997.Upscale evolution of MCSs:Doppler radar analysis and analytical investigation.Mon Wea Rev,125(6):1083-1110
    Menard R D,Fritsch J M.1989.A mesoscale convective complex-generated intertially stable warm core vortex.Mon Wea Rev,1170:1237-1261
    Miller D,Fritsch J M.1991.Mesoscale convective complexes in the western in the Pacific region.Mon Wea Rev,119(12):2978-2992
    Nachamkin J E,McAnelly R L,Cotton W R.1994.An observational analysis of a developing mesoscale convective complex.Mon Wea Rev,122(6):1168-1188
    Nakamura Y,Ozawa E,Onogi K,et al.2002 .Impact Experiments on NWP with Rapid Scan AMVs.Proceedings of the 6th International Winds Workshop,Madison,USA,7—10 May EUMETSAT Publication,EUM 35:171-178
    Nastrom,Fritts D,Gage K S.1987.An investigation of terrain effects on the mesoscale spectrum of atmospheric motions.J Atmos Sci,44(20):3087-3096
    Ninomiya K,Akiyama T,Ikawa M.1988a.Evolution and fine structure of long-lived meso-α-scale convective system in Baiu frontal zone.Part Ⅰ:evolution and meso-β-scale characteristics.J Meteorol Soc Japan,66:331-350
    Ninomiya K,Akiyama T,Dcawa M.1988.Evolution and fine structure of long-lived meso-α-scale convective system in Baiu frontal zone.Part Ⅱ:evolution and meso-γ-scale characteristics.J Meteor Soc Japan,66:351-371
    Ninomiya K,Murakami T.1987.The early summer rainy season(Baiu)over Japan.In Chang C P,Krishnamurti T,Eds.Monsoon eteorology.Oxford University Press,93-121
    Orlanski I.1975.A rational subdivision of scales for atmospheric Processes.B Am Meteor Soc,56(5):527-530
    Ralph,Crochet M,Venkateswaran S V.1993.Observations of a mesoscale ducted gravity wave.J Atmos Sci,50(19):3277-3291
    Ralph J,Donaldson Jr.1970.Vortex Signature Recognition by a Doppler Radar.J Appl Meteorol,9(4):661-670
    Rocken C,Ware R,Hove T V,et al.1993.Sensing atmospheric water vapor with the global positioning system.Geophy Res Lett,20(23):2631-2634
    Rutledge S A,D R MacGorman.1998 .Cloud-to-ground lightning activity in the 10-11 June 1985 mesoscale convective system observed during the Oklahoma-Kansas PRESTORM Project.Mon Wea Rev,116:1 396-1 408
    Rutledge S A,Lu C,MacGorman D R.1990.Positive cloud-to-ground lightning in mesoscale convective systems.J Atmos Sci,47(17):2085-2100
    Rutledge S A,MacGorman 1 D R.1988.Cloud-to-ground lightning activity in the 10-11 June 1985 mesoscale convective system observed during the Oklahoma-Kansas PRE-STORM project.Mon Wea Rev,116(7):1393-1408
    Schmetz J,Borde R,KEnig M,et al.2002.Upper Tropospheric Fieldsin a Tropical Convective System Observed with METEOSAT28.Proceedings of the 6th International
    Winds Workshop,Madison,USA,7—10 May 2002 EUMETSAT Publication,EUM 35:359-365
    Schuur T J,Smull B F,Rust WD.1991.Electrical and kinematic study of the stratiform precipitation region trailing an Oklahoma squall line.J Atmos Sci,48(6):825-842
    Seko H,Nakamura H,Shoji Y,et al.2004.The meso-y scale water vapor distribution associated with at hunderstorm calculated from a dense network of GPS receivers.Meteorol Soc Jpn,82(1B):69-586
    Seko H,Shimada S,Nakamura H,et al.2000.Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front.Earth Planets Space,52:927-933.
    Setter K L.1986.A numerical study of atmospheric density current motion including the effect of condensation.J Atmos Sci,43(24):3068-3076
    Smalikho I,Kepp F,Rahm S.2005.Measurement of atmospheric turbulence by 22-μm Doppler lidar.J Atmos Ocean Tech,22(11):1733-1747
    Smull B F,Houze R A,Jr.1985.A midlatitude squall line with a trailing region of stratiform rain:Radar and satellite observations.Mon Wea Rev,113:117-133
    Velasco L,Fritsch J M.1987.Mesoscale convective complexes in Americas.J Geophys Res,192:9591-9613
    Vonnegut B.1953.Possible mechanism for the formation of sunderstrom electricity.B Am Meteorol Soc,34:378-381
    Wakimoto R M.1982.The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rainsonde data.Mon Wea Rev,110(8):1060-1082
    Waldteufel P,Corbin H.1979.On the analysis of single-Doppler data.J Appl Meteorol,18(4):532-543
    Wang Chung-Chien,Geogre Chen Tai-Jen,Chen Tzu-Chin et al.2005.A numerical study on the effects of Taiwan topography on a convective line during the Mei-yu season.Mon Wea Rev,133:3217-3245
    Wang Xiaoya,Zhu Wenyao,Yan Haojian,et al.1999.Preliminary results of precipitable water vapor monitored by ground-based GPS.Chinese J Atmos Sci(in Chinese),23(5):605-612
    Wilczak,Christian T W,Wolfe D E,et al.1992.Observations of a Colorado tornado.Part Ⅰ:Mesoscale environment and tornadogenesis.Mon Wea Rev,120(4):497-521
    Wilson J W,Schreiber W E.1986.Initiation of convective storms at radar observed boundary-layer convergence lines.Mon Wea Rev,114(12):2516-2536
    Wolfe D E,S.I.Gutman.2000.Developing an operational surface based GPS water vapor observing system for NOAA:network design and results.J Atmos Ocean Tech,17(4):426-440
    Yeh Hsi-Chyi,Chen Yi-Leng.2002.The role of offshore convective on coastal rainfall during TAMEX IOP3.Mon Wea Rev,130:2709-2730
    Yeh Hsi-Chyi,George Chen Tai-Jen.2004.Case study of an unusually heavy rain event over eastern Taiwan during the Mei-yu season.Mon Wea Rev,132:320-336
    Zhang D L,Fritsch J M.1988a.A numerical investigation of a convectively generated,inertially stable,extratropical warm-corn mesovortex over land.Part I:Structure and evolution,Mon Wea Rev,116(12):2660-2687
    Zhang J,Wei T J,Zhang X D.1995.Moist potential vorticity diagnosis on a Meiyu frontal heavy rain process simulation during summer 1991.Acta Meteorol Sinica,9(4):468-479
    Zhang Qinghong,Lau Kai-Hon,Kuo Ying-Hwa,et al.2003.A Numerical Study of a Mesoscale Convective Systemover the Taiwan Strait.Mon Wea Rev,131:1150-1170
    Zhang Qinghong,Lau Kai-Hon,Wang Hongqing,et al.2000.Numerical simulation on mesoscale convective system along Meiyu front in Southern China.Chinese Science Bulletin,45:2093-2096
    Zheng Yongguang,Tao Zuyu,Wang Hongqing.Enviroment of meso2a2scale convective system development in yellow Sea region.Progress i n Nat ural Science,1999,9:842-848

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700