用户名: 密码: 验证码:
面向网络的体绘制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维数据可视化是近年来发展最迅速的一项技术,在医学三维重建、计算流体力学、有限元后处理、地震地质等众多领域得到了广泛应用。但是在基于网络的体绘制研究中还存在很多亟待解决的问题。本文主要就面向网络的可视化过程中涉及到的几个关键技术问题:体数据分类、体数据压缩和体绘制加速算法等进行深入研究。
     其中,针对支持向量机在体数据分类中需要用户提供训练样本,无法根据数据本身特征自动选择训练样本的问题,提出了将支持向量机与无监督聚类相结合的体数据分类算法。该算法先使用无监督聚类方法对样本进行初步分类,在经用户有限修正后将分类结果作为支持向量机的训练样本,因此不需要用户根据先验知识指定训练数据,实现了基于支持向量机的自动数据分类,并得到较好的分类结果。
     为了满足大规模体数据的压缩存储和基于网络的多分辨率显示要求,本文提出了基于小波的大规模体数据压缩算法,它主要利用三维小波分解后各高频系数子带内的相关性。通过对大规模体数据进行基于块的层次小波分解和构造有效的八叉树结构来保存小波重要系数位置信息,该算法不仅有较好的压缩率,而且很容易进行基于数据块的随机访问。
     小波Splatting算法是目前大规模体数据压缩域绘制的理想方法,本文在深入研究小波Splatting算法的基础上,结合最新GPU技术提出了基于GPU加速的小波Splatting算法。该算法将三维体数据小波分解后的八个子体块在GPU的两次顶点渲染中完成绘制,从而减少了绘制次数。利用小波Splatting的特点,该算法采用先进行小波系数累加后进行小波脚印卷积的方式,在GPU上实现了小波Splatting的加速绘制。实验结果表明基于GPU的方法大大加速了小波Splatting算法的绘制速度。
     最后,针对大规模数据存储、网络传输和高质量快速绘制等问题,给出了一个面向网络传输的大规模数据体绘制系统框架。它充分结合两种小波域体绘制技术的优点,集成了大规模数据的压缩存储与传输、大规模数据的粗略快速绘制和局部感兴趣区域的精细高质量绘制等功能,因此它非常适合于大规模数据的远程可视化。
3D visualization of data, as one of the fastest growing technologies, has been widely used in 3D reconstruction of medicine, computational fluid dynamics, finite element post-processing, earthquake geology and other fields in recent years. However, there are still some issues need to be studied further in network-oriented visualization. Several key techniques including volume data classification, volume data compression and volume rendering acceleration are studied in this paper.
     Support vector machine requires users to provide training samples in volume data classification. Volume data classification algorithm combined support vector machine and unsupervised clustering is presented to resolve the problem that support vector machine can not automatically select training samples according to data characteristics. The training data are initially classified using unsupervised clustering, and the results revised by user are used in the process of support vector machine training. Automatic volume data classification algorithm based on support vector machine performs better results without user providing training data in accordance with prior knowledge.
     Wavelet based large-scale volume data compression algorithm, which mainly utilizes intra-band correlation of 3D wavelet high-frequency coefficients, is proposed to meet large-scale data storage and network-based multi-resolution rendering. Block-based wavelet transform is applied to large-scale volume data, and effective octree structure is constructed to store significant wavelet coefficients map. The algorithm is not only a better compression ratio but it’s easy to random access block-based data.
     Wavelet splatting is an ideal approach of large-scale data compression domain rendering. GPU-based accelerated wavelet splatting is presented on the basis of the latest GPU technology. Eight sub-block wavelet coefficients of 3D data wavelet decomposition are accumulated by applying GPU vertex shader twice before the wavelet footprints convolution in order to reduce the number of rendering. The results show that the GPU-based method greatly speeds up the wavelet splatting.
     Finally, a network-oriented large-scale data volume rendering system framework is introduced to resolve large-scale data storage, network transmission and high-quality fast rendering. It fully takes an advantage of two kind of wavelet-based volume rendering and integrates large-scale compressed data storage and transmission, rapid coarse volume rendering and high-quality rendering of local region of interest. So, it is very suitable for remote visualization of large scale volume data.
引文
[1]B. H. McCormick, T. A. DeFanti, M. D. Brwon , Visualization in Scientific Computing,Computer Graphics,1987,21(6):1~14
    [2]T. A. DeFanti, M. D. Brown, B. H. McCormick,Visualization-Expanding Scientific and Engineering Rendering Opportunities,IEEE Computer,1989,23(8):12~25
    [3]石教英,蔡文立,科学计算可视化算法与理论,北京:科学出版社,1996,147~151
    [4]唐泽圣,三维数据场可视化,北京:清华大学出版社,1999,1~234
    [5]Marc Levoy,Display of Surfaces from Volume Data,IEEE Computer Graphics & Applications,1988,8(3):29~37
    [6]Gordon Kindlmann, James W. Durkin,Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering,In:Proceedings of IEEE Volume Visualization Symposium,North Carolina,1998,79~86
    [7]Andreas Konig, Eduard Groller , Mastering Transfer Function Specification by Using VolumePro Technology , In:Proceedings of Spring Conference on Computer Graphics(SCCG),Slovak Republic,2001,279~286
    [8]Hanspeter Pfister, Bill Lorensen,The Transfer Function Bake-off,IEEE Computer Graphics and Applications,2001,21(3):16~22
    [9]Taosong He, Lichan Hong, Arie Kaufman, et al.,Generation of Transfer Functions with Stochastic Search Techniques,In:Proceedings of the 7th Conference on Visualization,San Francisco, California,1996,227~234
    [10]J. Marks, B. Andalman, P. A. Beardsley,Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation,In:Proceedings of the 7th Conference on Visualization,San Francisco, California,1996,389~400
    [11]钟世镇,数字化虚拟人体研究现状和展望,解放军医学杂志,2003,28(5):385~388
    [12]Wayne O. Cochran, John C. Hart, Patrick J. Flynn,Fractal Volume Compression , IEEE Transactions on Visualization and Computer Graphics,1996,2(4):313~322
    [13]J. M. Shapiro,Embedded Image Coding Using Zero Trees of Wavelet Coefficients,IEEE Transaction on Signal Processing,1993,41(10):1991~1999
    [14]J. Luo, X. Wang, C. W. Chen, et al.,Volumetric Medical Image Compression with Three-dimensional Wavelet Transform and Octave Zerotree Coding,Visual Communication and Image Processing,1996,257(4):804~813
    [15]Y. kim, W. Pearlman,Lossless Volumetric Medical Image Compression,In:Proceedings of Applications of Digital Image Processing XXII(SPIE ),1999,1395~1403
    [16]D. J. Meagher,Efficient Synthetic Image Generation of Arbitrary 3-D Objects,In:Proceedings of the IEEE Conference on Pattern Recognition and Image Processing,Las Vegas,1982,473~478
    [17]K. R. Subramanian, D. S. Fussell,Applying Space Subdivivision Techniques to Volume Rendering,In:Proceedings of Visualization'90,San Francisco,California,1990,150~159
    [18]Insung Ihm, Rae Kyoug Lee,On Enhancing the Speed of Splatting with Indexing,In:Proceedings of the 6th Conference on Visualization,Atlanta,1995,69~76
    [19]K. J. Zuiderveld, A. H. Koning, M. A. Viergever,Acceleration of Ray-casting Using 3D Distance Transforms , In:Proceedings of Visualizaiton in Biomedical Computing 1992 , Chapel Hill, North Carolina,1992,324~335
    [20]J. Danskin, P. Hanrahan,Fast Algorithms for Volume Ray Tracing,In:Proceedings of Workshop on Volume Visualization 1992,Boston, MA,1992,91~98
    [21]张加万,交互体绘制关键技术及其应用研究,[博士学位论文],天津大学,2004
    [22]GPU,http://www.nvidia/com/object/GPU.html
    [23]Ruediger Westermann , A Multiresolution Framework for Volume Rendering,In:Corner T,Proceedings of the ACM Workshop on Volume Visualization,Virginia,1994,51~58
    [24]M. H. Gross, L. Lippert, A. Dreger, et al.,New Method to Approximate the Volume Rendering Equation Using Wavelet Bases and Piecewise Polynomials,Computers & Graphics,1995,19(1):47
    [25]A. Kaufman,3D Volume Visualization. Advances in Compute Graphics:Springer-Verlag,1991,1~18
    [26]J. T. Kajiya, B. P. Herzen,Ray Tracing Volume Densities,Computer Graphics,1984,18(3):165~174
    [27]L. Westover,Footprint Evaluation for Volume Rendering,Computer Graphics,1990,11(4):367~376
    [28]J. Wilhelms, V. Gelder,A Coherent Projection Approach for Direct Volume Rendering,Computer Graphics,1991,25(4):275~281
    [29]P. Lacroute, M. Levoy,Fast Volume Rendering Using a Shear-Warp Factorisation of Viewing Transform,Computer Graphics,1994,8(3):451~459
    [30]Takashi Totsuka, Marc Levoy,Frequency Domain Volume Rendering,In:Anaheim,Proceedings of SIGGRAPH '93,California,1993,271~278
    [31]T. Malzbender , Fourier Volume Rendering , ACM Transactions on Graphics,1993,12(3):233~250
    [32]Chuan-kai Yang , Integration of Volume Visualization and Compression:A Survey,http://www.ecsl.cs.sunysb.edu/tr/rpe10.ps.Z
    [33]A. Kaufman, K. H. Hohne, W. Kruger, et al.,Research Issues in Volume Visualization,IEEE Computer Graphics & Applications,1994,14(2):63~67
    [34]G. M. Nielson , Challenges in Visualization Research , IEEE Transactions on Visualization and Computer Graphic,1996,2(2):90~97
    [35]S. Muraki,Volume Data and Wavelet Transform,Computer Graphics and Applications,1993,13(40):179~187
    [36]Shigeru Muraki,Multiscale 3D Edge Representation of Volume Data by a DOG Wavelet , In:Proceedings of the 1994 Symposium on VolumeVisualization,Tysons Corner, Virginia,1994,35~42
    [37]L. Lippert, M. H. Gross, C. Kurmann,Compression Domain Volume Rendering for Distributed Environments,Computer Graphics Forum,1997,16(3):95~107
    [38]M. H. Gross, L. Lippert, R. Dittrich, et al.,Two methods for Wavelet-Based Volume Rendering,Computers & Graphics,1997,21(2):237~252
    [39]LARS LIPPERT,Wavelet-based Volume Rendering,[PH.D. Dissertation],Swiss Federal Institute of Technology Zurich,1998
    [40]Taosong He,Wavelet-Assisted Volume Ray Casting,In:Proceedings of Pacific Symposium on Biocomputing,1998,153~164
    [41]孙延奎,朱心雄,唐泽圣,等,基于小波的图像序绘制算法研究,计算机学报,2000,23(9):966~972
    [42]孙延奎,小波技术在CAD及体可视化中的应用研究,[博士学位论文],北京航空航天大学,1999
    [43]Michel Westenberg,Wavelet-Based X-Ray Volume Rendering,[PH.D. dissertation],University of Groningen,2001
    [44]丁爱玲,周秦武,基于小波的三维图像频域显示方法研究,计算机工程与应用,2005,41(6):50~54
    [45]周秦武,三维超声成像方法与显示技术研究,[博士学位论文],西安交通大学,2002
    [46]SébastienPiccand, Rita Noumeir, Eric Paquette , Efficient Visualization of Volume Data Sets with Region of Interest and Wavelets,In:Proceedings of SPIE Medical Imaging 2005,San Diego, CA,2005,462~470
    [47]SébastienPiccand, Rita Noumeir, Eric Paquette,Region of Interest and Multiresolution for Volume Rendering , IEEE Transactions on Information Technology in Biomedicine,2007,11(6):23~34
    [48]Shiaofen Fang, Tom Biddlecome, Mihran Tuceryan,Image-Based Transfer Function Design for Data Exploration in Volume Visualization ,In:Proceedings of IEEE Visualization,NC, USA,1998,319~326
    [49]Chandrajit L. Bajaj, Valerio Pascucci, Daniel R. Schikore,The Contour Spectrum,IEEE Transncrions on Vislization ond Computer Graphics,1997,10(4):167~175
    [50]V. Pekar, R. Wiemker, D. Hempel , Fast Detection of Meaningful Isosurfaces for Volume Data Visualization,In:Proceedings of IEEE Visualization 2001,San Diego, California,2001,223~230
    [51]Gordon Kindlmann, Ross Whitaker, Tolga Tasdizen, et al. ,Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications,In:Proceedings of Spring Conference on Computer Graphics(SCCG),Budmerice, Slovakia,2003,58~65
    [52]S. Tenginakai, J. Lee, R. Machiraju,Salient Iso-Surface Detection with Model-Independent Statistical Signatures,In:Proceedings of IEEE Visualization 2001,San Diego, California,2001,231~238
    [53]Jiawan Zhang, Jizhou Sun, Zhigang Sun, et al.,Moment Based Transfer Function Design for Volume Rendering , In:Proceedings of Computational Science and Its Applications - ICCSA 2003,Montreal, Canada:IEEE Press,2003,231~238
    [54]Jiawan Zhang, Jizhou Sun, Zhigang Sun,Volume Reconstruction of Medical Images by Moment Based Transfer Function,In:Tescher,Proceedings of Applications of Digital Image Processing XXVI, (SPIE),2003,703~710
    [55]J. Kniss, G. Kindlmann, C. Hansen,Interactive Volume Rendering Using Multi-Dimensional Transfer Functions and Direct Manipulation Widgets,In:Proceedings of IEEE Visualization,2001,255~262
    [56]Joe Kniss, Gordon Kindlmann, Charles Hansen , Multidimensional Transfer Functions for Interactive Volume Rendering , IEEE Transactions on Visualization and Computer Graphics,2002,8(3):270~285
    [57]Gunther H. Weber , Topology-based Transfer Function Design ,In:Proceedings of The Second IASTED International Conference on Visualization,Anaheim CA,2002,527~532
    [58]Gunther H. Weber, Gerik Scheuermann,Hans Hagen Exploring Scalar Fields Using Critical Isovalues , In:Proceedings of IEEE Visualization'02,Boston,2002,423~432
    [59]Isse Fujishiroi, Taeko Azuma, Yuriko Takeshima,Automating Transfer Function Design for Comprehensible Volume Rendering Based on 3D Field Topology Analysis,In:Proceedings of IEEE Visualization'99,San Francisco, CA,1999,467~470
    [60]Issei Fujishiro, Yuriko Takeshima, Taeko Azuma,Volume Data Mining Using 3D Field Topology Analysis , IEEE Computer Graphics and Application,2000,20(5):46~51
    [61]Eric B. Lum, Kwan-Liu Ma,Lighting Transfer Functions Using Gradient Aligned Sampling,In:Proceedings of IEEE Visualization,2004,289~296
    [62]Alyassin, M. Abdalmajeid,Automatic Transfer Function Generation for Volume Rendering of High Resolution X-Ray 3D Digital Mammography Images,In:Proceedings of Visualization, Image-Guided Procedures and Display, SPIE Medical Imaging,San Diego, CA,2002,338~348
    [63]Joao Luis Prauchner, Carla M. D. S. Freitas, Joao L. D. Comba,Two-Level Interaction Approach for Transfer Function Specification,In:Proceedings of XVIII Brazilian Symposium on Computer Graphics and Image Processing,2005,265~272
    [64]Ikuko Takanashiy, Eric B. Lum, Kwan-Liu Ma, et al. , ISpace: Interactive Volume Data Classification Techniques Using Independent Component Analysis,In:Proceedings of the 10th Pacific Conference on Computer Graphics and Applications,2002,366~374
    [65]A. Broersen, R. Liere,Transfer Functions for Imaging Spectroscopy Data using Principal Component Analysis , In:Proceedings of Eurographics/IEEE VGTC Symposium on Visualization,Leeds, UK,2005,117~123
    [66]Jiawan Zhang, Jizhou Sun, Zhigang Sun,Adaptive Transfer Function Design for Volume Rendering Using a General Regression Neural Network,In:Proceedings of the Second International Conference on Machine Learning and Cybernetics,2003,2234~2239
    [67]Jiawan Zhang, Jizhou Sun,Automatic Classification of MRI Images for Three-Dimensional Volume Visualization by Using General Regression Neural Networks,In:Proceedings of 2003 IEEE Medical Imaging (IEEE MIC) Conference,2003,3188~3189
    [68]Yingcai Wu, Huamin Qu, Hong Zhou, et al.,Transfer Function Fusing,In:Proceedings of IEEE Visualization 2006,Baltimore,Maryland,2006,131~133
    [69]Yingcai Wu, Huamin Qu, Hong Zhou, et al.,Fusing Features in Direct Volume Rendered Images,In:Proceedings of International Symposium on Visual Computing,2006,273~282
    [70]Vladimir N. Vapnik,统计学习理论的本质(张学工),北京:清华大学出版社,2000,1~240
    [71]彭玉华,小波变换与工程应用,北京:科学出版社,1999,1~62
    [72]李弼程,罗建书,小波分析及其应用,北京:电子工业出版社,2003,102~125
    [73]W. Sweldens,The Lifting Scheme: a Construction of Second Generation Wavelets,SIAM Journal Mathematical Analysis,1997,29(2):511~546
    [74]W. Sweldens,The Lifting Scheme: a Custom-Design Construction of Biorthogonal Wavelets,Applied and Computational Harmonic Analysis,1996,3(2):186~200
    [75]A. R. Calderbank, Ingrid Daubechies, Wim Sweldens, et al.,Wavelet Transforms That Map Integers to Integers,Applied and Computational Harmonic Analysis,1998,5(3):332~369
    [76]I. Daubechies, W. Sweldens , Factoring Wavelet Transforms into Lifting Steps,Journal of Fourier Analysis and Application,1998,4(3):245~267
    [77]Gemma Piella, Henk Heijmans,An Adaptive Update Lifting Scheme with Perfect Reconstruction , In:Proceedings of IEEE International Conference on Image Processing,Thessaloniki,2001,190~193
    [78]Gemma Piella, Henk Heijmans, Beatrice Pesquet-Popescu,Adaptive Wavelet Decompositions Driven by a Weighted Norm of the Gradient,In:Proceedings of 3rd IEEE Benelux Signal Processing Symposium,Leuven, Belgium,2002,231~239
    [79]Germma Piella, Beatrice Pesquet-Popescu, Henk Heijmans,Adaptive Update Lifting with a Decision Rule Based on Derivative Filters,IEEE Signal Processing Letters,2002,9(10):329~332
    [80]吴恩华,柳有权,基于图形处理器(GPU)的通用计算,计算机辅助设计与图形学学报,2004,16(5):601~673
    [81]gpgpu,http://www.gpgpu.org
    [82]JensKrüger, RüdigerWestermann,Linear Algebra Operators for GPU Implementation of Numerical Algorithms , ACM Transactions on Graphics,2003,22(3):908~916
    [83]M. Rumpf, R. Strzodka , Using Graphics Cards for Quantized FEM Computations,In:Proceedings of VIIP 2001,Marbella,2001,98~107
    [84]M. J. Harris, G. Coombe, T. Scheuermann, et al.,Physically-Based Visual Simulation on Graphics Hardware , In:Proceedings of ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,Saarbrucken, Germany,2002,109~118
    [85]Naga K. Govindaraju, Brandon Lloyd, Wei Wang, et al.,Fast Database Operations using Graphics Processors,In:Proceedings of the SIGMOD 2004,2004,52~65
    [86]曹锋,周傲英,基于图形处理器的数据流快速聚类,软件学报,2007,18(2):291~303
    [87]K. Moreland, A. Angel,The FFT on a GPU,In:Proceedings of Graphics Hardware 2003,San Diego,2003,112~119
    [88]Jianqing Wang, Tien-Tsin Wong, Pheng-Ann Heng, et al.,Discrete Wavelet Transform on GPU , In:Proceedings of ACM Workshop on General-Purpose Computing on Graphics Processors,2004,32~41
    [89]Tien-Tsin Wong, Chi-Sing Leung, Pheng-Ann Heng, et al.,Discrete Wavelet Transform on Consumer-Level Graphics Hardware , IEEE Transactions on Multimedia,2007,9(3):668~673
    [90]John D. Owens, David Luebke, Naga Govindaraju, et al.,A Survey of General-Purpose Computation on Graphics Hardware,Computer Graphics Forum,2007,26(1):80~113
    [91]吴恩华,图形处理器用于通用计算的技术现状及其挑战,软件学报,2004,15(10):1493~1505
    [92]Ian Buck, Tim Foley, Daniel Horn, et al.,Brook for GPUs: Stream Computing on Graphics Hardware,ACM Transactions on Graphics,2004,23(3):777~786
    [93]A. E. Lefohn, J. Kniss, R. Strzodka, et al.,Glift: Generic, Efficient, Random-Access GPU Data Structures,ACM Transactions on Graphics,2006,25(1):60~99
    [94]Matt Pharr,GPU精粹2—高性能图形芯片和通用计算编成技巧(龚敏敏),北京:清华大学出版社,2007,331~424
    [95]Fan-Yin Tzeng, Kwan-Liu Ma, Eric Lum , A Novel Interface for Higher-Dimensional Classification of Volume Data,In:Proceedings of the IEEE Visualization 2003,2003,505~512
    [96]Fan-Yin Tzeng, Kwan-Liu Ma,A Cluster-Space Visual Interface for Arbitrary Dimensional Classification of Volume Data ,In:Proceedings of VisSym 2004,Konstanz, Germany,2004,17~24
    [97]Fan-Yin Tzeng, Eric B. Lum, Kwan-Liu Ma,An Intelligent System Approach to HigherDimensional Classification of Volume Data,IEEE Transactions on Visualization and Computer Graphics,2005,11(3):273~284
    [98]宫延新,基于BP神经网络的体绘制转换函数研究及应用,[硕士学位论文],山东大学,2007
    [99]罗述谦,周果宏,医学图像处理与分析,北京:科学出版社,2003,572~578
    [100]林升梁,刘志,基于RBF核函数的支持向量机参数选择,浙江工业大学学报,2007,35(2):163~168
    [101]I. Ihm, S. Park,Wavelet-Based 3D Compression Scheme of Interactive Visualization of Very Large Volume Data,Computer Graphics Forum,1999,18(1):183~197
    [102]C. Bajaj, I. Ihm, S. Park , 3D RGB Compression for Interactive Applications,ACM Transactions on Graphics,2001,20(1):10~38
    [103]Stefan Guthe, Michael Wand, Julius Gonser, et al.,Interactive Rendering of Large Volume Data Sets , In:Proceedings of IEEE Visualization 2002,2002,53~60
    [104]S. Guthe, WStraβer,Real-Time Decompression and Visualization of Animated Volume Data,In:Proceedings of IEEE Visualization 2001,2001,269~284
    [105]Flemming Friche Rodler,Wavelet-Based 3D Compression with Fast Random Access for Very Large Volume Data,In:Proceedings of the 7th Pacific Conference on Computer Graphics and Applications,1999,108~117
    [106]Ky Giang Nguyen, Dietmar Saupe,Rapid High Quality Compression of Volume Data for Visualization,Computer Graphics Forum,2001,172(1):49~56
    [107]Amir Said, William A. Pearlman,A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees,IEEE Transaction on Circuits and Systems for Video Technology,1996,6(3):243~250
    [108]Peter Schelkens, Adrian Munteanu, Joeri Barbarien, et al.,Wavelet Coding of Volumetric Medical Datasets,IEEE Transaction on Medical Imaging,2002,22(3):225~228
    [109]Yongzhen KE, Jiawan ZHANG, Jizhou SUN, et al. , An Efficient Hierarchical Structure of Wavelet-based Compression for Large Volume Data Sets,Transactions of Tianjin University,2006,12(5):378~382
    [110]Yongzhen Ke, Jizhou Sun, Jiawan Zhang, et al. , 3D Volume Data Compression Based on Adaptive Wavelet,In:Proceedings of The World Congress on Intelligent Control and Automation,Dalian,china,2006,10440~10444
    [111]胡栋,静止图像编码的基本方法与国际标准,北京:北京邮电大学出版社,2003,205~209
    [112]Christmas tree data set ,http://ringlotte.cg.tuwie.ac.at/datasets/XMasTree/XMaxTree.html
    [113]Medical datasets ,http://www.gris.uni-tuebingen.de/areas/scivis/volren/datasets/data
    [114]Roger A. Crawfis, Nelson Max,Texture Splats for 3D Scalar and Vector Field Visualization,In:Proceedings of Visualization'93,San Jose:IEEE Computer Society Press,1993,192~200
    [115]Daqing Xue, Roger Crawfis,Efficient Splatting Using Modern Graphics Hardware,Journal of Graphics Tools,2003,8(3):1~21
    [116]Neophytos Neophytou, Klaus Mueller,GPU Accelerated Image Aligned Splatting,In:Proceedings of The Fourth International Workshop on Volume Graphics,2005,197~242
    [117]S. Grau, D. Tost,Image-space Sheet-Buffered Splatting on the GPU,IADIS International Journal on Computer Science and Information Systems,2007,2(2):141~150
    [118]EVergés, S. Grau, D. Tost,Hardware and Software Improvements of Volume Splatting,http://truja.lsi.upc.edu/movibio/papers/VGT06
    [119]Wei Chen, Liu Ren, Matthias Zwicker, et al.,Hardware-Accelerated Adaptive EWA Volume Splatting,In:Proceedings of IEEE Visualization 2004,2004,67~74
    [120]Stefan Horbelt, Michael Unser, Martin Vetterli,Wavelet Projections for Volume Rendering,In:Proceedings of EUROGRAPHICS 99,1999,56~59
    [121]Markus Hadwiger, Thomas Theul, Helwig Hauser, et al. ,Hardware-Accelerated High-Quality Filtering on PC Graphics Hardware,In:Proceedings of 6th International Fall Workshop Vision, Modeling, and Visualization,Stuttgart, Germany,2001,254~267
    [122]Markus Hadwiger, Ivan Viola, Thomas Theul, et al.,Fast and Flexible High-Quality Texture Filtering with Tiled High-Resolution Filters,In:Proceedings of Workshop on Vision, Modeling and Visualization,2002,155~162
    [123]Markus Hadwiger, Thomas Theul, Helwig Hauser, et al. ,Hardware-Accelerated Hiqh-Quality Reconstruction of Volumetric Data on PC Graphics Hardware ,http://www.vrvis.at/via/research/hq-hw-reco/
    [124]Markus Hadwiger , High-Quality Visualization and Filtering of Textures and Segmented Volume Data on Consumer Graphics Hardware,[PH.D. Dissertation],VRVis and ICGA TU Wien,2004
    [125]Ondrej Fialka, Martin Cadik,FFT and Convolution Performance in Image Filtering on GPU , In:Proceedings of the Tenth International Conference on Information Visualisation,Los Alamitos,2006,609~614
    [126]Cynthia Bruyns, Bryan Feldman , Image Processing on the GPU:a Canonical Example ,www.cs.berkeley.edu/~kubitron/courses/cs252-F03/projects/reports/project12_report_ver2.pdf
    [127]Ben Cope,Implementation of 2D Convolution on FPGA, GPU and CPU,http://cas.ee.ic.ac.uk/people/btc00/index_files/Convolution_filter.pdf
    [128]Alan Norton , Using Visibility to Control Progressive Wavelet Decompression of Data for Volume Visualization ,http://graphics.cudenver.edu/~workshop/Data/Norton_springer2.pdf
    [129]Karthik Krishnan, Michael W. Marcellin, Ali Bilgin, et al. ,Compression/Decompression Strategies for Large Volume Medical Imagery,In:Ratib O M,Huang H K,Proceedings of SPIE Medical Imaging 2004,2004,152~159
    [130]Hans-Christian Hege, Andrei Hutanu, Ralf Khler, et al.,Progressive Retrieval and Hierarchical Visualization of Large Remote Data,Scalable Computing: Practice and Experience,2005,6(3):57–66
    [131]Mukta Nandwani,Real-time Remote Visualization of Scientific Data,[Master's degree thesis],Virginia Polytechnic Institute and State University,2002
    [132]Yasuo Ebara, Yasuhiro Watashiba, Koji Koyamada, et al.,Remote Visualization Using Resource Monitoring Technique for Volume Rendering of Large Datasets,In:Proceedings of 2004 Symposium on Applications and the Internet (SAINT'04),2004,309~312
    [133]Steffen Prohaska, Andrei Hutanu, Ralf Kahler, et al.,Interactive Exploration of Large Remote Micro-CT Scans,In:Proceedings of IEEE Visualization,Austin, Texas, USA,2004,245~352
    [134]丁庆木,张虹,图像体绘制算法的分析与评价,系统仿真学报,2007,19(4):897~901
    [135]王文举,侯德文,几种变换域体绘制算法的比较研究,计算机技术与发展,2008,18(4):80~84
    [136]Klaus Engel, Ove Sommer, Thomas Ertl,A Framework for Interactive Hardware-Accelerated Remote 3D-Visualization , In:Proceedings of EG/IEEE TCVG Symposium on Visualization,2000,167~177
    [137]K. Engel, P. Hastreiter, B. Tomandl, et al.,Combining Local and Remote Visualization Techniques for Interactive Volume Rendering in Medical Applications,In:Proceedings of IEEE Visualization 2000,Salt Lake City,2000,449~452
    [138]Magnus Strengert, MarceloMagallón, Daniel Weiskopf, et al. ,Hierarchical Visualization and Compression of Large Volume Datasets Using GPU Clusters,In:Proceedings of Eurographics Symposium on Parallel Graphics and Visualization,2004,41~48
    [139]Joachim E. Vollrath, Daniel Weiskopf, Thomas Ertl,A Generic Software Framework for the GPU Volume Rendering Pipeline,In:Proceedings of Vision, Modeling, and Visualization,Erlangen, Bavaria, Germany,2005,391~398
    [140]D. L. Donoho,Wedgelets: Nearly-Minimax Estimation of Edges,Annals of Statistics,1999,27(3):857~897
    [141]Emmanuel Jean Candes,Ridgelets:Theory and Applications,[P.h.D Disseration],Stanford University,1998
    [142]Minh N. Do,Directional Multiresolution Image Representations,[Ph.D Disseration],Swiss Federal Institute of Technology,2001
    [143]David L. Donoho, Ofer Levi,Fast X-Ray and Beamlet Transforms for Three-Dimension Data,2002,Stanford University,
    [144]M. N. Do, M. Vetterli,Contourlets: A Directional Multiresolution Image Representation , In:Proceedings of IEEE International Conference on Image Processing (ICIP),Rochester,2002,230~236
    [145]M. B. Wakin, J. K. Romberg, H. Choi, et al.,Rate-Distortion Optimized Image Compression Using Wedgelets , In:Proceedings of IEEE International Conference on Image Processing,Rochester,New York,2002,26~32
    [146]Michael Wakin, Justin Romberg, Hyeokho Choi, et al.,Geometric Tools for Image Compression,In:Proceedings of Conference on Signals, Systems and Computers,2002,345~356
    [147]Minh N. Do, Martin Vetterli,Orthonormal Finite Ridgelet Transform for Image Compression , In:Proceedings of IEEE International Conference on Image Processing (ICIP),Washington:IEEE Press,2000,367~370
    [148]Ahmed Nabil BELBACHIR, Peter Michael GOEBEL , The Contourlet Transform for Image Compression,In:Proceedings of 4th Conference on Physics in Signal and Image Processing,Toulouse,France,2005,251~256

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700