用户名: 密码: 验证码:
数控系统参数曲线、曲面插补算法及加减速控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控技术是支持现代装备制造业的关键性技术,决定着制造装备的功能和性能。其中,参数曲线、参数曲面插补是现代数控系统的标志性功能。作为数控技术的核心,插补技术尤其是参数曲线、参数曲面插补及加减速控制算法的运算精度和速度对现代数控系统性能优劣起着决定性作用。本文就这两方面问题进行深入的理论和应用研究。
     以一、二阶泰勒展开式参数曲线插补算法和平面参数曲线插补算法研究为基础,提出引入误差补偿值的复杂空间参数曲线高精度插补算法以实现空间曲线的高精度插补。通过引入误差补偿值以提高参数曲线插补点的求解精度,在求解过程中对误差补偿值进行合理简化以降低插补计算量。Nurbs曲线仿真实例证明在满足实时性的前提下,该算法所计算的插补点参数值误差精度有明显提高。
     在对参数线法加工曲面研究的基础上,提出引入误差补偿值的两类参数曲面高精度刀轨规划算法以实现对缓变参数曲面和平移扫描曲面的高精度插补。通过引入误差补偿值以提高参数曲面在走刀方向上插补点的计算精度,针对缓变参数曲面曲率缓变和平移扫描曲面扫描轮廓沿扫描线平行的特点在运算过程中对插补点参数值的计算结果进行合理简化。参数曲面仿真实例证明在满足实时性的前提下,由该算法所计算的插补点参数值误差明显降低。
     以等残余高度刀具轨迹规划算法为基础,提出带有误差补偿值的复杂参数曲面高精度刀轨误差补偿算法以实现复杂参数曲面的高精度插补。通过引入误差补偿值以提高复杂参数曲面插补点求解精度,针对复杂参数曲面数控加工特点合理简化求解结果以降低插补运算量。复杂参数曲面仿真实例表明,该算法可在满足系统实时性的前提下,显著提高复杂参数曲面插补点参数值的计算精度。
     在对三角函数加减速控制算法研究的基础上,提出改进的三角函数加减速控制算法。利用加减速位移曲线函数的表达式保证位移、速度、加速度、加加速度曲线的连续性。算法性能分析表明改进的三角函数加减速控制算法在保证三角函数算法优点的基础上,有效解决了三角函数加减速算法运算复杂的问题,使零件的加工精度、工效提高,机床加工运行的平稳性得到有效保证。
     根据上述算法在八轴五联动数控系统开发中引入参数曲线、参数曲面插补算法及改进的三角函数加减速控制算法模块,可对数控系统的参数曲线、参数曲面的高速、高精加工形成有力支持。
Numerical control technology is the critical technology of modern equipment manufacturing industry, which determines the function and performance of manufacture equipment. Parameter curve and curved surface interpolation are the symbolic function of modern number control system. As the core of numerical technology, interpolation technology especially the precision and the speed of parameter curve, curved surface interpolation and acceleration deceleration control algorithm are playing a decisive role in the modern CNC system performance. The research of theory and application for these two aspects is done deeply in this paper.
     The interpolation algorithm of introduced error compensation for complex parametric curve in space (IAIECCS) is proposed for the high precision interpolation of parametric curve on the basis of studying the first, second order taylor expression parametric curve interpolation algorithm and the plane parametric curves interpolation algorithm. The error compensation is introduced in the interpolation algorithm to increase the interpolation point’s solution precision of the parametric curve, and the reasonable simplification of the compensation expression is carried in the solution process to decrease the calculation load of interpolation. The simulation example of Nurbs curve proves that the calculative precision of the interpolation point’s parameter value can be increased greatly on the premise that the real time performance of the numerical control system is satisfied.
     The high precision tool path planning algorithm of introduced error compensation (HPTPPAC) is proposed for the high precision interpolation of translational scanned curved surface and curved surface of which respective direction curvature changed slowly on the basis of studying parametric method tool-path generation for parametric surface. The error compensation is introduced in the interpolation algorithm to increase the interpolation point’s solution precision in the cutting direction of the parametric curved surface. The reasonable simplification of the computed result of the interpolation point’s parameter value is carried in the operation process by focusing on the character that curvature of slow-varying parametric curved surface changed slowly and the feature that the scanned profile of translational scanned curved surface is parallel along the scanned line. The simulation example of parametric curved surface proves that the calculative error of interpolation point’s parameter value can be decreased greatly under the condition that the real time performance of the numerical control system is satisfied.
     The high precision tool path planning algorithm with error compensation for complex parametric surfaces—high precision tool path planning algorithm of error compensation (HPTPPACPS) is proposed for the interpolation of complex curved surface on the basis of studying the constant scallop-height tool path planning for parametric surface. The interpolation point’s solution precision of the complex parametric curved surface is improved through the introduction of the error compensation. Meanwhile, the computed result is simplified reasonably to decrease the calculation load of interpolation according to the feature in Numerical control processing of complex parametric curved surface. The simulation example of complex parametric curved surface prove that the calculative precision of the interpolation point’s parameter value of the complex parametric curved surface can be increased obviously on the premise that the real time performance of the numerical control system is fulfilled.
     The modified acceleration deceleration control algorithm of trigonometric function (MADCATF) is proposed on the basis of studying the acceleration deceleration control algorithm of trigonometric function. The continuity of acceleration deceleration displacement、speed、acceleration and jerk function is satisfied by the form of the acceleration deceleration displacement function. The analysis of algorithm performance is shown that MADCATF can solve the problem of the acceleration deceleration control algorithm of trigonometric function and the merit of acceleration deceleration control algorithm of trigonometric function is kept. So the machining accuracy of the part and work efficiency are improved, and the stationarity of the movement of the machine tool in processing course is guaranteed effectively.
     According to the algorithm above, the module of the parametric curve interpolation, the parametric curved surface interpolation and MADCATF is introduced during the development of the eight-five axis CNC system. The high speed, and high precision machining of the parametric curve, the parametric curved surface can be supported effectively to the CNC system.
引文
[1]黄念庆,高速加工数控系统的新特点,现代机械,2004,5:42~43
    [2]吴智恒,徐旋波,数控机床技术发展趋势,机电工程技术,2004,33(9):7~9
    [3]侯长合,数控系统的发展方向---高速、高精度和易操作,世界制造技术与装备市场,2004,4:56~58
    [4]徐同申,国内数控机床用电主轴系统的发展,世界制造技术与装备市场,2004,1:40~41
    [5]王伟进,直线电机的发展与应用概述,微电机,2004,37(1):45~47
    [6]杨霞,李强,郭庆鼎等,基于数控机床进给用磁悬浮直线电机摩擦的消除,控制与检测,2005,7:41~45
    [7]直线电机在数控机床中的应用及发展趋势,http://articles.e-works.net.cn /Articles/450/ Article43200.htm,发表时间:2007-2-27
    [8]张冰蔚,马晓明,刘明灯等,直线电动机高速进给单元在数控车床上的应用,制造技术与机床,2005,2:90~91
    [9]陈新亚,数控机床及加工中的新技术,河南机电高等专科学校学报,2006,14(2):6~7
    [10]吴义荣,林雨,我国数控技术与产业现状,锻压装备与制造技术,2005,40(2):22~25
    [11]王太勇,从国际机床展看我国机床产业的现状与发展,机械工人,2005,6:47~48
    [12]王世寰,王永章,付云忠,开放式软CNC发展趋势及其体系结构的研究,机床与液压,2004,2:7~9
    [13]石宏,蔡光起,史家顺,开放式数控系统的现状与发展,机械制造,2005,43,6:18~21
    [14]赵巍,数控系统的插补算法及加减速控制方法的研究:[博士学位论文],天津;天津大学,2005
    [15]杨晓京,张仲彦,李浙昆等,几种开放式微机数控系统比较,制造业自动化,2002,24(1):18~21
    [16]梁宏斌,王永章,李霞,开放式数控系统与标准化,计算机集成制造系统,2004,10(9):1134~1138
    [17]王爱玲,刘永江,数控原理及数控系统,北京:机械工业出版社,2006:55~76
    [18]倪其民,李从心,林建平等,园锥曲线插补技术研究,机械研究与应用,1999 12(3):7~8
    [19]周凯,PC数控原理、系统及应用,北京:机械工业出版社,2006:17~19
    [20]周虹,两种数控直线插补算法的比较,组合机床与自动化加工技术,2004,3:101~102
    [21]王小彬,王太勇,李宏伟等,经济型数控系统角度逼近圆弧插补算法,佳木斯大学学报(自然科学版),2004,22(1):1~4
    [22]Bedi S, Ali I, Quan N,Advanced techniques for CNC machines,Trans ASME J Engng Industry, 1993,115:329~336
    [23] J.T.Huang, D. C. H. Yang, A generalized interpolator for command generation of parametric curves in computer-controlled machines, Japan/USA Symposium on Flexible Automation, ASME,1992,1:393~399
    [24]D. C. H. Yang, T.Kong, Parametric interpolator versus linear interpolator for precision CNC machining, Computer-Aided Design,1994,26(3):225~233
    [25]S L.Omirou, Space curve interpolation for CNC machines. Journal of Materials Processing Technology, 2003,141:343~350.
    [26]Xianbing Liu, Fahad Ahmad, Kazuo Yamazaki, et al, Adaptive interpolation scheme for Nurbs curves, International journal of Machine Tools & Manufacture, 2005, 45: 433~444.
    [27]Ming-Che Ho, Yean-Ren Hwang, Chang-Hsia Hu, Five-axis tool orientation smoothing using quaternion Interpolation algorithm, International Journal of Machine Tools & Manufacture, 2003, 43:1259~1267.
    [28]M. Balasubramaniam, S. Sarma, Y. Adachi, Generation collision-free 5-axis tool paths using a haptic surface, Computer Aided Design, 2002, 34:267~279.
    [29]Hwang J S, Interference-free tool-path generation in the NC machining of parametric compound surfaces, Computer-Aided design,1992,24(12):667~676
    [30]Rao A , Sarma R, On local gouging in five-axis sculptured surface machining using flat-end tools, Computer Aided Design, 2000, 32 :409~420
    [31]叶佩青,陈涛,汪劲松,复杂曲面五坐标数控加工刀具轨迹的规划算法.,机械科学与技术,2004,23(8):883~886
    [32]S.-S. Yeh, P.-L, Hsu, The speed-controlled interpolator for machining parametric curves, Computer-Aided Design, 1999,31:349~357
    [33]任锟,傅建中,陈子辰,高速加工中速度前瞻控制新算法研究,浙江大学学报,2006,40(11):1985~1988
    [34]赵国勇,徐志祥,赵福令,高速高精度数控加工中NURBS曲线插补的研究,中国机械工程,2006,17(3):291~294
    [35] Koren Y, Computer control of manufacturing systems, New York: McGraw-Hill, 1982:113~129
    [36]M.Shpitalni, Y.Koren, C.C.Lo, Real-time curve interpolators, Computer-Aided Design 1994,26(11):832~838
    [37]张伟,CNC系统中任意空间曲线的插补方法,机械,2002,29(2):36~37
    [38]何舜之,专题攻略数学空间向量与立体几何,乌鲁木齐:新疆科学技术出版社,2004:75~78
    [39]Yong T,Narayanaswami, A parametric interpolator with confined chord errors,acceleration and deceleration for NCmaehining.Computer Aided Design,2003,35(13):1249~1259
    [40]Yeh S S,Hsu P L, Adaptive feedrate interpolation for parametric curves with confined chord error, Computer Aided Design, 2002, 34(3):229~ 237
    [41](美)Julio Sanchez, Maria p.Canton著,罗骏等译,Windows图形编程,北京:清华大学出版社,2000:175~178
    [42]陈金成,多轴联动高性能数控加工的运动优化与复杂轨迹实时控制策略研究:[博士学位论文],上海;上海交通大学,2001
    [43]单岩,谭建荣,基于MODM模型的曲面NC加工刀轨行距计算,机械工程学报,2001,37(11):36~40
    [44]杨长祺,秦大同,石万凯,自由曲面五轴等残余高度高精度加工的路径规划,计算机辅助设计与图形学学报,2003,15(5):621~625
    [45]Lo C C, Efficient cutter-path planning for five-axis surface machining with a flat-end cutter, Computer-Aided Design,1999, 31: 557~566
    [46]Xiao Chun Wang, Yuan Yu, An approach to interference-free cutter positing for five-axis free-form surface side finishing milling, Journal of Materials Processing Technology, 2002,193:191~196
    [47]倪炎榕,马登哲,圆环面刀具五坐标数控加工复杂曲面优化刀位算法,机械工程学报,2001,37(2):87~91
    [48]Giri V, Bezbaruah D, Bubna P, Roy Choudhury A,Selection of master cutter paths in sculptured surface machining by employing curvature principle, International Journal of Machine Tools & Manufacture, 2005, 45:1202–1209
    [49]Syh-Shiuh Yeh, Pau-Lo Hsu, Adaptive-feedrate interpolation for parametric curves with a confined chord error, Computer-Aided Design 2002,34:229~237
    [50]Lin YJ , Lee T S1, An adaptive tool path generation algorithm for precision surface machining, Computer-Aided Design ,1999 , 31 (2) : 237~247
    [51]汪国平,华宣积,孙家广,复杂螺旋曲面铣削加工的几何特性分析,清华大学学报(自然科学版),2000,40 (9):49~52
    [52]李川,王时龙,张贤明,自由曲面数控加工刀具轨迹生成的约束条件分析,机械设计与制造,2006,3:47~48
    [53]Lee Y S, Non-isoparametric tool path planning bymachining strip evaluation for 5-axis sculptured surface machining, Computer-Aided Design, 1998, 30(7): 559–570.
    [54]陈国良,自由曲面数控加工刀具轨迹的规划与计算,中国科技信息,2005,13:122~124
    [55]Agrawal R K, Pratihar D K, Roy Choudhury A, Optimization of CNC isoscallop free form surface machining using a genetic algorithm, International Journal of Machine Tools & Manufacture, 2006, 46: 811~819
    [56]蔺宏伟,王国瑾,光滑曲面上的G1插值曲线,计算机辅助设计与图形学学报,2003 ,15 (5) :541~546
    [57]王远志,孙立镌,江克勤,基于特征造型的自由曲面特征及约束求解的研究,中国图象图形学报,2006,11(11):1673~1677
    [58]吴卫东,刘德仿,点云拟合中的特征识别技术研究,组合机床与自动化加工技术,2003,12:3~4
    [59]汪向众,王丽亚,姜光华,批量生产条件下机加工工艺的编制与优化,机车车辆工艺,2005,4:7~10
    [60]潘全科,朱剑英.,多工艺路线的批量生产调度优化,机械工程学报,2004,40(4):36~39
    [61]Sebastian D. Timar, Rida T. Farouki, Tait S. Smith, et al, Algorithms for time–optimal control of CNC machines along curved tool paths, Robotics and Computer-Integrated Manufacturing, 2005,21: 37~53
    [62]Eun-Young Heoa, Dong-Won Kima, Bo-Hyun Kim,et al, Estimation of NC machining time using NC block distribution for sculptured surface machining, Robotics and Computer-Integrated Manufacturing, 2006,22:437~446
    [63]Kaan Erkorkmaz, Yusuf Altintas, High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation, International Journal of Machine Tools & Manufacture, 2001,41(9): 1323–1345
    [64]郭新贵,李从心,一种新型柔性加减速算法,上海交通大学学报,2003,37(2):205~212
    [65]Kaan Erkorkmaz, Yusuf Altintas, High speed CNC system design. Part III: high speed tracking and contouring control of feed drives, Machine Tools & Manufacture, 2001, 41 (11) : 1637~ 1658
    [66]胡建华,廖文和,周儒荣,CNC系统中几种升降速控制曲线的研究与比较,南京航空航天大学学报,1999,31(6):705~711
    [67]Galleily J E, An Overview of Genetic Algorithms, Kybemetics, 1992, 21(6):26~30
    [68]P. V. S. Suresh, P. Venkateswara Rao, S. G. Deshmukh, A genetic algorithmic approach for optimization of surface roughness prediction model, International Journal of Machine Tools and Manufacture, 2002, 42(6): 675~680
    [69]赵巍,王太勇,万淑敏,基于NURBS曲线的加减速控制方法研究,中国机械工程,2006,17(1):1~3
    [70]杨开明,石川,叶佩青,数控系统轨迹段光滑转接控制算法,清华大学学报,2007,47 (8):1295~1299
    [71]刘雄伟,张定华,王增强等,数控加工理论与编程技术,北京:机械工业出版社,2001.92,128~137
    [72]周正干,王美清,李和平等,高速加工的核心技术,航空制造技术,2000,(3):13~16
    [73]Kaan Erkorkmaz, Yusuf Altintas, High speed CNC system design. Part II: modeling and identification of feed drives,International Journal of Machine Tools & Manufacture, 2001, 41(10):1487~1509
    [74]王润孝,秦现生,机床数控原理与系统,西安:西北工业大学出版,1997:115~144
    [75]彭芳瑜,何莹,李斌,NURBS曲线高速插补中的前瞻控制,计算机辅助设计与图形学学报,2006, 18(5):625~629
    [76]S.H.H. Zargarbashi, J.R.R. Mayer, Assessment of machine tool trunnion axis motion error, using magnetic double ball bar, International Journal of Machine Tools & Manufacture, 2006, 46: 1823–1834
    [77] David F.Rogers,,J.Alan Adams著,计算机图学的数学基础,北京:人民教育出版社,1981:125~140
    [78]陈良骥,王永章,五轴联动数控加工中的刀具补偿方法,制造技术与机床,2006,2:22~25
    [79]叶佩青,廖文和,周来水等,基于PC平台的计算机数控(CNC)系统开发,南京航空航天大学学报,1997,29(2):125~129
    [80]文立伟,路华,王永章等,基于开放式控制器的六轴数控系统的研究与开发,机床与压,2003,3:32~34.
    [81]张政,吴序堂,马书根等,基于软件化体系结构的数控机床数控系统的开发,机械工程学报,2003,39(2):93~97
    [82]郝钢,韩秋实,孙志永,基于PMAC的开放式数控系统性能的研究,北京机械工业学院学报, 2003, 18(2)::24~28
    [83]白建华,刘恒娟,范剑,基于PMAC运动控制器的开放式数控系统,机电工程,2004,21(4):16~19
    [84]邱润生,基于PC的开放式数控系统及其在玻璃雕刻机中的应用,轻工机械,2006,24(4):148~152
    [85]朱国力,段正澄,现代数控系统的特点和发展方向,机械与电子:2001,3:52~54
    [86]David J. Kruglinski,Scot Wingo,George Shepherd著,希望图书创作室译,Visual C++6.0技术内幕(第五版),北京:北京希望电子出版社,2000:175~208
    [87] Mork E.Russinovich,David A.Solomon著,潘爱民译,深入解析-Windows操作系统(第4版),北京:电子工业出版社,2007:89~135
    [88]李斌,周云飞,唐小琦,内核对象机制在基于Windows 2000的数控系统中的应用,计算机应用,2003,23(1):44~47
    [89] Feng Yuan著,英宇工作室译,Windows图形编程,北京:机械工业出版社,2002:15~17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700