用户名: 密码: 验证码:
曲霉多基因系统发育分析及病原性曲霉快速检测方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲霉与人类的日常生活具有密切关系。有些曲霉在人类生产实践中已被安全应用了近千年,有些曲霉能产生真菌毒素,对农业生产及食品安全造成危害,还有一些曲霉能引起人及动物的侵袭性感染。为了阐明曲霉不同菌种间的系统发育关系及分类地位,澄清不同曲霉之间的亲缘关系与进化路径,本研究对具有重要经济应用价值和临床上常见的共26个种的曲霉进行了系统发育分析。通过对曲霉四种持家基因GAPDH基因、β-tubulin基因、MTO1基因和HSP70基因的编码区部分序列设计兼并引物,对这些基因进行了扩增测序,并提交GenBank。在此基础上对各基因的碱基组成、碱基替换特征及各基因序列间的P距离进行了分析。并采用邻接法(NJ)、非加权分组平均法(UPGMA)法、最大似然法(ML)及最大简约法(MP)对各基因及四种基因的联合序列构建了系统发育树。通过分析,对这26种曲霉的系统发育关系及分类地位进行了阐述,并结合形态学特征对一些菌株进行了重新的鉴定和分类。
     在以上相关工作基础上,通过对曲霉四种基因测得序列的比对分析,针对病原性烟曲霉、构巢曲霉及黑曲霉的特异位点设计引物及Taqman探针,建立了应用Real-time PCR技术快速检测这三种病原性曲霉的方法。
Aspergillus has a close relationship with human daily life. It is a saprophytic fungus that plays an essential role in recycling environmental carbon and nitrogen, it also played a central role in the production of traditional fermented foods such as soy sauce, and soybean paste and rice wine throughout the last thousand years. Recently more than 1200 biological metabolites have been discovered in metabolites of aspergillus strains. On the other hand, many fungal toxins called mycotoxins are also producted by species of aspergillus. For example, aflatoxins, which are capable of causing disease in humans and other animals. Some aspergillus species such as A.fumigatus, A.flavus, A.terreus and A.niger are commonly associated with invasive infection in humans. There have been reports suggesting that the causative agents of aspergillus are species specific. Over the past 10 years, A. fumigatus has become the most prevalent airborne fungal pathogen, causing severe and usually fatal invasive infections in immunocompromised hosts in developed countries. Invasive aspergillosis (IA) has been observed was responsible for approximately 30% of fungal infections in patients dying of cancer, and it is estimated that IA occurs in 10% to 25% of all leukemia patients, IA is now a major cause of death at leukemia treatment centers and bone marrow transplantation (BMT) and solid-organ transplantationunits.
     The aim of this study is to examine aspergillus strains as to their phylogenetic relationships. Pylogenetic analysis was based on DNA sequences of theβ-tubulin gene, GAPDH gene, MTO1 gene and HSP70 gene partial encoding regions and Multi-gene phylogenetic analyses were also conduct to address the evolution of the 26 aspergillus species. Separate analyses and the combined analyses of the four genes were conducted. The base frequeney, base substitution and genetic distance (p-dictance) of DNA sequence have been analyzed by using two biosoftwares ClustalX 2.0 and MEGA 4.1. Pylogenetic tree of the 26 aspergillus was constructed used NJ (neighbor joining) method. Data and result are presented here from portions sequences of four loci and the combined datas. Summarizing the outcomes, we can conclude the results As follows:
     To theβ-tubulin gene of the 26 aspergillus species, the PCR amplification fragments ,there are seven aspergillus species haven’t intron sequences, they are A. wentii、A. tamarii、A. subolivaceus、A. parasiticus、A. oryzae、A. flavus、A. cristatus. The other 19 aspergillus species all have introns, which range from 48 bp to 84bp. The extron sequences are 456 bp and the translated protein contained 152 amino acids. To the GAPDH gene of the 26 aspergillus species, PCR amplification fragments of the A. terrus、A. terricola、A.glaucus、A. clavatus species have not intron; the other 22 aspergillus species have intron, which range from 53 bp to 60 bp. The extron sequence of the eight aspergillus species (A.tamarii、A.wentii、A.subolivaceus、A.oryzae、A.fumigatus、A.flavus、A.brunneo-uniseriatus、A.parasiticus) is 555 bp, the protein of these eight aspergillus species have 185 amino acids. The other aspergillus species extron is 552 bp, which protein contains 184 amino acids. The MTO1 gene of the 26 aspergillus species haven’t introns, But A.nidulans and A.aculeatus extron are 515 bp, the others strains extron are 512bp. The entire HSP70 genes haven’t intron sequences, the extron sequences are 439 bp. The protein sequences of HSP70 gene have 146 amino acids.
     The A+T avergage content of theβ-tubulin gene is 41.4% and G+C content is 58.6%, indicated theβ-tubulin gene is G+C bias. The GAPDH gene A+T content is 42%, G+C content is 58%, the G+C content more than A+T content, shows the GAPDH gene is G+C bias. The MTO1 gene A+T content is 45.1%, G+C content is 54.8%, the G+C content more than A+T content. The A+T contant of HSP70 gene is 44.3%, G+C content is 55.7%, the G+C content more than A+T content, also shows the HSP70 gene is G+C bias.
     β-tubulin gene of the 26 aspergillus species sequences have 428 identical pairs, have 22 transitionsal pairs and 4 transversional pairs. The average transition and transversion ratio ofβ-tubulin gene sequence is 5.5; GAPDH gene of the 26 aspergillus species sequences have 439 identical pairs, have 34 transitionsal pairs and 35 transversional pairs. The average transition and transversion ratio ofβ-tubulin gene sequence is 0.97; MTO1 gene of the 26 aspergillus species sequences have 421 identical pairs, have 41 transitionsal pairs and 42 transversional pairs. The average transition and transversion ratio ofβ-tubulin gene sequence is 0.98; HSP70 gene of the 26 aspergillus species sequences have 401 identical pairs, have 26 transitionsal pairs and 9 transversional pairs. The average transition and transversion ratio ofβ-tubulin gene sequence is 2. 89;
     The average P-distance ofβ-tubulin gene is 0.06, Most of them vary from 0 to 0.11; the average p-distnace of GAPDH gene is 0.11, Most of them vary between 0 and 0.19; the average p-distnace of MTO1 gene is 0.18, Most of them vary between 0 and 0.14; the average p-distnace of HSP70 gene is 0.08, Most of them vary between 0 and 0.14.The result shows the MTO1gene has more evolution rates than the other three genes.
     Theβ-tubulin gene, GAPDH gene, HSP70 gene and MTO1 gene combined sequences datas were also analysised. The total sequences of the combined genes range from 1959 to 1962 base pairs. Among them the conserved sites numbers is 1318, the variable sites are 647. The average A+T content is 43.2%, G+C average content is 56.8%. For the combined datas the identical pairs is 1745 base pairs, transitionsal pairs is 130 and transversional pairs is 85. The average transition and transversion ratio of combined gene datas sequence is 1.52. The transitionsal pairs are more than transversional pairs, the transitionsal pairs mainly on the second site of the codon. The transitionsal pairs is mainly T-C, transversional pairs is mainly C-G. The combined datas p-distance vary from 0 to 0.17, the average p-diatance is 0.11.
     The phylogentic tree of the four genes and the combined datas construct by NJ method. Among the five pylogenetic trees, the combined tree has the well-supported rates. The phylogenetic relationship within the 26 aspergillus species shows as follow:
     The total 26 aspergillus species is divided into six clusters.
     A.parasiticus, A.subolivaceus, A.wentii, A.flavus, A.oryzae, A.tamarii, A.cristatus and A.glaucus aspergillus species have the closer relationships in pylogenetic tree. In morphology classification, most of this aspergillus belongs to Flavi Section. A.brunneo-uniseriatu, A.fumigatus and A.clavatus have a close relationship. In fact A.terrus and A.terricola are the same species. A.nidulans and A.versicolor have a close relationship. A.foetidus and A.tubingensis in the same clade; A.awamori, A.niger, A.flavo-furcatis, A.candidus, A.phoenicis, A.japonicus and A.usamii in the same clades; A.carbonarius in the other clade. In morphology classification, most of this aspergillus belongs to section Nigri.
     A real-time PCR method for the detection of A. fumigates, A.niger and A.nidulans were established. The specific primers and Taqman probes were derived from Mto1 gene (A. fumigatus) and GAPDH gene (A.niger, A.nidulans) respectively. 26 species and some others pathogen fungi strains were used, No cross-amplification was observed. The lowest detection limits of the real-time PCR was 1.07×10-9μg/ml of the A. fumigates DNA template, 4.03×10-12μg/ml of the A.nidulans DNA template and 2.78×10-10μg/ml A.niger DNA template. Real-time PCR is a time-efficient, specifically, effective and easy-to-use method, it is a novel tool for identifying and determining the strain of pathogenic aspergillus. This method may be useful for epidemiological studies and surveillance of A. fumigates A.nidulans and A.niger in clinical samples.
引文
[1]柳增善主编,食品病原微生物学[M].北京:中国轻工业出版社, 2007:3-7.
    [2]王革,张中义,孔华忠,等.云南烟叶贮藏期霉变研究(1)-曲霉[J].云南农业大学学报, 2002,17(4):356-359.
    [3]于炎湖,汪儆.饲料霉变的原因、危害及其预防[J].饲料工业, 1999,20(4):1-3.
    [4]唐晓丹,李光辉.曲霉病的治疗:美国感染病学会临床实用指南[J].中国感染与化疗杂志, 2008,8(3):161-166.
    [5] Georgios Chamilos, Dimitrios P, Kontoyiannis, et al. Defining the diagnosis of invasive aspergillosis [J]. Med Mycol. 2006, 44(l):163-172.
    [6] Baddley JW, Pappas PG, Smith AC, et al. Epidemiology of aspergillus terreus at a university hospital [J]. Journal of Clinical Microbiology. 2003,41:5525-5529.
    [7] Dotis J, Panagopoulou P, Filioti J, et al. Femoral osteomyelitis due to aspergillus nidulans in a patient with chronic granulomatous disease[J]. Infection, 2003, 31:121-124.
    [8]陆家云主编,病原植物真菌学[M].北京:中国农业出版社, 2001:3-4.
    [9]齐祖同主编,中国真菌志,第五卷-曲霉属及其相关有性型[M].北京:科学出版社, 1997:1-2.
    [10] Aufauvre Brown A, Cohen J, Holden D W. Use of randomly amplified polymorphic DNA markers to distinguish isolates of aspergillus fumigates [J]. J Clin Microbiol, 1992, 30:2991-2993.
    [11] Van Belkum A, Meis J. Polymerase chain reaction-mediated genotyping in microbial epidemiology [J]. Clin Infect Dis. 1994, 31(9):2502-2505.
    [12] Radford S.A., Johnson E.M., Leeming J.P. et al. Moleular epidemiologieal study of aspergillus fumigates in abonemarrow transplantation unit by PCR amplification of ribosomal intergenic spacer sequenes [J]. J.Clin Mierobiol. 1998, 36(5):1294-1299.
    [13] S. W. Peterson, Phylogenetic relationships in aspergillus based on rDNA sequence analysis. in: integration of modern taxonomic methods for penicillium and aspergillus classification, R. A. Samson, J. I. Pitt (Eds.), Harwood Acad. Publ., Amsterdam, 2000.323-355.
    [14] Masatoshi Nei,Sudhir Kumar著,吕宝忠,钟扬,高莉萍等译.分子进化与系统发育[M].北京:高等教育出版社.2002:1-3.
    [15]周集中(美国)著,张洪勋等译校.微生物功能基因组学[M].北京:化学工业出版社, 2007:53-83.
    [16] Pennisi E. Preparing the ground for a modern tree of life [J]. Science. 2001,293:1979-1980.
    [17] Verweij PE, Meis JF, van den Hurk P et al. Phylogenetic relationships of five species of aspergillus and related taxa as deduced by comparison of sequences of small subunit ribosomal RNA [J]. J Med Vet Mycol. 1995.33(3):185-190.
    [18] David M. Geiser, Jens C. Frisvad, John W. Taylor evolutionary relationships in aspergillus section fumigati inferred from partialβ-tubulin and hydrophobin DNA sequences [J]. Mycologia, 1998, 90(5):831-845.
    [19] Wang LI, Yokoyamak, Miyajim et al. the identification and phylogenetic relationship of pathogenie species of aspergillus based on the mitochondrial cytochrome b gene [J]. Med Mycol. 1998, 36(3):153-164.
    [20] LI Wang, KOJI Yokoyamak, MAKOTO Miyaji et al. Mitochondrial cytochromeβgene analysis of aspergillus fumigatus and related species [J]. J Clin Microbiol. 2000, 38(4):1352-1358.
    [21]刘鹤玲,刘奇.分子进化中性学说对达尔文进化论的冲击和完善,广西社会科学[J]. 2006, 130(4):13-16.
    [22] Brown, J.R., C.J. Douady, M.J. Italia, et al. Universal trees based on large combined protein sequence date sets [J]. Nat.Genet. 2001,28:281-285.
    [23] Balajee SA, Gribskov JL, Hanley E, et al. Aspergillus lentulus sp.nov. a new sibling species of A. fumigatus [J]. Eukaryot Cell. 2005, 4(3):625-632.
    [24] Piel W H., Sanderson M J, Donoghue M J. The small-world dynamics of tree networks and data mining in phyloinformatics [J]. Bioinformatic. 2003, 19(9):1162-1168.
    [25] Maddison D R, Schulz K S. The tree of life web project. 2004[EB/OL]. http://toweb.org
    [26]孙啸,谢建明.生物信息学基础[M].北京:清华大学出版社,2005,231-234.
    [27] Felsenstein, J. confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985,39:783-791.
    [28] Russo, C.A.M., N.Takezaki, M.Nei. Efficencies of different genes and different tree building methods in recovering a known vertebrate phylogeny [J]. Mol. Biol.Evol. 1996,13:525-536.
    [29] Drosopoulou E, Scouras ZG. The beta-tubulin gene family evolution in the drosophila montium subgroup of the melanogaster species group [J]. J Mol Evol. 1995,41(3):293-298.
    [30] Edlind TD, Li J, Visvesvara GS, et al. Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa [J]. Mol Phylogenet Evol. 1996, 5(2):359- 367.
    [31] Peterson SW. Phylogenetic analysis of Aspergillus species using DNA sequences from four loci [M]. Mycologia. 2008, 100(2):205-226.
    [32] Sung GH, Hywel-Jones NL, Sung JM. Phylogenetic classification of cordyceps and the clavicipitaceous fungi [J]. Stud Mycol. 2007, 57:5-59.
    [33] Huang CH, Lee FL, Tai CJ. The beta-tubulin gene as a molecular phylog- enetic marker for classification and discrimination of the saccharomyces sensu stricto complex[J]. Antonie Van Leeuwenhoek. 2009, 95(2):135-42.
    [34] Keeling PJ, Luker MA, Palmer JD. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi [J] Mol Biol Evol. 2000, 17(1):23-31.
    [35] Ercolani L, Brown D, Stuart-Tilley A, et al. Colocalization of GAPDH and band 3 (AE1) p roteins in rat erythrocytes and kidney intercalated cell membranes [J]. Am J Physiol, 1992, 262(5 Pt 2):F892-F896.
    [36] Nakagawa T, Hirano Y, Inomata A, et al. Participation of a fusogenic p rotein, glyceraldehydes -3-phosphate dehydrogenase, in nuclearmembrane assembly [J]. J Biol Chem, 2003, 278(22):20395-20404.
    [37] Brown EW, Davis RM, Gouk C, Phylogenetic relationships of necrogenic erwinia and brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences[J]. Int J Syst Evol Microbiol. 2000, 50(6):2057-2068.
    [38] Myllys L, Stenroos S, Thell A, et al. Phylogeny of bipolar cladonia arbuscula andcladonia mitis (Lecanorales, Euascomycetes)[J]. Mol Phylogenet Evol. 2003,27(1):58-69.
    [39] Gerbod D, Sanders E, Moriya S et al. Molecular phylogenies of parabasalia inferred from four protein genes and comparison with rRNA trees[J]. Mol Phylogenet Evol. 2004,31(2):572-580.
    [40] Borchiellini C, Boury-Esnault N, Vacelet J. Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of metazoa and specific phylogenetic relationships between animals and fungi[J]. Mol Biol Evol. 1998, 15(6):647-55.
    [41] Sulaiman IM, Morgan UM, Thompson RC, et al. Phylogenetic relationships of cryptosporidium parasites based on the 70-kilodalton heat shock protein (HSP70) gene[J]. Appl Environ Microbiol. 2000, 66(6):2385-2391.
    [42] Yamasaki M, Inokuma H, Sugimoto C, Comparison and phylogenetic analysis of the heat shock protein 70 gene of babesia parasites from dogs[J]. Vet Parasitol. 2007, 145(3-4):217-227.
    [43] Monteiro R.M, Richtzenhain L.J, Pena H.F. Molecular phylogenetic analysis in hammondia-like organisms based on partial Hsp70 coding sequences [J]. Parasitology. 2007, 134(9):1195-203.
    [44] Geoffrey Colby, Mian Wu, and Alexander Tzagoloff, MTO1 Codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of saccharomyces cerevisiae [J]. The Journal of Biological Chemistry, 1998, 273(43): 27945-27952.
    [45] Horn, B.W., Greene, R.L., Dorner, J.W. Effect of corn and peanut cultivation on soil populations of aspergillus flavus and A.parasiticus in southwestern Georgia [J]. Appl. Environ microbial. 1995,61:2472-2475.
    [46] Jorgensen, T.R., Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae [J]. J.Food Prot. 2007, 70:2916-2934.
    [47] Wiederhold, N. P., Lewis, R.E., Kontoyianns, D. P. Invasive aspergillosis in patients with hematologic malignancies [J]. Pharmacotherapy. 2003,23:1592-1610.
    [48] Thompson, J.D., Gibson, T.J., Plewniak, F. et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. NucleicAcids Research, 1997, 24:4876-4882.
    [49] Tamura K, Dudley J, Nei M Kumar. SMEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution. 2007,24:1596-1599.
    [50] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. evolution [J]. 1985,39:783-791.
    [51] PM Sharp, DC Shields, KH Wolfe, et al. Chromosomal location and evolutionary rate variation in enterobacterial genes[J]. Science. 1989, 246(4931):808- 810.
    [52] Desalle RT., Freedman T, Prager EM. et al. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian DorsiPhila[J]. J.Mol. Evol, 1987, 26:157-164.
    [53] Rigo′K, Varga J, To′th B, et al. Phylogenetic analysis of Aspergillus section flavi based on sequences of the internal transcribed spacer regions and the 5.8 S rRNA gene [J]. Journal of General and Applied Microbiology. 2002,48:9-16.
    [54] Geiser DM, Pitt JI and Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus [J]. Proceedings of the National Academy of Sciences, USA. 1998,95:388-393.
    [55]刘作易,秦京,李乃亮.茯砖茶“金花”菌-谢瓦氏曲霉间变种的孢子产生条件[J].西南农业学报, 1991,4(1):73-77.
    [56] Peterson SW. Phylogenetic relationships in Aspergillus based upon rDNA sequence analysis. In: Samson RA and Pitt JI (eds) integration of modern taxonomic methods for penicillium and aspergillus classification harwood academic publishers, Amsterdam, the Netherlands. 2000,323-355.
    [57] Varga J, Tóth B, KocsubéS, et al. Evolutionary relationships among Aspergillus terreus isolates and their relatives[J]. Antonie Van Leeuwenhoek. 2005,88: 141-150.
    [58] Varga J, Vida Z, Toth B, et al. Phylogenetic analysis of newly described Neosartorya species [J]. Antonie van Leeuwenhoek. 2000,77:235-239.
    [59] János Varga, Zoltán Vida, Beáta Tóth et al. Phylogenetic analysis of newly described Neosartorya species [J]. Antonie van Leeuwenhoek. 2000, 77(3):235-239.
    [60] Raper KB, Fennell DI. The Genus Aspergillus. 1965, Williams and Wilkins,Baltimore, USA.
    [61] Gams W, Christensen M, Onions AHS. Infrageneric taxa of aspergillus. in: samson ra and pitt ji (eds) advances in aspergillus and penicillium systematics plenum press [M]. New York, USA. 1985:55-62.
    [62] Al-Musallam. A Revision of the black aspergillus species [M]. Ph.D. Thesis, Utrecht, the Netherlands. 1980.
    [63] Kozakiewicz Z, Aspergillus species on stored products. Mycological Papers. 1989,161:1-188.
    [64] Megnegneau B, Debets F, Hoekstra RF. Genetic variability and relatedness in the complex group of black Aspergilli based on random amplification of polymorphic DNA [J]. Current Genetics. 1993,23:323-329.
    [65] Accensi F, Abarca ML, Cano J, et al. Distribution of ochratoxin a producing strains in the Aspergillus niger aggregate [J]. Antonie van Leeuwenhoek. 2001,79:365- 370.
    [66] Yokoyama K, Wang L, Miyaji M, et al. Identification, classification and phylogeny of the aspergillus section nigri inferred from mitochondrial cytochrome b gene [J]. FEMS Microbiology Letters. 2001,200:241-246.
    [67] Parenicova L, Skouboe P, Frisvad J, et al. Combined molecular and biochemical approach identifies Aspergillus japonicas and Aspergillus aculeatus as two species [J]. Applied and Environmental Microbiology. 2001,67:521-527.
    [68] Flannigan, Pearce, Flannigan B et al. Aspergillus spoilage: spoilage of cereals and cereal products by the hazardous species Aspergillus clavatus. In: Powell KA, Renwick A and Peberdy JF (eds) The genus aspergillus. From taxonomy and genetics to industrial application (pp) plenum press, New York, USA. Frisvad JC and Samson RA. 1994,115-127.
    [69]姚粟,李辉,程池. 23株曲霉属菌种的形态学复核鉴定研究[J].食品与发酵工业. 2006, 32(12):37-43.
    [70] Ja′nos Varga1, A′kos Juha′sz1, Ferenc Kevei1,et al. Molecular diversity of agriculturally important Aspergillus species [J]. European Journal of Plant Pathology. 2004,110:627-640.
    [71] Varga J, Rigo′K, Te′ren J et al. Recent advances in ochratoxin research II.Biosynthesis, mode of action and control of ochratoxins [J]. Cereal Research Communications. 2001,29:93-100.
    [72] Keller NP, Hohn TM. Metabolic pathway gene clusters in filamentous fungi [J]. Fungal Genetics and Biology. 1997,21:17-29.
    [73]黄原.分子系统学一原理方法及应用[M].北京:中国农业出版社, 1998:56-58.
    [74] Flook P.K., Klee S., Rowell C.H.F. et al. A combined molecular phylogenetic analysis of the orthoptera (arthxopoda, inseeta) and implications for their higher systematics [J]. Systematic Biology, 1999, 48(2):233-253.
    [75] James Remsen, Patriek O. Grday. Phylogeny of drosophilinae (DiPtear: DrosoPhilidae), with comments on combined analysis and charaeter support [J]. Molecular Phylogenetics and Evolution, 2002, 24:249-264.
    [76] W.J. Bailey, D.C.F. Rentz, The Tettigoniidae: biology, systematics and evolution. Bathurst, N.S.W.: Crawford House Press 1991,l-8,27-69,352-377.
    [77]金欣,陈建魁,黄媛.曲霉感染实验诊断的研究进展[J].中国卫生检验杂志, 2007,17(7):1136-1138.
    [78] Williamson EC, Oliver DA, Johnson EM, et al. Aspergillus antigen testing in bone marrow transplant recipients[J]. J Clin Pathol, 2000, 53(5):362-366.
    [79] Montoya JG, Giraldo LF, Efron B, et al. Infectious comp lications among 620 consecutive heart transplant patients Stanford University Medical Center [J]. Clin Infect Dis, 2001, 33(5):629-6401.
    [80] Kontoyiannis DP, Bodey GP. Invasive aspergillosis in 2002: an update [J]. Eur J clin Microbiol Infect Dis, 2002, 21(3):161-1721.
    [81] Hebart H. L, offler J, Meisner C, et al. Early detection of aspergillus infection after allogeneic stem cell transplantation by polymerase chain reaction screening [J]. Infect Dis, 2000, 181(5):1713-1719.
    [82] Henry T., Iwen P. C., and Hinrichs S. H. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2[J]. J. Clin. Microbiol. 2000. 38:1510-1515.
    [83] Georgios Chamilos, Dimitrios P Kontoyiannis. Defining the diagnosis of invasive aspergillosis [J]. Med Mycol, 2006, 44(l):163-1721.
    [84] Hurst SF, Reyes GH, McLaughlin DW, et al. Comparison of commercial latex agglutination and sandwich enzyme immunoassays with a competitive binding inhibition enzyme immunoassay for detection of antigenemia and antigenuria in a rabbit model of invasive aspergillosis [J]. Clin Diagn Lab Immunol, 2000, 7(3):477- 485.
    [85] Wheat L J. Galactomannan antigenemia detection for diagnosis of invasive aspergillosis [J]. Clin Microbiol Newslett, 2005, 27:51-571.
    [86] Pazos C, Ponton J, Del Palacio A. Contribution of (1->3) -β- D- glucan chromogenic assay to diagnosis and therapeuticmonitoring of invasive aspergillosis in neutropenic adult patients: a comparison with serial screening for circulating galactomannan [J]. J Clin Microbiol, 2005, 43(1):299-3051.
    [87]王莉,郝飞,叶庆佾.曲霉感染实验诊断的研究进展[J].国外医学皮肤性病学分册, 2003,29(2):103-105.
    [88] Hope W.W, Walsh T J, Denning D W. Laboratory diagnosis invasive aspergillosis [J]. Lancet Infect Dis, 2005, 5(10):609-6221.
    [89] KamiM, Fukui T, Ogawa S, et al. Use of real - time PCR on blood samples for diagnosis of invasive aspergillosis [J]. Clin Infect Dis, 2001, 33(9):1504-1512.
    [90] Henry T., Iwen P. C., Hinrichs S. H. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2[J]. J. Clin. Microbiol. 2000.38:1510- 1515.
    [91] Consuelo Ferrer, Francisca Colom, Susana Frase′s et al. Detection and identification of fungal pathogens by PCR and by ITS2and 5.8S Ribosomal DNA typing in ocular infections [J] Journal of Clinical Microbiology, 2001, 39(8): 2873-2879.
    [92] Brown VM, Krynetski EY, Krynetskaia NF, et al. A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehydes-3-phosphate dehydrogenase following genotoxic stress [J]. J Biol Chem, 2004, 279(7):5984-5992.
    [93] Michael J. Hynes, Sandra L. Murray, Gillian S. Khew et al. Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in aspergillus nidulans. Genetics. 2008, 178(3):1355-1369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700