用户名: 密码: 验证码:
Myostatin对成肌细胞糖代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌肉抑制素Myostatin(MSTN)是由骨骼肌分泌抑制骨骼肌生长发育的生长因子,它对于骨骼肌的自我稳态调节具有重要的作用。由于MSTN可以随血液到达全身,故靶器官可能并不限于骨骼肌。已有研究提示它可能参与机体蛋白质、糖类和脂肪等物质代谢的调节,如脂肪组织就是已被证实的除骨骼肌以外受MSTN调节的组织。本课题首次从细胞水平上研究了MSTN对成肌细胞糖代谢的影响。
     葡萄糖消耗试验显示,MSTN可以促进分化的C2C12肌管消耗培养基中的葡萄糖,这种促进细胞吸收葡萄糖的作用与Insulin相似,二者联用时还呈现协同作用。MSTN对糖消耗的促进作用不依赖于血清中的其它激素或因子,而且不是由于MSTN本身的细胞毒性所致。与已分化的肌管不同,MSTN不促进未分化的成肌细胞消耗葡萄糖,这也与Insulin的作用类似。因此,MSTN的降糖效应可能与特异性表达于分化后骨骼肌的GLUT4相关。有趣的是,在进化上完全缺失GLUT4的鸡原代肌管中,Insulin对其糖消耗的促进作用确实明显减弱,但MSTN仍然有明显的促进作用,提示MSTN促进糖消耗作用可能还有其它葡萄糖转运载体参与。
     然而在葡萄糖摄取实验中,MSTN短时间内直接抑制糖摄取;但若仅以MSTN预处理1小时则仍可促进糖摄取。这些结果提示MSTN对葡萄糖转运作用的复杂性,因为糖摄取观察瞬时的葡萄糖转运作用,这一过程由骨骼肌中Insulin敏感的GLUT4载体介导,而糖消耗实验时间较长,可能还有其它非Insulin敏感的糖转运载体参与。
     综上,本研究揭示了MSTN在控制骨骼肌的增殖、分化之外,还会影响其葡萄糖代谢过程,全面阐明MSTN对骨骼肌糖代谢的调控机制,将为全新认识和界定骨骼肌在胰岛素抵抗和/或2型糖尿病的发生、发展过程中的作用奠定基础,也为将来的糖尿病治疗提供了可能的药物靶点。
Myostatin (MSTN) is a growth factor, which is secreted by skeletal muscle and inhibits the growth and proliferation of skeletal muscle itself. It has a crucial role on the regulation of skeletal muscle homeostasis. Since MSTN can be distributed to the whole body by circulation, its function may not only be limited in skeletal muscle. It has been identified that the adipo-tissue could be regulated by MSTN. The increased expression of Myostatin gene during some diseases progression will cause the degradation of structure proteins in skeletal muscle, and followed by cachexia. Thus, MSTN shouldn't be only consided as a regulator of skeletal muscle mass, but also an endocrine factor, which may participate the regulation of metabolism of lipid and proteins etc.
     Our project mainly focused on the affect of MSTN on glucose metabolism in celll culture system. The results of glucose consumption assay show that MSTN could promote the glucose consumption in differentiated C2C2 myotubes. Those promotion effects were similar to Insulin, and the combination of those two drugs could synergize with each other. The function of MSTN on glucose consumption didn't depend on other hormones or factors in the serum, nor relate to the cyto-toxicity of MSTN. Since MSTN couldn't promote the glucose metabolism in undifferentiated myoblasts, its function may rely on the GLUT4, which only appears in differentiated myotubes. The RT-PCR results suggested that MSTN couldn't upregulate the GLUT4 transcription, which indicate that MSTN may have effect on the translocation of GLUT4 from cytosol to cell membrane.
     Interestingly, in the GLUT4 deficient chicken myotubes, the promotion effects of Insulin on glucose consumption were not that apparent like in mice, while MSTN's effects were still obviously. Those results indicated that other types of glucose transporter might involve in MSTN's promotion effects on glucose metabolism.
     However, the glucose uptake experiments were contradictorily. MSTN could inhibit the glucose uptake in short time. But if we pretreat the cells with MSTN for 1h, wash with PBS, and then test the glucose uptake, MSTN could promote the uptake again. The explanation of those outwardly contrary results is: The two kinds of experiments adopted different strategy and object. The glucose uptake experiments are instantaneous, while the glucose consumption assays last for long term, which is a combination effect of several types of glucose transporter.
     Our researches try to elucidate the regulation mechanism of MSTN on skeletal muscle glucose metabolism. Its results will provide a new clue on relationship between skeletal muscle and type 2 diabetes or insulin resistance, and also a novel target of diabetes therapy.
引文
1. McPherron AC, Lawler AM, Lee SJ: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387:83-90.
    2. Shyu KG, Ko WH, Yang WS, Wang BW, Kuan P: Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes. Cardiovasc Res 2005, 68:405-414.
    3. Bullough WS: Mitotic and functional homeostasis: a speculative review. Cancer Res 1965, 25:1683-1727.
    4. Gaussin V, Depre C: Myostatin, the cardiac chalone of insulin-like growth factor-1. Cardiovasc Res 2005, 68:347-349.
    5. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM: Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 1982, 300:611-615.
    6. Lee SJ: Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 2004,20:61-86.
    7. McPherron AC, Lee SJ: Double muscling in cattle due to mutations in the myostatin gene. Proc Natl AcadSci USA 1997, 94:12457-12461.
    8. Kambadur R, Sharma M, Smith TP, Bass JJ: Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 1997, 7:910-916.
    9. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, et al.: A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997, 17:71-74.
    10. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, et al.: Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci U S A 1998, 95:14938-14943.
    11. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ: Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004, 350:2682-2688.
    12. Strati I A, Kopecny M: Genomic organization, sequence and polymorphism of the porcine myostatin (GDF8; MSTN) gene. Anim Genet 1999, 30:468-470.
    13. Sazanov A, Ewald D, Buitkamp J, Fries R: A molecular marker for the chicken myostatin gene (GDF8) maps to 7p11. Anim Genet 1999,30:388-389.
    14. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ: Induction of cachexia in mice by systemically administered myostatin. Science 2002, 296:1486-1488.
    15. Patel K, Amthor H: The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord 2005, 15:117-126.
    16. Lee SJ, McPherron AC: Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 2001,98:9306-9311.
    17. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L: Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 2003, 23:7230-7242.
    18. Szabo G, Dallmann G, Muller G, Patthy L, Soller M, Varga L: A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome 1998,9:671-672.
    19. Charlier C, Coppieters W, Farnir F, Grobet L, Leroy PL, Michaux C, Mni M, Schwers A, Vanmanshoven P, Hanset R, et al.: The mh gene causing double-muscling in cattle maps to bovine Chromosome 2. Mamm Genome 1995, 6:788-792.
    20. Smith TP, Lopez-Corrales NL, Kappes SM, Sonstegard TS: Myostatin maps to the interval containing the bovine mh locus. Mamm Genome 1997, 8:742-744.
    21. Ferrell RE, Conte V, Lawrence EC, Roth SM, Hagberg JM, Hurley BF: Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics 1999, 62:203-207.
    22. Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G: Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 2003, 286:263-275.
    23. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, et al.: Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 2003,300:965-971.
    24. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS, Khurana TS: Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002, 420:418-421.
    25. Yamanouchi K, Soeta C, Naito K, Tojo H: Expression of myostatin gene in regenerating skeletal muscle of the rat and its localization. Biochem Biophys Res Commun 2000, 270:510-516.
    26. Wang H, Zhang Q, Zhu D: hSGT interacts with the N-terminal region of myostatin. Biochem Biophys Res Commun 2003, 311:877-883.
    27. Gerrard DE, Judge MD: Induction of myoblast proliferation in L6 myoblast cultures by fetal serum of double-muscled and normal cattle. JAnim Sci 1993, 71:1464-1470.
    28. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R: Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 2000, 275:40235-40243.
    29. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R: Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 2003,162:1135-1147.
    30. Langley B, Thomas M, McFarlane C, Gilmour S, Sharma M, Kambadur R: Myostatin inhibits rhabdomyosarcoma cell proliferation through an Rb-independent pathway. Oncogene 2004, 23:524-534.
    31. Ricaud S, Vernus B, Duclos M, Bernardi H, Ritvos O, Carnac G, Bonnieu A: Inhibition of autocrine secretion of myostatin enhances terminal differentiation in human rhabdomyosarcoma cells. Oncogene 2003, 22:8221-8232.
    32. Lin J, Della-Fera MA, Li C, Page K, Choi YH, Hartzell DL, Baile CA: P27 knockout mice: reduced myostatin in muscle and altered adipogenesis. Biochem Biophys Res Commun 2003, 300:938-942.
    33. Spiller MP, Kambadur R, Jeanplong F, Thomas M, Martyn JK, Bass JJ, Sharma M: The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol Cell Biol 2002, 22:7066-7082.
    34. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R: Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 2002, 277:49831-49840.
    35. Rios R, Carneiro I, Arce VM, Devesa J: Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol 2002, 282:C993-999.
    36. Amthor H, Huang R, McKinnell I, Christ B, Kambadur R, Sharma M, Patel K: The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Dev Biol 2002, 251:241-257.
    37. Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B: Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 2003, 28S:E363-371.
    38. Carlson CJ, Booth FW, Gordon SE: Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 1999, 277:R601-606.
    39. Wehling M, Cai B, Tidball JG: Modulation of myostatin expression during modified muscle use. Faseb J 2000,14:103-110.
    40. Reardon KA, Davis J, Kapsa RM, Choong P, Byrne E: Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve 2001, 24:893-899.
    41. Lalani R, Bhasin S, Byhower F, Tarnuzzer R, Grant M, Shen R, Asa S, Ezzat S, Gonzalez-Cadavid NF: Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight. J Endocrinol 2000, 167:417-428.
    42. Matsakas A, Diel P: The growth factor myostatin, a key regulator in skeletal muscle growth and homeostasis. Int J Sports Med 2005, 26:83-89.
    43. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL: Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 2001, 98:14440-14445.
    44. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117:399-412.
    45. Dehoux MJ, van Beneden RP, Fernandez-Celemin L, Lause PL, Thissen JP: Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett 2003, 544:214-217.
    46. Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL: IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 2004, 287:E591 -601.
    47. Kim HS, Liang L, Dean RG, Hausman DB, Hartzell DL, Baile CA: Inhibition of preadipocyte differentiation by myostatin treatment in 3T3-L1 cultures. Biochem Biophys Res Commun 2001,281:902-906.
    48. Lin J, Arnold HB, Della-Fera MA, Azain MJ, Hartzell DL, Baile CA: Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem Biophys Res Commun 2002, 291:701-706.
    49. Zhiliang G, Dahai Z, Ning L, Hui L, Xuemei D, Changxin W: The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci China C Life Sci 2004, 47:25-30.
    50. Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A, Fielder TJ, Gonzalez-Cadavid NF: Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 2003, 285:E876-888.
    51. McPherron AC, Lee SJ: Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 2002, 109:595-601.
    52. Artaza JN, Bhasin S, Magee TR, Reisz-Porszasz S, Shen R, Groome NP, Fareez MM, Gonzalez-Cadavid NF: Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology 2005,146:3547-3557.
    53. Barazzoni R, Zanetti M, Bosutti A, Stebel M, Cattin L, Biolo G, Guarnieri G: Myostatin expression is not altered by insulin deficiency and replacement in streptozotocin-diabetic rat skeletal muscles. Clin Nutr 2004, 23:1413-1417.
    54. Ma K, Mallidis C, Artaza J, Taylor W, Gonzalez-Cadavid N, Bhasin S: Characterization of S'-regulatory region of human myostatin gene: regulation by dexamethasone in vitro. Am J Physiol Endocrinol Metab 2001, 281:E1128-1136.
    55.张建,华琦:代谢综合征.北京:人民卫生出版社;2003.
    56. Shuldiner AR, Yang R, Gong DW: Resistin, obesity and insulin resistance—the emerging role of the adipocyte as an endocrine organ. N Engl J Med 2001, 345:1345-1346.
    57. Gimeno RE, Klaman LD: Adipose tissue as an active endocrine organ: recent advances. Curr Opin Pharmacol 2005, 5:122-128.
    58. Hutley L, Prins JB: Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci 2005, 330:280-289.
    59. Ronti T, Lupattelli G, Mannarino E: The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006, 64:355-365.
    60. Scherer PE: Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 2006, 55:1537-1545.
    61. Kahn CR: Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994,43:1066-1084.
    62. DeFronzo RA: Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988,37:667-687.
    63. Ortmeyer HK, Bodkin NL, Hansen BC: Paradoxical phosphorylation of skeletal muscle glycogen synthase by in vivo insulin in very lean young adult rhesus monkeys. Ann N Y Acad Sci 1999, 892:247-260.
    64. Newsholme EA, Leech AR: Biochemistry for the Medical Science. New York: John Wiley and Sons.; 1983.
    65.Saltiel AR,Kahn CR:Insulin signalling and the regulation of glucose and lipid metabolism.Nature 2001,414:799-806.
    66.DeFronzo RA,Gunnarsson R,Bjorkman O,Olsson M,Wahren J:Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent(type Ⅱ) diabetes mellitus.J Clin Invest 1985,76:149-155.
    67.Richter EA,Mikines KJ,Galbo H,Kiens B:Effect of exercise on insulin action in human skeletal muscle.J Appl Physiol 1989,66:876-885.
    68.罗敏,李果,苏青:分子内分泌学:塞础与临床edn 1.Edited by 上海医科大学附属瑞金医院继续医学教育丛书.临床新技术著作系列.北京:人民军医出版社:2003.
    69.Dohm GL,Tapscott EB,Pories WJ,Dabbs DJ,Flickinger EG,Meelheim D,Fushiki T,Atkinson SM,Elton CW,Caro JF:An in vitro human muscle preparation suitable for metabolic studies.Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects.J Clin Invest 1988,82:486-494.
    70.Fink RI,Wallace P,Brechtel G,Olefsky JM:Evidence that glucose transport is rate-limiting for in vivo glucose uptake.Metabolism 1992,41:897-902.
    71.Wright EM:Renal Na(+)-glucose eotransporters.Am J Physiol Renal Physiol 2001,280:F10-18.
    72.Mueckler M:Facilitative glucose transporters.Eur J Biochem 1994,219:713-725.
    73.Joost HG,Thorens B:The extended GLUT-family of sugar/polyol transport facilitators:nomenclature,sequence characteristics,and potential function of its novel members(review).Mol Membr Biol 2001,18:247-256.
    74.Wood IS,Trayhurn P:Glucose transporters(GLUT and SGLT):expanded families of sugar transport proteins.Br J Nutr 2003,89:3-9.
    75.Barnes K,Ingram JC,Porras OH,Barros LF,Hudson ER,Fryer LG,Foufelle F,Carling D,Hardie DG,Baldwin SA:Activation of GLUTI by metabolic and osmotic stress:potential involvement of AMP-activated protein kinase(AMPK).J Cell Sci 2002,115:2433-2442.
    76.Bell GI,Polonsky KS:Diabetes mellitus and genetically programmed defects in beta-cell function.Nature 2001,414:788-791.
    77.Bryant NJ,Govers R,James DE:Regulated transport of the glucose transporter GLUT4.Nat Rev Mol Cell Biol 2002,3:267-277.
    78.Shepherd PR,Kahn BB:Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus.N Engl J Med 1999,341:248-257.
    79.Zorzano A,Fandos C,Palacin M:Role of plasma membrane transporters in muscle metabolism.Biochem J 2000,349 Pt 3:667-688.
    80.Santalucia T,Camps M,Castello A,Munoz P,Nuel A,Testar X,Palacin M,Zorzano A:Developmental regulation of GLUT-1(erythroid/Hep G2) and GLUT-4(muscle/fat) glucose transporter expression in rat heart,skeletal muscle,and brown adipose tissue.Endocrinology 1992,130:837-846.
    81.Castello A,Rodriguez-Manzaneque JC,Camps M,Perez-Castillo A,Testar X,Palacin M,Santos A,Zorzano A:Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1glucose transporters from fetal to neonatal levels in heart and brown adipose tissue.Evidence for tissue-specific regulation of GLUT4 expression by thyroid hormone.J Biol Chem 1994,269:5905-5912.
    82. Marette A, Richardson JM, Ramlal T, Balon TW, Vranic M, Pessin JE, Klip A: Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. Am J Physiol 1992, 263:C443-452.
    
    83. Gould GW, Holman GD: The glucose transporter family: structure, function and tissue-specific expression. Biochem J 1993, 295 ( Pt 2):329-341.
    84. James DE, Brown R, Navarro J, Pilch PF: Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 1988, 333:183-185.
    85. Klip A, Marette A: Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem 1992, 48:51-60.
    86. Cartee GD, Holloszy JO: Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Am J Physiol 1990, 2S8:E390-393.
    87. Zierath JR, Houseknecht KL, Gnudi L, Kahn BB: High-fat feeding impairs insulin-stimulated GLUT4 recruitment via an early insulin-signaling defect. Diabetes 1997, 46:215-223.
    88. Galante P, Mosthaf L, Kellerer M, Berti L, Tippmer S, Bossenmaier B, Fujiwara T, Okuno A, Horikoshi H, Haring HU: Acute hyperglycemia provides an insulin-independent inducer for GLUT4 translocation in C2C12 myotubes and rat skeletal muscle. Diabetes 1995, 44:646-651.
    89. Mitsumoto Y, Burdett E, Grant A, Klip A: Differential expression of the GLUT1 and GLUT4 glucose transporters during differentiation of L6 muscle cells. Biochem Biophys Res Commun 1991,175:652-659.
    90. Klip A, Li G, Logan WJ: Role of calcium ions in insulin action on hexose transport in L6 muscle cells. Am J Physiol 1984, 247:E297-304.
    91. Koistinen HA, Zierath JR: Regulation of glucose transport in human skeletal muscle. Ann Med 2002,34:410-418.
    92. Brozinick JT, Jr., McCoid SC, Reynolds TH, Wilson CM, Stevenson RW, Cushman SW, Gibbs EM: Regulation of cell surface GLUT4 in skeletal muscle of transgenic mice. Biochem J 1997, 321 (Pt 1):75-81.
    93. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991, 352:73-77.
    94. Sun XJ, Wang LM, Zhang Y, Yenush L, Myers MG, Jr., Glasheen E, Lane WS, Pierce JH, White MF: Role of IRS-2 in insulin and cytokine signalling. Nature 1995,377:173-177.
    95. Lavan BE, Lane WS, Lienhard GE: The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem 1997, 272:11439-11443.
    96. Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE: A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem 1997, 272:21403-21407.
    97. Myers MG, Jr., Mendez R, Shi P, Pierce JH, Rhoads R, White MF: The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling. J Biol Chem 1998,273:26908-26914.
    98. Chen KS, Friel JC, Ruderman NB: Regulation of phosphatidylinositol 3-kinase by insulin in rat skeletal muscle. Am J Physiol 1993, 265:E736-742.
    99. Evans JL, Honer CM, Womelsdorf BE, Kaplan EL, Bell PA: The effects of wortmannin, a potent inhibitor of phosphatidylinositol 3-kinase, on insulin-stimulated glucose transport, GLUT4 translocation, antilipolysis, and DNA synthesis. Cell Signal 1995, 7:365-376.
    100. Katagiri H, Asano T, Inukai K, Ogihara T, Ishihara H, Shibasaki Y, Murata T, Terasaki J, Kikuchi M, Yazaki Y, et al.: Roles of PI 3-kinase and Ras on insulin-stimulated glucose transport in 3T3-L1 adipocytes. Am J Physiol 1997,272:E326-331.
    101. Harmon AW, Patel YM: Naringenin inhibits phosphoinositide 3-kinase activity and glucose uptake in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2003,305:229-234.
    102. Robinson LJ, Razzack ZF, Lawrence JC, Jr., James DE: Mitogen-activated protein kinase activation is not sufficient for stimulation of glucose transport or glycogen synthase in 3T3-L1 adipocytes. J Biol Chem 1993,268:26422-26427.
    103. Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR: Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 2001, 410:944-948.
    104. George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, Soos MA, Murgatroyd PR, Williams RM, Acerini CL, et al.: A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 2004,304:1325-1328.
    105. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997, 7:261-269.
    106. Nakanishi H, Brewer KA, Exton JH: Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1993, 268:13-16.
    107. Bandyopadhyay G, Standaert ML, Zhao L, Yu B, Avignon A, Galloway L, Karnam P, Moscat J, Farese RV: Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. J Biol Chem 1997, 272:2551-2558.
    108. Kohn AD, Summers SA, Birnbaum MJ, Roth RA: Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J BiolChem 1996, 271:31372-31378.
    109. Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE: Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 2003, 278:14599-14602.
    110. Liu LB, Omata W, Kojima I, Shibata H: Insulin recruits GLUT4 from distinct compartments via distinct traffic pathways with differential microtubule dependence in rat adipocytes. J Biol Chem 2003, 278:30157-30169.
    111. Heydrick SJ, Jullien D, Gautier N, Tanti JF, Giorgetti S, Van Obberghen E, Le Marchand-Brustel Y: Defect in skeletal muscle phosphatidylinositol-3-kinase in obese insulin-resistant mice. J Clin Invest 1993, 91:1358-1366.
    112. Goodyear LJ, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL: Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 1995, 95:2195-2204.
    113. Klein HH, Kowalewski B, Drenckhan M, Fehm HL: Insulin stimulation of human adipocytes activates the kinase of only a fraction of the insulin receptors. Am J Physiol 1997, 272:E576-583.
    114. Holloszy JO, Constable SH, Young DA: Activation of glucose transport in muscle by exercise. Diabetes Metab Rev 1986, 1:409-423.
    115. Constable SH, Favier RJ, Cartee GD, Young DA, Holloszy JO: Muscle glucose transport: interactions of in vitro contractions, insulin, and exercise. J Appl Physiol 1988, 64:2329-2332.
    116. Gao J, Ren J, Gulve EA, Holloszy JO: Additive effect of contractions and insulin on GLUT-4 translocation into the sarcolemma. J Appl Physiol 1994, 77:1597-1601.
    117. Wallberg-Henriksson H, Holloszy JO: Activation of glucose transport in diabetic muscle: responses to contraction and insulin. Am J Physiol 1985, 249:C233-237.
    118. Fushiki T, Wells JA, Tapscott EB, Dohm GL: Changes in glucose transporters in muscle in response to exercise. Am J Physiol 1989, 256:E580-587.
    119. Dolan PL, Tapscott EB, Dorton PJ, Dohm GL: Contractile activity restores insulin responsiveness in skeletal muscle of obese Zucker rats. Biochem J 1993, 289 (Pt 2):423-426.
    120. Lund S, Holman GD, Schmitz O, Pedersen O: Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci USA 1995, 92:5817-5821.
    121. Lund S, Holman GD, Schmitz O, Pedersen O: Glut 4 content in the plasma membrane of rat skeletal muscle: comparative studies of the subcellular fractionation method and the exofacial photolabelling technique using ATB-BMPA. FEBS Lett 1993, 330:312-318.
    122. Pedersen O, Bak JF, Andersen PH, Lund S, Moller DE, Flier JS, Kahn BB: Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 1990,39:865-870.
    123. Friedman JE, Sherman WM, Reed MJ, Elton CW, Dohm GL: Exercise training increases glucose transporter protein GLUT-4 in skeletal muscle of obese Zucker (fa/fa) rats. FEBS Lett 1990, 268:13-16.
    124. Napoli R, Hirshman MF, Horton ES: Mechanisms and time course of impaired skeletal muscle glucose transport activity in streptozocin diabetic rats. J Clin Invest 1995, 96:427-437.
    125. Goodyear LJ, Giorgino F, Balon TW, Condorelli G, Smith RJ: Effects of contractile activity on tyrosine phosphoproteins and PI 3-kinase activity in rat skeletal muscle. Am J Physiol 1995, 268:E987-995.
    126. Till M, Kolter T, Eckel J: Molecular mechanisms of contraction-induced translocation of GLUT4 in isolated cardiomyocytes. Am J Cardiol 1997, 80:85A-89A.
    127. Zhou Q, Dohm GL: Treadmill running increases phosphatidylinostol 3-kinase activity in rat skeletal muscle. Biochem Biophys Res Commun 1997, 236:647-650.
    128. Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ: Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 2000, 49:527-531.
    129. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ: Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998,47:1369-1373.
    130. Cartee GD, Douen AG, Ramlal T, Klip A, Holloszy JO: Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol 1991, 70:1593-1600.
    131. Valant P, Erlij D: K+-stimuIated sugar uptake in skeletal muscle: role of cytoplasmic Ca2+. Am J Physiol 1983, 245:C125-132.
    132. Azevedo JL, Jr., Carey JO, Pories WJ, Morris PG, Dohm GL: Hypoxia stimulates glucose transport in insulin-resistant human skeletal muscle. Diabetes 1995, 44:695-698.
    133. Wojtaszewski JF, Hansen BF, Urso B, Richter EA: Wortmannin inhibits both insulin- and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J Appl Physiol 1996,81:1501-1509.
    134. Wojtaszewski JF, Laustsen JL, Derave W, Richter EA: Hypoxia and contractions do not utilize the same signaling mechanism in stimulating skeletal muscle glucose transport. Biochim Biophys Acta 1998, 1380:396-404.
    135. Henriksen EJ, Sleeper MD, Zierath JR, Holloszy JO: Polymyxin B inhibits stimulation of glucose transport in muscle by hypoxia or contractions. Am J Physiol 1989, 256:E662-667.
    136. Cartee GD, Briggs-Tung C, Holloszy JO: Diverse effects of calcium channel blockers on skeletal muscle glucose transport. Am J Physiol 1992, 263:R70-75.
    137. Cullen MJ, Hollingworth S, Marshall MW: A comparative study of the transverse tubular system of the rat extensor digitorum longus and soleus muscles. J Anat 1984,138 ( Pt 2):297-308.
    138. Burdett E, Beeler T, Klip A: Distribution of glucose transporters and insulin receptors in the plasma membrane and transverse tubules of skeletal muscle. Arch Biochem Biophys 1987, 253:279-286.
    139. Dombrowski L, Roy D, Marcotte B, Marette A: A new procedure for the isolation of plasma membranes, T tubules, and internal membranes from skeletal muscle. Am J Physiol 1996, 270:E667-676.
    140. Munoz P, Rosemblatt M, Testar X, Palacin M, Zorzano A: Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle. Biochem J 1995, 307 ( Pt 1):273-280.
    141. Charron MJ, Katz EB, Olson AL: GLUT4 gene regulation and manipulation. J Biol Chem 1999, 274:3253-3256.
    142. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB: Adipose-selective targeting of the CLUT4 gene impairs insulin action in muscle and liver. Nature 2001, 409:729-733.
    143. Kim JK, Zisman A, Fillmore JJ, Peroni OD, Kotani K, Perret P, Zong H, Dong J, Kahn CR, Kahn BB, et al.: Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest 2001, 108:153-160.
    144. Douen AG, Ramlal T, Klip A, Young DA, Cartee GD, Holloszy JO: Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology 1989, 124:449-454.
    145. Ploug T, Stallknecht BM, Pedersen O, Kahn BB, Ohkuwa T, Vinten J, Galbo H: Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am J Physiol 1990, 259:E778-786.
    146. Berger J, Biswas C, Vicario PP, Strout HY, Saperstein R, Pilch PF: Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 1989,340:70-72.
    147. Thomson MJ, Williams MG, Frost SC: Development of insulin resistance in 3T3-L1 adipocytes. J Biol Chem 1997, 272:7759-7764.
    148. Livingstone C, Dominiczak AF, Campbell IW, Gould GW: Insulin resistance, hypertension and the insulin-responsive glucose transporter, GLUT4. Clin Sci (Lond) 1995, 89:109-116.
    149. Vogt B, Muhlbacher C, Carrascosa J, Obermaier-Kusser B, Seffer E, Mushack J, Pongratz D, Haring HU: Subcellular distribution of GLUT 4 in the skeletal muscle of lean type 2 (non-insulin-dependent) diabetic patients in the basal state. Diabetologia 1992, 35:456-463.
    150. Frittitta L, Grasso G, Munguira ME, Vigneri R, Trischitta V: Insulin receptor tyrosine kinase activity is reduced in monocytes from non-obese normoglycaemic insulin-resistant subjects. Diabetologia 1993, 36:1163-1167.
    151. Kahn BB, Rossetti L, Lodish HF, Charron MJ: Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats. J Clin Invest 1991, 87:2197-2206.
    152. Gnudi L, Shepherd PR, Kahn BB: Over-expression of GLUT4 selectively in adipose tissue in transgenic mice: implications for nutrient partitioning. Proc Nutr Soc 1996, 55:191-199.
    153. Zorzano A, Munoz P, Camps M, Mora C, Testar X, Palacin M: Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways. Diabetes 1996, 45 Suppl 1:S70-81.
    154. Karylowski O, Zeigerer A, Cohen A, McGraw TE: GLUT4 is retained by an intracellular cycle of vesicle formation and fusion with endosomes. Mol Biol Cell 2004,15:870-882.
    155. Wertheim N, Cai Z, McGraw TE: The transcription factor CCAAT/enhancer-binding protein alpha is required for the intracellular retention of GLUT4. J Biol Chem 2004, 279:41468-41476.
    156. Khan AH, Capilla E, Hou JC, Watson RT, Smith JR, Pessin JE: Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is dependent upon both the amino terminus and the large cytoplasmic loop. J Biol Chem 2004, 279:37505-37511.
    157. Cushman SW, Wardzala LJ: Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 1980,255:4758-4762.
    158. Suzuki K, Kono T: Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc Natl Acad Sci U S A 1980, 77:2542-2545.
    159. Holman GD, Kozka IJ, Clark AE, Flower CJ, Saltis J, Habberfield AD, Simpson IA, Cushman SW: Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. J Biol Chem 1990, 265:18172-18179.
    160. Rett K, Wicklmayr M, Dietze GJ, Haring HU: Insulin-induced glucose transporter (GLUT1 and GLUT4) translocation in cardiac muscle tissue is mimicked by bradykinin. Diabetes 1996, 45 Suppl 1:S66-69.
    161. Ploug T, Galbo H, Vinten J, Jorgensen M, Richter EA: Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Am J Physiol 1987, 253:E12-20.
    162. Ajioka RS, Kaplan J: Intracellular pools of transferrin receptors result from constitutive internalization of unoccupied receptors. Proc Natl Acad Sci U S A 1986, 83:6445-6449.
    163. Holman GD, Cushman SW: Subcellular localization and trafficking of the GLUT4 glucose transporter isoform in insulin-responsive cells. Bioessays 1994,16:753-759.
    164. Rothman JE: Mechanisms of intracellular protein transport. Nature 1994,372:55-63.
    165. Hanpeter D, James DE: Characterization of the intracellular GLUT-4 compartment. Mol Membr Biol 1995,12:263-269.
    166. Calderhead DM, Kitagawa K, Tanner LI, Holman GD, Lienhard GE: Insulin regulation of the two glucose transporters in 3T3-L1 adipocytes. J Biol Chem 1990, 265:13801-13808.
    167. Heller-Harrison RA, Morin M, Guilherme A, Czech MP: Insulin-mediated targeting of phosphatidylinositol 3-kinase to GLUT4-containing vesicles. J Biol Chem 1996, 271:10200-10204.
    168. Laurie SM, Cain CC, Lienhard GE, Castle JD: The glucose transporter GluT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem 1993, 268:19110-19117.
    169. Lin BZ, Pilch PF, Kandror KV: Sortilin is a major protein component of Glut4-containing vesicles. J Biol Chem 1997, 272:24145-24147.
    170. Malide D, St-Denis JF, Keller SR, Cushman SW: Vpl65 and GLUT4 share similar vesicle pools along their trafficking pathways in rat adipose cells. FEBS Lett 1997, 409:461-468.
    171. Malide D, Dwyer NK, Blanchette-Mackie EJ, Cushman SW: Immunocytochemical evidence that GLUT4 resides in a specialized translocation post-endosomal VAMP2-positive compartment in rat adipose cells in the absence of insulin. J Histochem Cytochem 1997, 45:1083-1096.
    172. Douen AG, Ramlal T, Rastogi S, Bilan PJ, Cartee GD, Vranic M, Holloszy JO, Klip A: Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J Biol Chem 1990,265:13427-13430.
    173. Coderre L, Kandror KV, Vallega G, Pilch PF: Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem 1995, 270:27584-27588.
    174. Zorzano A, Sevilla L, Tomas E, Camps M, Guma A, Palacin M: Trafficking pathway of GLUT4 glucose transporters in muscle (Review). Int J Mol Med 1998, 2:263-271.
    175. Brand SH, Castle JD: SCAMP 37, a new marker within the general cell surface recycling system. Embo J 1993, 12:3753-3761.
    176. Fischer Y, Thomas J, Sevilla L, Munoz P, Becker C, Holman G, Kozka IJ, Palacin M, Testar X, Kammermeier H, et al.: Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. Evidence of the existence of different intracellular GLUT4 vesicle populations. J Biol Chem 1997, 272:7085-7092.
    177. Clark AE, Holman GD, Kozka IJ: Determination of the rates of appearance and loss of glucose transporters at the cell surface of rat adipose cells. Biochem J 1991, 278 (Pt 1):235-241.
    178. Martin S, Rice JE, Gould GW, Keller SR, Slot JW, James DE: The glucose transporter GLUT4 and the aminopeptidase vpl65 colocalise in tubulo-vesicular elements in adipocytes and cardiomyocytes. J Cell Sci 1997, 110 ( Pt 18):2281-2291.
    179. Pevsner J, Hsu SC, Braun JE, Calakos N, Ting AE, Bennett MK, Scheller RH: Specificity and regulation of a synaptic vesicle docking complex. Neuron 1994, 13:353-361.
    180. Cain CC, Trimble WS, Lienhard GE: Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J Biol Chem 1992,267:11681-11684.
    181. Volchuk A, Mitsumoto Y, He L, Liu Z, Habermann E, Trimble W, Klip A: Expression of vesicle-associated membrane protein 2 (VAMP-2)/synaptobrevin II and cellubrevin in rat skeletal muscle and in a muscle cell line. Biochem J 1994,304 ( Pt 1):139-145.
    182. Volchuk A, Sargeant R, Sumitani S, Liu Z, He L, Klip A: Cellubrevin is a resident protein of insulin-sensitive GLUT4 glucose transporter vesicles in 3T3-L1 adipocytes. J Biol Chem 1995, 270:8233-8240.
    183. Sumitani S, Ramlal T, Liu Z, Klip A: Expression of syntaxin 4 in rat skeletal muscle and rat skeletal muscle cells in culture. Biochem Biophys Res Commun 1995, 213:462-468.
    184. Elferink LA, Peterson MR, Scheller RH: A role for synaptotagmin (p65) in regulated exocytosis. Cell 1993, 72:153-159.
    185. Niu W, Huang C, Nawaz Z, Levy M, Somwar R, Li D, Bilan PJ, Klip A: Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem 2003, 278:17953-17962.
    186. James DE: MUNC-ing around with insulin action. J Clin Invest 2005,115:219-221.
    187. Kanda H, Tamori Y, Shinoda H, Yoshikawa M, Sakaue M, Udagawa J, Otani H, Tashiro F, Miyazaki J, Kasuga M: Adipocytes from Muncl8c-null mice show increased sensitivity to insulin-stimulated GLUT4 externalization. J Clin Invest 2005,115:291-301.
    188. Fischer Y, Thomas J, Holman GD, Rose H, Kammermeier H: Contraction-independent effects of catecholamines on glucose transport in isolated rat cardiomyocytes. Am J Physiol 1996, 270:C1204-1210.
    189. Slot JW, Geuze HJ, Gigengack S, James DE, Lienhard GE: Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc Natl Acad Sci USA 1991, 88:7815-7819.
    190. Zorzano A, Wilkinson W, Kotliar N, Thoidis G, Wadzinkski BE, Ruoho AE, Pilch PF: Insulin-regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations. J Biol Chem 1989, 264:12358-12363.
    191. Slot JW, Geuze HJ, Gigengack S, Lienhard GE, James DE: Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J Cell Biol 1991, 113:123-135.
    192. Slot JW, Garruti G Martin S, Oorschot V, Posthuma G, Kraegen EW, Laybutt R, Thibault G, James DE: Glucose transporter (GLUT-4) is targeted to secretory granules in rat atrial cardiomyocytes. J Cell Biol 1997,137:1243-1254.
    193. Liu ML, Olson AL, Moye-Rowley WS, Buse JB, Bell GI, Pessin JE: Expression and regulation of the human GLUT4/muscle-fat facilitative glucose transporter gene in transgenic mice. J Biol Chem 1992,267:11673-11676.
    194. Katz EB, Burcelin R, Tsao TS, Stenbit AE, Charron MJ: The metabolic consequences of altered glucose transporter expression in transgenic mice. J Mol Med 1996, 74:639-652.
    195.Ikemoto S,Thompson KS,Takahashi M,Itakura H,Lane MD,Ezaki O:High fat diet-induced hyperglycemia:prevention by low level expression of a glucose transporter(GLUT4)minigene in transgenic mice.Proc Natl Acad Sci USA 1995,92:3096-3099.
    196.Gibbs EM,Stock JL,McCoid SC,Stukenbrok HA,Pessin JE,Stevenson RW,Milici AJ,McNeish JD:Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter(GLUT4).J Clin Invest 1995,95:1512-1518.
    197.Katz EB,Stenbit AE,Hatton K,DePinho R,Charron MJ:Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4.Nature 1995,377:151-155.
    198.Sweazea KL,Braun EJ:Glucose transport by English sparrow(Passer domesticus) skeletal muscle:have we been chirping up the wrong tree? J Exp Zoolog A Comp Exp Biol 2005,303:143-153.
    199.杨威,王海霞,陈岩,张勇,朱大海:鸡生长分化因子GDF-8 cDNA的克隆、表达及蛋白纯化.生物工程学报 2001,17:460-462.
    200.Thomas-Delloye V,Marmonier F,Duchamp C,Pichon-Georges B,Lachuer J,Barre H,Crouzoulon G:Biochemical and functional evidences for a GLUT-4 homologous protein in avian skeletal muscle.Am J Physiol 1999,277:R1733-1740.
    201.Kotliar N,Pilch PF:Expression of the glucose transporter isoform GLUT 4 is insufficient to confer insulin-regulatable hexose uptake to cultured muscle cells.Mol Endocrinol 1992,6:337-345.
    202.Sargeant R,Mitsumoto Y,Sarabia V,Shillabeer G,Klip A:Hormonal regulation of glucose transporters in muscle cells in culture,J Endocrinol Invest 1993,16:147-162.
    203.Bogan JS,McKee AE,Lodish HF:Insulin-responsive compartments containing GLUT4 in 3T3-L1 and CHO cells:regulation by amino acid concentrations.Mol Cell Biol 2001,21:4785-4806.
    204.Watson RT,Pessin JE:Bridging the GAP between insulin signaling and GLUT4 translocation.Trends Biochem Sci 2006,31:215-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700