用户名: 密码: 验证码:
基于碱金属的肿瘤微创消融方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于射频、微波、超声及激光加热等原理制成的传统医疗设备在确保有效杀灭肿瘤的同时又不伤及正常组织的问题上面临共同难题,并且大多存在结构复杂、手术费用高昂等特点。为克服上述问题,本文首次提出了碱金属热化学消融方法,并从理论和实验两方面,深入探索了新型热消融模式下的一系列关键基础问题。
     为全面认识碱金属消融方法对生物组织的破坏机制,本文对碱金属作用后的热效应、化学效应及空穴效应给予了全面评估,获取了描述细胞损伤速率的动力学参数,同时结合细胞损伤过渡态理论,通过活化自由能与温度之间的关系指出了不同处理下细胞损伤反应方向及速率的变化。
     通过剖析碱金属与组织间质水之间化学反应的特点,指出化学反应的放热率主要取决于组织中水分子的扩散通量,由此建立了碱金属放热率方程。同时对OH-在组织中反应扩散形成的溶解层及渗透层位移变化进行了定量刻画。基于对放热特性及生成物扩散特性的了解,建立了描述流体输运的传热传质模型,并分析了组织含水量、血液灌注率等参数对温度场及浓度场的影响。
     考虑到传统热损伤理论在描述碱金属消融损伤问题上的局限性,建立了热传导、扩散及化学反应相耦合的评价热化学损伤的熵产理论。构建了基于变色明胶体模的消融区形态和空间分布的三维重建方法,提供了精确的剂量定量化工具。
     本文还通过荷瘤小鼠统计学实验比较了该方法与单一热疗或化学消融的肿瘤抑制率,同时引入红外测温手段发展了体表热学监测与术后评估体系,并提出了基于红外数据的体内温度场重构方法。尝试建立了注射式液态碱金属治疗平台,并考察了损伤后的病理变化及消融范围与注射量之间的关系。
     针对大多热疗方法中血管冷却效应制约热疗效果的问题,本文对存在大血管的碱金属消融后温度分布也进行了研究,由此明确了血管参数及血流速度对消融剂量的影响程度。
     以上研究可望引申出一种全新的低成本肿瘤微创治疗手段,就其中生物传热传质等基础问题的研究,对建立适宜于临床应用的高效热化学消融方法及其有效应用具有重要意义。
Traditional hyperthermia techniques based on radiofrequency, microwave, ultrasound and laser often encounter a common bottleneck. That is, they will inevitably cause thermal damage to the healthy tissues along the path heat energy is transmitted to the tumor. In addition, the complex operation and high cost also limit their application. To resolve these problems, this thesis is dedicated to establish a new therapy, the alkali metal ablation for localized killing of tumors via exothermic chemical reaction. Theoretical and experimental investigations were performed on several typical issues raised from the new modality.
     Aiming for a comprehensive understanding the mechanisms of the alkali metal ablation, the thermal effect, chemical effect and cavity effect during ablation process were evaluated based on multiple experiments, respectively. Dynamic parameters related with the cell damage rate were obtained. Further more, the temperature response of the activiation free energy at different situations were given to reveal damage reaction direction and the rate based on transtsion state theory.
     Following the analysis of chemical reaction between alkali metal and water, it was proposed that exothermic rate mainly depends on the water diffusion flux. A heat release equation of alkali metal was established. In addition, the reaction production OH- diffusion characteristics were simultaneously performed both in experiments and theoretical analysis. Through a combination between heat transfer and reaction diffusion equation, a heat and mass transfer model is established and studied.
     Considering the limitation on heat damage function to describe the alkali metal damage, a multi-factor coupling model was proposed to estimate the injury of tissue subject to alkali metal ablation based on entropy production theory. And the relationship between entropy production and damage degree was originally established. In order to quantify the damage scope, a three-dimensional imaging reconstruction method to presisly refect shape and size of ablation area was built, which provides a useful tool to quantify the ablation dose.
     Statistic animal experiments were performed to comprare anti-tumor effect among chemical ablation, hyperthermia and alkali metal on mice implanted with EMT6 breast tumor, and the infrared thermography was introduced as an effective imaging tool for administration and evaluation of alkali metal ablation therapy. Endosomatic temperature field reconstruction method utilizing surface infrared imaging data was developed by conjugate gradient method. A liquid alkali metal ablation system was also set up, and tissue pathological changes after ablation and the relationship between injection quantity and ablation area were investigated.
     Considering that the effect of large blood vessel may lead to thermal under-dosage in most conventional thermal ablation, the cool effect of large vessel during alkali metal ablation was also studied, and effects of the parameters such as blood diameter and velocity on temperature distribution were clarified.
     This thesis is expected to establish a low cost mean of minimally invasive treatment of tumors. Further efforts on conresponding bioheat and mass transfer are of great significance to promote effective clinical application of the new ablaion method.
引文
1. Stewart B.W. and Kleihues P. World cancer report. Lyon: IARCPress, 2003
    2.林世寅,李瑞英,毛慧生.现代肿瘤热疗学原理、方法与临床.北京:学苑出版社, 1997. 1-12
    3. Falk M.H. and Issels R.D. Hyperthermia in oncology. International Journal of Hyperthermia, 2001. 17(1): 1-18
    4.李鼎九,胡自省,钟毓斌.肿瘤热疗学.郑州:郑州大学出版社, 2003
    5. Nie S., Xing Y., Kim G.J. and Simons J.W. Nanotechnology applications in cancer. Annual Review of Biomedical Engineering, 2007. 9(1): 257-288
    6. Curiel L., Chavrier F., Souchon R., Birer A. and Chapelon J.Y. 1.5-D high intensity focused ultrasound array for non-invasive prostate cancer surgery. IEEE Trans Ultrason Ferroelectr Freq Control, 2002. 49(2): 231-242
    7. Jordan A., Scholz R., Maier-Hauff K., Johannsen M., Wust P., Nadobny J., Schirra H., Schmidt H., Deger S., Loening S., Lanksch W. and Felix R. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 2001. 225(1-2): 118-126
    8. Hilger I., Fruhauf K., Andra W., Hiergeist R., Hergt R. and Kaiser W.A. Heating potential of iron oxides for therapeutic purposes in interventional radiology. Academic Radiology, 2002. 9(2): 198-202
    9. Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., Hazle J.D., Halas N.J. and West J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences, 2003. 100(23): 13549-13554
    10. Overgaard J. History and heritage—an introduction. London: Taylor and Francis, 1985
    11. Goldberg S.N. and Dupuy D.E. Image-guided radiofrequency tumor ablation: challenges and opportunities--part I. Journal of Vascular and Interventional Radiology, 2001. 12(9): 1021-1032
    12. Dupuy D.E. and Goldberg S.N. Image-guided radiofrequency tumor ablation: challenges and opportunities--part II. Journal of Vascular and Interventional Radiology, 2001. 12(10): 1135-1148
    13. Mirza A.N., Fornage B.D., Sneige N., Kuerer H.M., Newman L.A., Ames F.C. and Singletary S.E. Radiofrequency ablation of solid tumors. Cancer Journal, 2001. 7(2): 95-102
    14. Wood B.J., Ramkaransingh J.R., Fojo T., Walther M.M. and Libutti S.K. Percutaneous tumor ablation with radiofrequency. Cancer, 2002. 94(2): 443-451
    15. Stippel D.L., Brochhagen H.G., Arenja M., Hunkemoller J., Holscher A.H. and Beckurts K.T.E. Variability of size and shape of necrosis induced by radiofrequency ablation in human livers: a volumetric evaluation. Annals of Surgical Oncology, 2004. 10.1245
    16. Denys A., Baere T., Kuoch V., Dupas B., Chevallier P., Madoff D., Schnyder P. and Doenz F. Radio-frequency tissue ablation of the liver: in vivo and ex vivo experiments with four different systems. European Radiology, 2003. 13(10): 2346-2352
    17. Mulier S., Ni Y., Miao Y., Rosie A., Khoury A., Marchal G. and Michel L. Size and geometry of hepatic radiofrequency lesions. European Journal of Surgical Oncology, 2003. 29(10): 867-878
    18. Chen M.H., Yang W., Yan K., Zou M.W., Solbiati L., Liu J.B. and Dai Y. Large liver tumors: protocol for Radiofrequency Ablation and Its Clinical Application in 110 Patients--Mathematic Model, Overlapping Mode, and Electrode Placement Process. Radiology, 2004. 232(1): 260-271
    19. Haemmerich D., Chachati L., Wright A.S., Mahvi D.M., Lee F.T. and Webster J.G.Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 2003. 50(4): 493-500
    20. Lee J.M., Han J.K., Kim S.H., Shin K.S., Lee J.Y., Park H.S., Hur H. and Choi B.I. Comparison of wet radiofrequency ablation with dry radiofrequency ablation and radiofrequency ablation using hypertonic saline preinjection: Ex vivo bovine liver. Korean Journal of Radiology, 2004. 5(4): 258-265
    21. Lee J.M., Youk J.H., Kim Y.K., Han Y.M., Chung G.H., Lee S.Y. and Kim C.S. Radio-frequency thermal ablation with hypertonic saline solution injection of the lung: ex vivo and in vivo feasibility studies. European Radiology, 2003. 13(11): 2540-2547
    22. Goldberg S.N., Ahmed M., Gazelle G.S., Kruskal J.B., Huertas J.C., Halpern E.F., Oliver B.S. and Lenkinski R.E. Radio-frequency thermal ablation with NaCl solution injection: effect of electrical conductivity on tissue heating and coagulation-phantom and porcine liver study. Radiology, 2001. 219(1): 157-165
    23. Burdio F., Berjano E., Navarro A., Burdio J., Guemes A., Grande L., Sousa R., Subiro J., Gonzalez A., Cruz I., Castiella T., Tejero E., Lozano R. and de Gregorio M. RF tumor ablation with internally cooled electrodes and saline infusion: what is the optimal location of the saline infusion? BioMedical Engineering OnLine, 2007. 6(1): 30
    24. O'Rourke A.P., Haemmerich D., Prakash P., Converse M.C., Mahvi D.M. and Webster J.G. Current status of liver tumor ablation devices. Expert Review of Medical Devices, 2007. 4(4): 523-537
    25. Brace C.L., Sampson L.A., Hinshaw J.L., Sandhu N. and Lee Jr F.T. Radiofrequency ablation: simultaneous application of multiple electrodes via switching creates larger, more confluent ablations than sequential application in a large animal model. Journal of Vascular and Interventional Radiology, 2009.20(1): 118-124
    26. Haemmerich D., Wright A., Mahvi D., Lee F. and Webster J. Hepatic bipolar radiofrequency ablation creates coagulation zones close to blood vessels: A finite element study. Medical and Biological Engineering and Computing, 2003. 41(3): 317-323
    27. Lu D.S.K., Raman S.S., Vodopich D.J., Wang M., Sayre J. and Lassman C. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: assessment of the "heat sink" effect. American Journal of Roentgenology, 2002. 178(1): 47-51
    28. Mulier S., Ni Y.C., Jamart J., Ruers T., Marchal G. and Michel L. Local recurrence after hepatic radiofrequency coagulation - multivariate meta-analysis and review of contributing factors. Annals of Surgery, 2005. 242(2): 158-171
    29. de Baere T., Deschamps F, Briggs P., Dromain C., Boige V., Hechelhammer L., Abdel-Rehim M., Aupérin A., Goere D. and Elias D. Hepatic malignancies: percutaneous radiofrequency ablation during percutaneous portal or hepatic vein occlusion. Radiology, 2008. 248(3): 1056-1066
    30. de Baere T., Bessoud B., Dromain C., Ducreux M., Boige V., Lassau N., Smayra T., Girish B.V., Roche A. and Elias D. Percutaneous radiofrequency ablation of hepatic tumors during temporary venous occlusion. American Journal of Roentgenology, 2002. 178(1): 53-59
    31. Goldberg S.N., Hahn P.F., Halpern E.F., Fogle R.M. and Gazelle G.S. Radio-frequency tissue ablation: effect of pharmacologic modulation of blood flow on coagulation diameter. Radiology, 1998. 209(3): 761-767
    32. Shono Y., Tabuse K., Tsuji T., Inoue M., Arii K., Donishi H., Ueno M., Hama T., Sakabe K., Nakase T., Yoshida H., Oku Y., Tanishima H., Togo N., Wakahara T. and Yamada H. Microwave coagulation therapy for unresectable colorectal metastatic liver tumor. Japanese Journal of Cancer and Chemotherapy, 2002. 29(6): 856-859
    33. Vargas H.I., Dooley W.C., Gardner R.A., Gonzalez K.D., Venegas R., Heywang-Kobrunner S.H. and Fenn A.J. Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: results of thermal dose escalation. Annals of Surgical Oncology, 2004. 11(2): 139-146
    34. Liang P. and Wang Y. Microwave ablation of hepatocellular carcinoma. Oncology, 2007. 72 Suppl 1: 124-131
    35. Samaras G.M. and Cheung A.Y. Microwave hyperthermia for cancer therapy. Critical Reviews in Bioengineering, 1981. 5(2): 123-184
    36. Seki T., Wakabayashi M., Nakagawa T., Itho T., Shiro T., Kunieda K., Sato M., Uchiyama S. and Inoue K. Ultrasonically guided percutaneous microwave coagulation therapy for small hepatocellular carcinoma. Cancer, 1994. 74(3): 817-825
    37. Yang D.S., Bertram J.M., Converse M.C., O'Rourke A.P., Webster J.G., Hagness S.C., Will J.A. and Mahvi D.M. A floating sleeve antenna yields localized hepatic microwave ablation. IEEE Transactions on Biomedical Engineering, 2006. 53(3): 533-537
    38.王洪武.现代肿瘤靶向治疗技术.北京:中国医药科技出版社, 2005. 163
    39. Wright A.S., Sampson L.A., Warner T.F., Mahvi D.M. and Lee F.T., Jr. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology, 2005. 236(1): 132-139
    40. Madersbacher S., Pedevilla M., Vingers L., Susani M. and Marberger M. Effect of high-intensity focused ultrasound on human prostate cancer in vivo. Cancer Research, 1995. 55(15): 3346-3351
    41. Chen L., ter Haar G. and Hill C.R. Influence of ablated tissue on the formation of high-intensity focused ultrasound lesions. Ultrasound in Medicine and Biology, 1997. 23(6): 921-931
    42. Kim Y.S., Kim H., Choi M.J., Lim H.K. and Choi D. High-intensity focusedultrasound therapy: an overview for radiologists. Korean Journal of Radiology, 2008. 9(4): 291-302
    43. Vaezy S., Andrew M., Kaczkowski P. and Crum L. Image-guided acoustic therapy. Annual Review of Biomedical Engineering, 2001. 3(1): 375-390
    44. Wu F., Wang Z.B., Chen W.Z., Zhu H., Bai J., Zou J.Z., Li K.Q., Jin C.B., Xie F.L. and Su H.B. Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Annals of Surgical Oncology, 2004. 11(12): 1061-1069
    45. Melodelima D., N'Djin W.A., Parmentier H., Chesnais S., Rivoire M. and Chapelon J.Y. Thermal ablation by high-intensity-focused ultrasound using a toroid transducer increases the coagulated volume. Results of animal experiments. Ultrasound in Medicine and Biology, 2009. 35(3): 425-435
    46. Pichardo S., Gelet A., Curiel L., Chesnais S. and Chapelon J.Y. New integrated imaging high intensity focused ultrasound probe for transrectal prostate cancer treatment. Ultrasound in Medicine and Biology, 2008. 34(7): 1105-1116
    47. Sasaki K., Azuma T., Kawabata K.I., Shimoda M., Kokue E.I. and Umemura S.I. Effect of split-focus approach on producing larger coagulation in swine liver. Ultrasound in Medicine and Biology, 2003. 29(4): 591-599
    48. Abe Y., Otsuka R., Muratore R., Fujikura K., Okajima K., Suzuki K., Wang J., Marboe C., Kalisz A., Ketterling J.A., Lizzi F.L. and Homma S. In vitro mitral chordal cutting by high intensity focused ultrasound. Ultrasound in Medicine and Biology, 2008. 34(3): 400-405
    49. Seip R., Chen W., Tavakkoli J., Frizzell L. and Sanghvi N.T. High-intensity focused ultrasound (HIFU) phased arrays: recent developments in transrectal transducers and driving electronics design. in Third International Symposium on Therapeutic Ultrasound. Lyon, France. 2003
    50. Hariharan P., Myers M.R. and Banerjee R.K. HIFU procedures at moderateintensities—effect of large blood vessels. Physics in Medicine and Biology, 2007. 52(12): 3493-3513
    51. Zhang L., Zhu H., Jin C.B., Zhou K., Li K.Q., Su H.B., Chen W.Z., Bai J. and Wang Z.B. High-intensity focused ultrasound (HIFU): effective and safe therapy for hepatocellular carcinoma adjacent to major hepatic veins. European Radiology, 2009. 19(2): 437-445
    52. Dubinsky T.J., Cuevas C., Dighe M.K., Kolokythas O. and Hwang J.H. High-intensity focused ultrasound: current potential and oncologic applications. American Journal of Roentgenol, 2008. 190(1): 191-199
    53. Wu F., Wang Z.B., Zhu H., Chen W.Z., Zou J.Z., Bai J., Li K.Q., Jin C.B., Xie F.L. and Su H.B. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Research and Treatment, 2005. 92(1): 51-60
    54. Wu F., ter Haar G. and Chen W.R. High-intensity focused ultrasound ablation of breast cancer. Expert Review Of Anticancer Therapy, 2007. 7(6): 823-831
    55. Bown S.G. Phototherapy in tumors. World Journal of Surgery, 1983. 7(6): 700-9
    56. Vogl T.J., Straub R., Eichler K., Zangos S. and Mack M., Percutaneous laser therapy of primary and secondary liver tumors and soft tissue lesions: technical concepts, limitations, results, and indications, in Tumor Ablation. 2005. 234
    57. Vogl T.J., Mack M.G., Roggan A., Straub R., Eichler K.C., Muller P.K., Knappe V. and Felix R. Internally cooled power laser for MR-guided interstitial laser-induced thermotherapy of liver lesions: initial clinical results. Radiology, 1998. 209(2): 381-385
    58. Vogl T.J., Straub R., Zangos S., Mack M.G. and Eichler K. MR-guided laser-induced thermotherapy (LITT) of liver tumours: experimental and clinical data. International Journal of Hyperthermia, 2004. 20(7): 713-724
    59. Clasen S., Pereira P.L., Lubienski A., Sch?fer A.O., Mahnken A.H., HelmbergerT., Vogl T.J., Eichler K., Lehnert T., Mack M.G., Meister D., Rosenberg C., Hosten N., Düx M., Mohnike K., Ricke J., Beck A. and Hengst S., Interventional oncology, in CT- and MR-guided interventions in radiology. 2009. 159
    60. van den Bos R., Kockaert M., Martino Neumann H., Bremmer R., Nijsten T. and van Gemert M. Heat conduction from the exceedingly hot fiber tip contributes to the endovenous laser ablation of varicose veins. Lasers in Medical Science, 2009. 24(2): 247-251
    61. Zhou J.H. and Liu J. Numerical study on 3-D light and heat transport in biological tissues embedded with large blood vessels during laser-induced thermotherapy. Numerical Heat Transfer. Part A:Application, 2004(45): 415-449
    62. Ronkainen J., Blanco Sequeiros R. and Tervonen O. Cost comparison of low-field (0.23 T) MRI-guided laser ablation and surgery in the treatment of osteoid osteoma. European Radiology, 2006. 16(12): 2858-2865
    63. Yu T.H., Zhou Y.X. and Liu J. Development of a new mini-invasive tumour hyperthermia probe using high-temperature water vapour. Journal of Medical Engineering and Technology, 2004. 28(4): 167-177
    64. Gui L. and Liu J. Study on the heat and fluid transport inside the biological tissues subject to boiling saline-based tumor hyperthermic injection. Heat Transfer Engineering, 2005. 26(9): 73-84
    65. Araki Y., Hukano M., Urabe M., Tsujikawa T., Yoshioka U., Inoue H., Hujiyama Y. and Bamba T. Hepatocellular carcinoma treated by percutaneous hot saline injection. Oncology Reports, 2004. 12(3): 569-571
    66. Littrup P., Babkin A.V., Duncan R. and Boldarev S. Methods and systems for cryogenic cooling. 2005
    67. d’Avila A., Thiagalingam A., Holmvang G., Houghtaling C., Ruskin J. and Reddy V. What is the most appropriate energy source for aortic cusp ablation? a comparison of standard RF, cooled-tip RF and cryothermal ablation. Journal ofInterventional Cardiac Electrophysiology, 2006. 16(1): 31-38
    68. Whitworth P.W. and Rewcastle J.C. Cryoablation and cryolocalization in the management of breast disease. Journal of Surgical Oncology, 2005. 90(1): 1-9
    69. Webster J.G. Minimally invasive medical technology. Bristol: UK:IOP Publishing, 2001. Figure 15.14
    70. Milkus P.W., Kelly G.L. and Brady R.K. Cryoprobe. 1998
    71. Schatzberger S. High resolution cryosurgical method and apparatus. 2000
    72. Shiina S., Yasada H. and Muto H. Percutaneous ethanol injection in the treatment of liver neoplasms. American Journal of Roentgenology, 1987(149): 949-952
    73. Ohnishi K., Ohyama N. and Ito S. Small hepatocellular carcinoma:treatment with US—guided intertumoral injection of acetic acid. Radiology, 1994(193): 747-752
    74. Feng W.J., Liu Z., Han S.H., Zhang H.M., Zhou L., Zhao Y.J., Cao Y. and Jiang N. Destructive effect of percutaneous hydrochloric acid injection therapy for liver cancer-a preliminary experimental and clinical study. Japanese Journal of Cancer and Chemotherapy, 2006. 33(12): 1852-1856
    75. Festi D., Monti F., Casanova S., Livraghi T., Frabboni R., Roversi C.A., Bertoli D., Borelli G., Mazzella G., Bazzoli F., Aldini R., Barbara L. and Roda E. Morphological and biochemical effects of intrahepatic alcohol injection in the rabbit. Journal of Gastroenterology and Hepatology, 1990. 5(4): 402-406
    76. Tsai W.L., Cheng J.S., Lai K.H., Lin C.P., Lo G.H., Hsu P.I., Yu H.C., Lin C.K., Chan H.H., Chen W.C., Chen T.A., Li W.L. and Liang H.L. Clinical trial: percutaneous acetic acid injection vs. percutaneous ethanol injection for small hepatocellular carcinoma—a long-term follow-up study. Alimentary Pharmacology and Therapeutics, 2008. 28(3): 304-311
    77. Akamatsu K., Miyauchi S., Ito Y., Ohkubo K. and Maruyama M. Development and evaluation of a needle for percutaneous ethanol injection therapy. Radiology,1993. 186(1): 284-286
    78. Ho C.S., Kachura J.R., Gallinger S., Grant D., Greig P., McGilvray I., Knox J., Sherman M., Wong F. and Wong D. Percutaneous ethanol injection of unresectable medium-to-large-sized hepatomas using a multipronged needle: efficacy and safety. Cardiovascular and Interventional Radiology, 2007. 30(2): 241-247
    79. Ohnishi K., Yoshioka H., Ito S. and Fujiwara K. Prospective randomized controlled trial comparing percutaneous acetic acid injection and percutaneous ethanol injection for small hepatocellular carcinoma. Hepatology, 1998. 27(1): 67-72
    80. Allen T.M. and Cullis P.R. Drug delivery systems: entering the mainstream. Science, 2004. 303(5665): 1818-1822
    81. Gannon C.J., Cherukuri P., Yakobson B.I., Cognet L., Kanzius J.S., Kittrell C., Weisman R.B., Pasquali M., Schmidt H.K., Smalley R.E. and Curley S.A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007. 110(12): 2654-2665
    82. O'Neill B.E., Vo H., Angstadt M., Li K.P., Quinn T. and Frenkel V. Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle. Ultrasound in Medicine and Biology, 2009. 35(3): 416-424
    83. Yan J.F. and Liu J. Characterization of the nanocryosurgical freezing process through modifying Mazur's model. Journal of Applied Physics, 2008. 103(8): 084311-084311-11
    84. Mahmoudi M., Simchi A., Milani A.S. and Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. Journal of Colloid and Interface Science. In Press, Corrected Proof
    85. Hilger I., Hergt R. and Kaiser W. Use of magnetic nanoparticle heating in thetreatment of breast cancer. IEEE Proc Nanobiotechnol, 2005. 152(1): 33-39
    86. Johannsena M., Gneveckowc U., Thiesenb B., Taymooriana K., Chie Hee Chob, Norbert Wald?fnerc, Regina Scholzc, Andreas Jordanc, Loeninga S.A. and Wustb P. Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. European Urology, 2006. 52(6): 1653-1661
    87. Albrecht L., Silke H., Christian M., Ingolf M., Radinka K., Manfred R., Dieter E., B. K. and B. B. Synthesis, properties, and applications of ferromagnetic-filled carbon nanotubes. Chemical Vapor Deposition, 2006. 12: 380-387
    88. Kam N.W.S., O'Connell M., Wisdom J.A. and Dai H.J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(33): 11600-11605
    89. Hamilton R. and Crosser O. Thermal conductivity of heterogeneous two-component system. Industrial and Engineering Chemistry Research Fundamentals, 1962. 125(3): 187
    90.菲利普.纳尔逊.生物物理学.上海:上海科学技术出版社, 2006. 103
    91. A.L.Jones R. Soft condensed matter.北京:科学出版社, 2008. 52
    92. Johannsena M., Gneveckowc U., Thiesenb B., Taymooriana K., Chie Hee Chob, Norbert Wald?fnerc, Regina Scholzc, Andreas Jordanc, Loeninga S.A. and Wustb P. Thermotherapy of Prostate Cancer Using Magnetic Nanoparticles: Feasibility, Imaging, and Three-Dimensional Temperature Distribution. European Urology, 2006
    93. Bhardwaj N., Strickland A.D., Ahmad F., Atanesyan L., West K. and Lloyd D.M. A comparative histological evaluation of the ablations produced by microwave, cryotherapy and radiofrequency in the liver. Pathology, 2009. 41(2): 168-172
    94. Snoeren N., Jansen M.C., Rijken A.M., van Hillegersberg R., Slooter G., KlaaseJ., van den Tol P.M., van der Linden E., Ten Kate F.J.W. and van Gulik T.M. Assessment of viable tumour tissue attached to needle applicators after local ablation of liver tumours. Digestive Surgery, 2009. 26(1): 56-62
    95.王洪武.现代肿瘤靶向治疗技术.北京:中国医药科技出版社, 2005. 144-146
    96. Ruben M.P., William R.P., Chen X.D. and Wilson D.I. Diffusion of NaOH into a protein gel. Chemical Engineering Science, 2008. 63(10): 2763-2772
    97. Dewey D.C. Arrhenius relationship from the molecule and cell to the clinic. International Journal of Hyperthermia, 1994. 10(4): 457-483
    98. Nishida T., Akagi K. and Tanaka Y. Correlation between cell killing effect and cell membrane potential after heat treatment: analysis using fluorescent dye and flow cytometry. International Journal of Hyperthermia, 1997. 13(2): 227-234
    99. den Brok M.H.M.G.M., Sutmuller R.P.M., van der Voort R., Bennink E.J., Figdor C.G., Ruers T.J.M. and Adema G.J. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Research, 2004. 64(11): 4024-4029
    100. Jain R.K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Medicine, 2001. 7(9): 987-989
    101. Leunig M., Goetz A.E., Dellian M., Zetterer G., Gamarra F., Jain R.K. and Messmer K. Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Research, 1992. 52(2): 487-490
    102. Kong G., Braun R.D. and Dewhirst M.W. Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Research, 2001. 61(7): 3027-3032
    103. Rao W. and Liu J. Tumor thermal ablation therapy using alkali metals as powerful self-heating seeds. Minimally Invasive Therapy and Allied Technologies, 2008. 17(1): 43-49
    104.张桂珍,胡伟光.无机化学.北京:化学工业出版社, 2007
    105. Henrik V.E., Agneta S., Anders T., Jerker M.O. and Guo Y.Q. Cellular toxicity induced by different pH levels on the R3230AC rat mammary tumour cell line. An in vitro model for investigation of the tumour destructive properties of electrochemical treatment of tumours. Bioelectrochemistry, 2002. 58(2): 163-170
    106. Nilsson E. and Fontes E. Mathematical modelling of physicochemical reactions and transport processes occurring around a platinum cathode during the electrochemical treatment of tumours. Bioelectrochemistry and Bioenergetics, 2001. 53: 213-224
    107. Nilsson E., von Euler H., Berendson J., Thorne A., Wersall P., Naslund I., Lagerstedt A.S., Narfstrom K. and Olsson J.M. Electrochemical treatment of tumours. Bioelectrochemistry, 2000. 51(1): 1-11
    108. Griffin D.T., Dodd N.J.F., Zhao S., Pullan B.R. and Moore J.V. Low-level direct electrical-current therapy for hepatic metastases.1. preclinical studies on normal liver. British Journal of Cancer, 1995. 72(1): 31-34
    109. Ellwart J.W., Brettel H. and Kober L.O. Cell-membrane damage by ultrasound at different cell concentrations. Ultrasound in Medicine and Biology, 1988. 14(1): 43-50
    110. Kondo T., Kodaira T. and Kano E. Free-radical formation induced by ultrasound and its effects on strand breaks in DNA of cultured fm3a cells. Free Radical Research Communications, 1993. 19: S193-200
    111. Forytkova L., Hrazdira I. and Mornstein V. Effect of ultrasound on dna-synthesis in tumor-cells. Ultrasound in Medicine and Biology, 1995. 21(4): 585-592
    112. Prat F., Chapelon J.Y., Chauffert B., Ponchon T. and Cathignol D. Cytotoxic effects of acoustic cavitation on HT-29 cells and a rat peritoneal carcinomatosis in vitro. Cancer Research, 1991. 51(11): 3024-3029
    113.胡英.物理化学(上册).北京:高等教育出版社, 1999
    114. Marmor J.B., Hahn N. and Hahn G.M. Tumor cure and cell survival after localized radiofrequency heating. Cancer Research, 1977. 37(3): 879-883
    115. Ozisik M.N. Heat conduction. New York: Wiley, 1980. 132-134
    116. Gunasekaran S., Xiao L. and Ould Eleya M.M. Whey protein concentrate hydrogels as bioactive carriers. Journal of Applied Polymer Science, 2006. 99(5): 2470-2476
    117. Deene Y.D., Wagter C.D., Duyse B.V., Derycke S., Mersseman B., Gersem W.D., Voet T., Achten E. and Neve W.D. Validation of MR-based polymer gel dosimetry as a preclinical three-dimensional verification too. Magnetic Resonance in Medicine, 2000. 43(1): 116-125
    118. Bero M.A., Gilboy W.B. and Glover P.M. An optical method for three-dimensional dosimetry. Journal of Radiological Protection, 2000. 20(3): 287-294
    119. Kalambur V.S., Han B., Hammer B.E., Shield T.W. and Bischof J.C. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology, 2005. 16(8): 1221-1233
    120. Salloum M., Ma R.H., Weeks D. and Zhu L. Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. International Journal of Hyperthermia, 2008. 24(4): 337-345
    121. Lin C.C. and Metters A.T. Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 2006. 58(12-13): 1379-1408
    122. Wei L., Cai C., Lin J. and Chen T. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials, 2009. 30(13): 2606-2613
    123. Santos O., Nylander T., Schillen K., Paulsson M. and Tr?g?rdh C. Effect of surface and bulk solution properties on the adsorption of whey protein onto steel surfaces at high temperature. Journal of Food Engineering, 2006. 73(2): 174-189
    124. Ruben M.P., Robert J.F., William R.P. and D. Ian W. Effect of gel structure on the dissolution of heat-inducedβ-lactoglobulin gels in alkali. Journal of Agricultural and Food Chemistry, 2006. 54(15): 5437-5444
    125. Ruben M.P., Robert J.F., William R.P. and D. Ian W. Probing the mechanisms limiting dissolution of whey protein gels during cleaning. Food And Bioproducts Processing, 2006. 84(C4): 311-319
    126. Alfrey J.T., Gurnee E.F. and Lloyd W.G. Diffusion in glassy polymers. Journal of Polymer Science Part C: Polymer Symposia, 1966. 12(1): 249-261
    127. Deng Z.S. and Liu J. Analytical study on bioheat transfer problems with spatical or transient heating on skin surface or inside biological bodies. Transactions of the ASME, 2002. 124: 638-649
    128. Pennes H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 1948. 1(2): 93-122
    129. Park C.H., Lee S.H., Stephens R.L., Smith T.K. and Park M.H. Flow cytometry DNA analysis on tumor cell subpopulation of human tumor specimens by exclusion of lymphohemopoietic cells. Journal of Histochemistry and Cytochemistry, 1988. 36(6): 705-709
    130. Stavros G.D., Regina G.-E., Rajen R. and Ralph deVere W. Near-infrared autofluorescence imaging for detection of cancer. Journal of Biomedical Optics, 2004. 9(3): 587-592
    131. van Tellingen O., Kemper M., Tijssen F., van Asperen J., Nooijen W.J. and Beijnen J.H. High-performance liquid chromatographic bio-analysis of PSC 833 in human and murine plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 1998. 719(1-2): 251-257
    132. Devireddy R.V., Coad J.E. and Bischof J.C. Microscopic and Calorimetric Assessment of Freezing Processes in Uterine Fibroid Tumor Tissue. Cryobiology, 2001. 42(4): 225-243
    133. Jacobs M.A., Ouwerkerk R., Kamel I., Bottomley P.A., Bluemke D.A. and Kim H.S. Proton, diffusion-weighted imaging, and sodium (23Na) MRI of uterine leiomyomata after MR-guided high-intensity focused ultrasound: a preliminary study. Journal of Magnetic Resonance Imaging, 2009. 29(3): 649-656
    134. Samset E. Temperature mapping of thermal ablation using MRI. Minimally Invasive Therapy and Allied Technologies, 2006. 15(1): 36-41
    135. Sequeiros R.B., Ojala R., Kariniemi J., Per?l? J., Niinim?ki J., Reinikainen H. and Tervonen O. MR-guided interventional procedures: a review. Acta Radiologica, 2005. 46(6): 576 - 586
    136. Gellermann J., Wlodarczyk W., Hildebrandt B., Ganter H., Nicolau A., Rau B., Tilly W., Fahling H., Nadobny J., Felix R. and Wust P. Noninvasive magnetic resonance thermography of recurrent rectal carcinoma in a 1.5 Tesla hybrid system. Cancer Research, 2005. 65(13): 5872-5880
    137. Vigen K.K., Jarrard J., Rieke V., Frisoli J., Bruce L., Kim D. and Pauly B. In vivo porcine liver radiofrequency ablation with simultaneous MR temperature imaging. Journal of Magnetic Resonance Imaging, 2006. 23(4): 578-584
    138. Cherry S., Shao Y. and Silverman R. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Transactions on Nuclear Science, 1997. 44(3): 1161-1165
    139. Chen L., Rivens I., ter Haar G., Riddler S., Hill C.R. and Bensted J.P. Histological changes in rat liver tumours treated with high-intensity focused ultrasound. Ultrasound in Medicine and Biology, 1993. 19(1): 67-74
    140. London R.A., Glinsky M.E., Zimmerman G.B., Bailey D.S., Eder D.C. and Jacques S.L. Laser-tissue interaction modeling with LATIS. Applied Optics, 1997. 36(34): 9068-9074
    141. London R.A., Esch V.C. and Papademetriou S. Numerical simulations of a diode laser BPH treatment system. in Laser-Tissue Interaction X: Photochemical,Photothermal, and Photomechanical. San Jose, CA, USA. 1999.141
    142. Sun J., Zhang A. and Xu L.X. Evaluation of alternate cooling and heating for tumor treatment. International Journal of Heat and Mass Transfer, 2008. 51(23-24): 5478-5485
    143. Oliveski R.D.C., Macagnan M.H. and Copetti J.B. Entropy generation and natural convection in rectangular cavities. Applied Thermal Engineering, 2009. 29(8-9): 1417-1425
    144. Qian H., Qian M. and Tang X. Thermodynamics of the general diffusion process: time-reversibility and entropy production. Journal of Statistical Physics, 2002. 107(5): 1129-1141
    145. Ziegler H. Chemical reactions and the principle of maximal rate of entropy production. Zeitschrift für Angewandte Mathematik und Physik, 1983. 34(6): 832-844
    146. Koukkari P.S. and Liukkonen S.S. Calculation of entropy production in process models. Industrial and Engineering Chemistry Research, 2002. 41(12): 2931-2940
    147. Szasz A. and Vincze G. Dose concept of oncological hyperthermia: heat-equation considering the cell destruction, 2006. 171-181
    148. Szasz A. Hyperthermia, a modality in the wings, 2007. 56-66
    149.Vaupel P., Kallinowski F. and Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research, 1989. 49(23): 6449-6465
    150. Yu L.N. and Liu J. Entropy generation theory for characterizing the freezing and thawing injury of biological materials. Forschung im Ingenieurwesen, 2007. 71(3): 125-134
    151.曾丹苓.工程非平衡热动力学.北京:科学出版社, 1991. 55-60
    152. Gullino P.M., Grantham F.H. and Smith S.H. The interstitial water space oftumors. Cancer Research, 1965. 25: 727-731
    153. Song C.W., Griffin R. and Park H.J., Influence of tumor pH on therapeutic response, in Cancer Drug Resistance. 2006. 21-42
    154. Ritz J.P., Lehmann K.S., Mols A., Frericks B., Knappe V., Buhr H.J. and Holmer C. Laser-induced thermotherapy for lung tissue-evaluation of two different internally cooled application systems for clinical use. Lasers in Medical Science, 2008. 23: 195-202
    155. Liu J., Zhou Y.X., Yu T.Y., Gui L., Deng Z.S. and Lv Y.G. Minimally invasive probe system capable of performing both cryosurgery and hyperthermia treatment on target tumor in deep tissues. Minimally Invasive Therapy and Allied Technologies, 2004. 13(1): 47-57
    156. Gonzalez R. C., Woods R.E. and EddinsS. L. Matlab数字图像处理.北京:电子工业出版社, 2008. 261-263
    157. Boyd J.P. Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C[infinity]. Applied Mathematics and Computation, 2005. 161(2): 591-597
    158. Datta N.R., Bose A.K., Kapoor H.K. and Gupta S. Head and neck cancers: results of thermoradiotherapy versus radiotherapy. International Journal of Hyperthermia, 1990. 6(3): 479-486
    159. Perez C.A., Pajak T., Emami B., Hornback N.B., Tupchong L. and Rubin P. Randomized phase III study comparing irradiation and hyperthermia with irradiation alone in superficial measurable tumors. American Journal of Clinical Oncology, 1991. 14(2): 133-141
    160. Harima Y., Nagata K., Harima K., Ostapenko V.V., Tanaka Y. and Sawada S. A randomized clinical trial of radiation therapy versus thermoradiotherapy in stage IIIB cervical carcinoma. International Journal of Hyperthermia, 2001. 17(2): 97-105
    161. Kutter J., Ozsahin M., Monnier P. and Stupp R. Combined modality treatment with full-dose chemotherapy and concomitant boost radiotherapy for advanced head and neck carcinoma. European Archives of Oto-Rhino-Laryngology, 2005. 262(1): 1-7
    162. Haaga J.R., Exner A.A., Wang Y.D., Stowe N.T. and Tarcha P.J. Combined tumor therapy by using radiofrequency ablation and 5-FU-laden polymer implants: Evaluation in rats and rabbits. Radiology, 2006. 238(3): 911-918
    163. Shankar S., vanSonnenberg E., Morrison P.R., Tuncali K. and Silverman S.G. Combined radiofrequency and alcohol injection for percutaneous hepatic tumor ablation. American Journal of Roentgenology, 2004. 183(5): 1425-1429
    164. Rao W. and Liu J. Tumor thermal ablation therapy using alkali metals as powerful self-heating seeds. Minimally Invasive Therapy and Allied Technologies, 2008. 17(1): 43-49
    165. Rosen E.M., Knesel J., Goldberg I.D., Jin L., Bhargava M., Joseph A., Zitnik R., Wines J., Kelley M. and Rockwell S. Scatter factor modulates the metastatic phenotype of the EMT6 mouse mammary tumor. International Journal of Cancer, 1994. 57(5): 706-714
    166. Carlsson G., Gullberg B. and Hafstr?m L. Estimation of liver tumor volume using different formulas—An experimental study in rats. J Cancer Res Clin, 1983. 105(1): 20-23
    167. Clark T.W. and Soulen M.C. Chemical ablation of hepatocellular carcinoma. Journal of Vascular and Interventional Radiology, 2002. 13(9 Pt 2): S245-252
    168. Zardi E.M., Borzomati D., Cacciapaglia F., Picardi A., Valeri S., Bianchi A., Galeotti T., Coppolino G., Coppola R. and Afeltra A. Percutaneous ultrasound-guided ablation of BW7756-hepatoma using ethanol or acetic acid in a rat model. Bmc Gastroenterology, 2007. 7: 45
    169. Tamai T., Seki T., Imamura M., Nakagawa T., Wakabayashi M., Nishimura A.,Yamashiki N., Shiro T., Inoue K., Okamura A. and Harada K. Percutaneous injection of a low-concentration alkaline solution targeting hepatocellular carcinoma. Oncology Reports, 2000. 7(4): 719-723
    170. Hahn G.M. and Shiu E.C. Effect of pH and elevated temperatures on the cytotoxicity of some chemotherapeutic agents on chinese hamster cells in vitro. Cancer Research, 1983. 43(12_Part_1): 5789-5791
    171. Wemyss-Holden S.A., Robertson G.S.M., Dennison A.R., Hall P.D., Fothergill J.C., Jones B. and Maddern G.J. Electrochemical lesions in the rat liver support its potential for treatment of liver tumors. J Surg Res, 2000. 93(1): 55-62
    172. Xie L. and Sun C.J. A new local ablation for solid malignant tumours: Anti-tumour effect of hyperthermal and electrochemical therapy on transplantable mouse cancer. Int J Hyperthermia, 2006. 22(7): 607-612
    173. MacDonald D.K.C., Pearson W.B. and Towle L.T. An investigation of the sodium-potassium equilibrium diagram. CAN J Phys, 1956. 34: Pages: 389-394
    174. Stroszczynski C., Gretschel S., Gaffke G., Puls R., Kretzschmar A., Hosten N., Schlag P.M. and Felix R. Laser-induced thermotherapy (LITT) for malignant liver tumours: the role of sonography in catheter placement and observation of the therapeutic procedure. Ultraschall in der Medizin, 2002. 23(3): 163-167
    175. Ren X.L., Zhou X.D., Yan R.L., Liu D., Zhang J., He G.B., Han Z.H., Zheng M.J. and Yu M. Sonographically guided extracorporeal ablation of uterine fibroids with high-intensity focused ultrasound: midterm results. Journal of Ultrasound in Medicine, 2009. 28(1): 100-103
    176. Hajime Kanauchi Y.M.M.K. Percutaneous radio-frequency ablation of the thyroid guided by ultrasonography. European Journal of Surgery, 2001. 167(4): 305-307
    177. Cha C.H., Lee F.T., Jr., Gurney J.M., Markhardt B.K., Warner T.F., Kelcz F. and Mahvi D.M. CT Versus Sonography for Monitoring Radiofrequency Ablation in a Porcine Liver. American Journal of Roentgenology, 2000. 175(3): 705-711
    178. Hsu C.P., Razavi M.K., So S.K., Parachikov I.H. and Benaron D.A. Liver tumor gross margin identification and ablation monitoring during liver radiofrequency treatment. Journal of Vascular and Interventional Radiology, 2005. 16(11): 1473-1478
    179. Myers P.C., Sadowsky N.L. and Barrett A.H. Microwave thermography: principles, methods and clinical applications. Journal of Microwave Power, 1979. 14(2): 105-114
    180. Barrett A.H., Myers P.C. and Sadowsky N.L. Microwave thermography in the detection of breast cancer. American Journal of Roentgenology, 1980. 134(2): 365-368
    181. Conway J., Hawley M., Mangnall Y., Amasha H. and van Rhoon G.C. Experimental assessment of electrical impedance imaging for hyperthermia monitoring. Clinical Physics and Physiological Measurement, 1992. 13: 185-189
    182. Moskowitz M.J., Ryan T.P., Paulsen K.D. and Mitchell S.E. Clinical implementation of electrical impedance tomography with hyperthermia. International Journal of Hyperthermia, 1995. 11(2): 141-149
    183. Hawrysz D.J. and Sevick-Muraca E.M. Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia, 2000. 2(5): 388-417
    184. Head J.F., Wang F., Lipari C.A. and Elliott R.L. The important role of infrared imaging in breast cancer - new technology improves applications in risk assessment, detection, diagnosis, and prognosis. IEEE Engineering in Medicine and Biology Magazine, 2000. 19(3): 52-57
    185. Cummins L. and Nauenberg M. Thermal effects of laser radiation in biological tissue. Biophys Journal, 1983. 42(1): 99-102
    186. Gui L. and Liu J. Animal test on infrared image-guided percutaneous hot saline injection therapy. Minimally Invasive Therapy and Allied Technologies, 2005.14(6): 339-344
    187. Yan J.F., Wang H.W., Liu J., Deng Z.S., Rao W. and Xiang S.H. Feasibility study on using an infrared thermometer for evaluation and administration of cryosurgery. Minimally Invasive Therapy and Allied Technologies, 2007. 16(3): 173-180
    188. Janicek M.J., Demetri G., Janicek M.R., Shaffer K. and Fauci M.A. Dynamic infrared imaging of newly diagnosed malignant lymphoma compared with gallium-67 and fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography. Technology In Cancer Research and Treatment, 2003. 2(6): 571-577
    189. Huang C.H. and Chen C.W. A boundary element-based inverse-problem in estimating transient boundary conditions with conjugate gradient method. International Journal for Numerical Methods in Engineering, 1998. 42(5): 943-965
    190. Roemer R.B. Engineering aspects of hyperthermia therapy. Annual Review of Biomedical Engineering, 1999. 1(1): 347-376
    191. Deng Z.S., Liu J., Yan J.F., Sun Z.Q. and Zhou Y.X. Experimental and numerical investigation on simulating nanocryosurgery of target tissues embedded with large blood vessels. Advances in Numerical Heat Transfer, 2009. 3: 221-256
    192.高翔.大血管对激光肿瘤热疗影响的数值模拟与实验研究. 2005,清华大学:北京. 23-24
    193.刘静.高端医疗设备何时造福普通百姓.高科技与产业化, 2007(5): 84-85
    194.饶伟,刘静.论构建大幅降低医患成本的全新医疗装备模式——微全医院系统.科技导报, 2006. 24(10): 42-49
    195.刘静.低温生物医学工程学原理.北京:科学出版社, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700