用户名: 密码: 验证码:
高原鼠兔洞穴密度对高寒草甸初级生产力及土壤特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在三江源区(青海果洛)高寒草甸调查以高原鼠兔(Ochotona curzoniae)为主要鼠类的种群密度及其危害程度。以高原鼠兔有效鼠洞作为被调查的对象,最后确定4个不同鼠洞密度梯度的样地,对不同鼠洞密度下高寒草甸植物群落植物多样性、生产力、土壤理化性质等因子在生长季内(5~10月)的变化和特性进行了研究,取得了如下结论:
     1.不同鼠洞密度样地草地植物群落种类组成、数量特征及其多样性变化面积为25m×25m(1/16hm2)的四个不同鼠洞密度样地中,样地Ⅰ(AZP)主要植物有36种,小嵩草(0.151)、矮嵩草(0.1073)为群落优势种,平均优势度为0.028;样地Ⅱ(LP)主要植物有30种,小嵩草(0.1220)和早熟禾(0.1514)为群落优势种,平均优势度为0.0345;样地Ⅲ(MP)的主要植物有27种,铁棒棰(0.1134)等杂类草为群落优势种,平均优势度为0.037;样地Ⅳ(HP)主要植物有28种,鹅绒萎陵菜(0.1223)和多裂萎陵菜(0.1220)为群落优势种,平均优势度为0.036。
     物种多样性指数、均匀度指数随鼠洞密度的变化基本上与种的丰富度变化一致,但与优势度指数变化成相反趋势。鼠洞密度为54个时(样地Ⅲ,MP)各指标为最小值。
     鼠洞密度与植被盖度、物种数、多样性指数和均匀度指数之间的关系可以用二次函数y=ax2+bx+c来表示,其相关系数R2分别为0.96、0.9946、0.9815和0.9596。同样不同鼠洞密度样地植物群落盖度、物种丰富度、多样性和均匀度指数与其各自地上生物量之间的趋势也呈二次函数关系,其相关系数R2分别为0.9347,0.9858,0.8852,0.7。
     说明单峰式函数能较好地表达不同鼠洞密度样地植物群落盖度、物种丰富度、多样性和均匀度指数与有效鼠洞梯度和地上生物量的分布格局。
     2.不同鼠洞密度样地地上、地下、总生物量的变化及其相互关系地上生物量的峰值出现在8月底或9月份,4个不同鼠洞密度样地生物量最大值(g /m2)分别为444.6,135.1,150.7,179.1。各样地年生物量平均值排序为:样地Ⅰ(AZP) >样地Ⅲ(MP)>样地Ⅳ(HP)>样地Ⅱ(LP),说明生物量高低不能完全说明高原鼠兔的种群密度和危害程度。
     地下生物量最小值出现在8月份,4个不同鼠洞密度样地生物量最小值(g/m2)分别为5263.9,2830.7,1436.3,2280.2。各样地年生长量平均值排序为:样地Ⅰ(AZP) >样地Ⅱ(LP)>样地Ⅳ(HP)>样地Ⅲ(MP)。
     总生物量的趋势主要受地下生物量的支配,样地Ⅰ(AZP)地下生物量显著高于其它3个样地(P<0.01),各样地年总生物量平均值排序为:样地Ⅰ(AZP) >样地Ⅱ(LP)>样地Ⅳ(HP)>样地Ⅲ(MP)。
     4个不同鼠洞密度样地无论以生长季的平均值还是地上植物量达到极大值时其地下/地上植物量(R/T)比值均表明:样地Ⅱ(LP) R/T在各样地群落中比值最大,而样地Ⅲ(MP) R/T的比值最小,大小排序为样地Ⅱ(LP)>样地Ⅳ(HP)>样地Ⅰ(AZP) >样地Ⅲ(MP);地下生物量占总生物量的份额除样地Ⅲ(MP)外均超过95%,大小排序为:Ⅱ(LP)>样地Ⅳ(HP)>样地Ⅰ(AZP) >样地Ⅲ(MP)。
     生长季地上、地下和总生物量和不同鼠洞密度的变化曲线用二次函数关系式y=ax2+bx+c进行拟合,拟合效果良好,在鼠洞密度为54个(样地Ⅲ,MP)时各生物量达到最低点。地上和地下生物量的方差分析表明,地上生物量对鼠洞密度和月份的敏感程度要强于地下生物量的反应。
     3.不同鼠洞密度样地地上植物功能群组成及其失水率变化
     不同鼠洞密度样地生长季不同月份间各功能草群生物量和占有率均显示为差异显著(P<0.05),随着鼠洞密度的增加,以莎草、禾草为主的优良牧草减少,一些喜光和采食性较差的杂草出现,并比例增加。
     莎草类、禾草类、杂类草生物量在生长季5~10月期间呈“单峰”曲线变化,在8月或9月份达到峰值。而枯草却与前三类功能群草类的变化趋势恰恰相反,在8月或9月份其生物量为最小值,生长季初末期最大。
     4个不同鼠洞密度样地在牧草生长季的初期(5月份)、末期(10月份)失水率最低,6月份为最高,样地Ⅲ(MP) 7月份达到最大。
     4.不同鼠洞密度样地植物净初级生产力
     不同鼠洞密度样地地上净生产量、地下总净生产量、全群落净生产量均表现为差异极其显著(P<0.01)。地上部分的净生产量以样地Ⅲ(MP)最低,而样地Ⅰ(AZP)为最高达273.7 g /m2·a,比样地Ⅲ(MP)高出64.72%;地下部分与地上部分则相反。地下不同深度的净生产量在垂直高度上具有明显空间分布特征,0~10cm层最大,10~20cm和20~30cm层依次递减;
     5.不同鼠洞密度样地地下生物量分布特点
     地下部分根系的垂直分布十分明显,并随深度增加生物量急剧减少(P<0.01),呈“倒金字塔”分布。其地下植物量主要分布在0~10 cm的草层中, 0~20 cm层几乎占有了植物根系的全部,随鼠洞密度增加并有向地表层聚集的趋势。不同鼠洞密度样地生长季地下各层分布的平均植物量与土壤深度的关系用指数方程y=axb进行拟合(P<0.01),相关系数均达0.95以上;样地Ⅲ(MP)在7、8月份可以用幂函数y=aex进行拟合,相关系数达0.99以上。
     生长季不同月份地下生物量呈“V”字型曲线,但不同鼠洞密度样地间又存在显著差异(P<0.01),死根量的消长模式与活根大致相同,在8月份达到最低。不同样地在生长季不同月份根土比差异显著(P<0.05),且每个样地的不同层根土比差异及其显著(P<0.01)。土壤根土比随鼠洞密度的增大而减小至54个(Ⅲ,MP)时最小,到样地Ⅳ(HP)有所增加。
     不同鼠洞密度样地生长季不同月份根土比平均值分层变化,总的变化趋势是随着土壤深度的增加,根土比递减,并满足y=ax+b的线性关系(P<0.05)。样地各层总的变化趋势是样地Ⅰ(AZP) >样地Ⅳ(HP)>样地Ⅱ(LP)>样地Ⅲ(MP)。不同鼠洞密度样地各土层根土比随鼠洞密度变化的关系可以用y=ax2+bx+c(P<0.01)表示,R2=0.7271~0.9959。
     地下生物量和地上生物量的比值随鼠洞密度变化呈双峰曲线变化,在样地Ⅲ(MP)时为最小。总体是在近似零密度和中等密度时地下和地上生物量的比值达到波谷,在中等密度时最小,在低密度和高等密度时为波峰,特别是在低密度6月份时其比值达到最大。
     6.不同鼠洞密度对高寒草甸土壤层物理因子的影响
     不同鼠洞密度样地土壤地温随土层深度为“V”字型变化,在15 cm处地温达到最低,5 cm处和25 cm处地温相当。不同鼠洞密度和土壤含水量、容重、pH值没有直接的函数关系。但是含水量、容重、pH值均与其分层满足线性相关,符合y=±ax+b形式。含水量随深度增加而降低,表层(0~10cm)最高,样地Ⅰ(AZP)含水量为最高,样地Ⅲ(MP)为最低;容重随土层深度增加而增加,由于地下根主要积聚在第一层,8月份为生长旺盛期;土壤显弱碱性,pH值随土层深度增加而增加,而样地Ⅲ(MP)高于其他3个样地,这与该样地为重度退化阶段有关。
     7.不同鼠洞密度对土壤养分含量的影响
     4个不同鼠洞密度样地在生长季土壤养分含量随季节变化表现出多样性。不同样地的土壤有机质、全氮、全磷、碱解氮和速效钾含量均随土层增加而减少,即0~10cm>10~20cm>20~30cm。各养分因子含量和鼠洞密度的关系主要在0~10cm差异显著(P<0.05),与第2、3层差异不显著(P>0.05)。随季节变化最大值基本出现在8月或9月份。不同鼠洞密度的样地土壤有机质含量大小排序是:样地Ⅰ(AZP) >样地Ⅱ(LP)>样地Ⅳ(HP)>样地Ⅲ(MP)。不同样地土壤全氮含量排序为样地Ⅰ(AZP) >样地Ⅱ(LP)>样地Ⅳ(HP)>样地Ⅲ(MP)。随生长季节的变化趋势为“V”字型,在鼠洞密度是3个(Ⅰ,AZP)时含量最高,后随鼠洞密度增大含量急剧下降至最低点(Ⅱ,LP),后缓慢上升。生长季全磷含量除8月外其它月份含量变化不大,基本保持恒定。碱解氮含量0~10cm 8月份达到最大后下降,10~20cm、20~30cm两层土壤却在8月份为最小值。样地Ⅰ(AZP)、Ⅱ(LP)和样地Ⅲ(MP)速效钾含量季节动态变化一致,均在8月份达到最大后下降,样地Ⅳ(HP)除表层在6月份后下降并在8月份为最小值后缓慢上升。
     以生长季初期的6月和旺盛期的8月为例,鼠洞密度和土壤各层营养因子养分含量之间的关系建立关系式y=ax2+bx+c。式中y代表土壤各营养因子的含量,x为不同鼠洞密度,a、b、c为常数,反映草地的土壤营养状况。
     随着鼠洞密度的增加,土壤各营养因子养分含量反而降低,在由54个(MP)到85个(HP)的过程突然增加。从所选取的4个递增鼠洞梯度来看,54个(MP)有效鼠洞的样地各层各养分含量均为最小值。
     8.适宜鼠洞密度及种群的确立
     结合不同鼠洞密度样地植被及土壤状况可以判断,样地Ⅰ(AZP)、Ⅱ(LP)、Ⅲ(MP)和Ⅳ(HP)退化演替程度分别为未退化、轻度退化、重度退化和中度退化阶段,这也验证了中度退化草地鼠类种群最大的结论。结合前人研究成果可以得出,样地Ⅱ(LP)为鼠洞密度较适宜范围,即鼠洞密度为512个/hm2,结合洞口系数可以得出适宜的高原鼠兔种群密度范围为:70~110只/hm2。鼠类活动及其危害程度是草地退化和演替的衍生物和信号,只是加剧了草地退化的进程。实际上植被的局部性破坏及斑块状分布才是导致高原鼠兔迁入的重要原因。
The relationship between rodents activities, taking the plateau pikas as example,and alpine meadow degraded degree has aroused considerable interest and controversy in recent ecological literstrue.The burrowing rodents in use were investigated in Guoluo Prefecture,Qinghai Province, the important part in source region of Yangtze and Yellow river. Then four different densities sampling sites were established in alpine meadow for current study. This research mainly includes two parts: (1)the effects of different burrowing rodents densities on aboveground vegetation factors mainly included plant diversity and primary productivity from May to October; (2) the effects of different burrowing rodents densities on belowground environment factors mainly included belowground biomass distribution and soil resource characteristics in plant growing season from May to October. Main results and conclusions from the research were summarized as follows:
     1.Composition of plant population,characteristics of species and variation of plant diversity at different burrowing rodents densities plots:
     PlotⅠ( AZP) with 3 burrows per 1/16hm2 has 36 kinds of species,Kobresia pygmaea and Kobresia humili are dominent species of theirs population.As same as PlotⅠ, PlotⅡ( LP) with 32 burrows has 30 kinds and Kobresia pygmaea and Poa annua are dominent species.PlotⅢ( MP) with 54 burrows has 27 kinds and Aconitum pendulum is dominent species. PlotⅣ( HP) with 85 burrows has 28 kinds,Potentilla anserina and Potentilla multifida are dominent species.Their average significant value are 0.028,0.0345,0.037 and 0.036 respectively.
     Species diversity and eveness indexes change with the same as the richness index variation tendency of plant communities, however, the dominance index changes the opposite tendency. When the burrows reaches 54 per 1/16hm2, every indexes decline to the smallest. The relationship between plant coverage,richness index,diversity index,eveness index and burrowing rodents density can be described with equation of y=ax2+bx+c,and the correlation coefficient are 0.96、0.9946、0.9815 and 0.9596 respectively. Similarly these plots aboveground biomass display the same relationship of quadratic equation with such diversity indexes, the correlation coefficient are 0.9347,0.9858,0.8852,0.7 respectively. From the above conclusions it can be considered that the unimodal curve function could elucidate the distribution pattern of such diversity indexes, burrowing rodents densities and theirs aboveground biomass better.
     2.Variation and relationship between alpine meadow aboveground biomass, belowground biomass,total biomass and different burrowing rodents densities each other:
     In plant growing season from May to October the aboveground biomass peak value appears in August or September, and the maximum biomass(g /m2)of four plots are 444.6,135.1,150.7,179.1 respectively. The order of annual average biomass is plotⅠ( AZP), plotⅢ(MP), plotⅣ( HP) and plotⅡ(LP). The minimum value of belowground biomass appears in August, and the minimum biomass(g/m2)of four plots are 5263.9,2830.7,1436.3,2280.2 respectively. The order of annual average belowground biomass is plotⅠ( AZP),plotⅡ( LP), plotⅣ( HP) and plotⅢ(MP). Total biomass variation trend is mainly dominated by belowground biomass for its large possession. The total biomass of plotⅠ(AZP)is significantly higher than others(P<0.01)and the order of annual average is plotⅠ(AZP), plotⅡ(LP), plotⅣ(HP) and plotⅢ(MP),which shows that only aboveground biomass can not reveal the plateau pikas population and its destroied extent.
     The ratio of belowground and aboveground biomass(R/T), although two both are the annual average or the belowground is the maximum value,indicates that the R/T of plotⅡ( LP)is most and plotⅢ(MP) is least. The R/T ratio order of four plots is plotⅡ( LP), plotⅣ( HP), plotⅠ(AZP) and plotⅢ(MP). The belowground biomass of total biomass proportion is bigger than 95% expcect plotⅢ,and the order is plotⅡ( LP),plotⅣ( HP), plotⅠ( AZP) and plotⅢ(MP).
     The relationship between aboveground, belowground, total biomass and burrows densities can be simulated by y=ax2+bx+c equation, and the correlation coefficient is from 0.8353 to1.0000. When the burrows density is 54(Ⅲ,MP) the biomass is least. The aboveground and belowground biomass variance analysis indicate that aboveground biomass is more sensitive to both different burrowing rodents densities and plant growing months than to belowground biomass.
     3.Composition of aboveground plant functional groups(PFGs) and variation of theirs water lose rate at different burrowing rodents densities plots:
     Every plots plant function group biomass and theirs percentage in growing season indicate the significant difference(P<0.05).With the burrows increasing,the sedges and grasses are decreasing gradually. Simultaneously some likly light and bad palatability forbs appear and the proportion increases.
     Sedges,grasses and forbs biomass change with unimodal curve in growing season and get the peak value in August or September. But residues biomass has the other way round,which decreases to the minimum in August or September and the peak value appears in May and October.
     Forage grasses water lose rate in May and October are least and in June is most in growing season. Of others plots, the largest water lose rate appear in July. 4.Net primary productivity at different burrowing rodents densities plots: The difference of net productivity of aboveground, all net productivity of belowground and net productivity of whole community is extremely significant(P<0.01). Net productivity of aboveground in plotⅢ(MP) is least of all,while plotⅠ( AZP) is 273.7 g /m2·a,which is higher 64.72% than plotⅢ. Net productivity of belowground is contrary to aboveground. Net productivity of belowground of every soil layers has obvious spatial distribution characteristics in vertical height. Soil layers of 0~10cm,10~20cm and 20~30cm depth are decreased in turn.
     5.Distribution characteristics of belowground biomass at different burrowing rodents densities plots:
     The belowground biomass distributes vertical pattern obviously and with soil depth increasing, the biomass reduces suddenly(P<0.01), which is described as contrary Pyramid pattern. The belowground biomass is distributed at a scale of 0~10 cm, and plant roots are trended together in soil surface layer with burrows increasing, especially in August.
     The relationship between the annual average belowground biomass in erery layers and soil depths is simulated by exponential equation y=axb(P<0.01) , the correlation coefficient is over 0.95, except that plotⅢ(MP) can be described with power function y=aex in July and August, and the correlation coefficient is over 0.99.
     Belowground biomass variation trend can be described with“V”model , firstly declines sharply and then rises slowly. Although it has significant difference with burrowing rodents densities. Dead roots change approximately same as living roots variation trend and the minimum value appears in August. The ratio of roots and soil weight in growing season with every soil layers difference is significant(P<0.05).With the burrows increasing,the ratio of roots and soil reduces gradully to plotⅢ( MP), 54 burrows per 1/16hm2, then increases to plotⅣ(HP),85 burrows per 1/16hm2.
     Generally speaking, with the soil depth deepening,the annual average of ratio of roots and soil weight is decreasing, which can be described with linear equation y=ax+b(P<0.05). As a whole the trend in every soil layers of four plots is plotⅠ( AZP)>plotⅣ( HP)>plotⅡ( LP)>plotⅢ(MP).Also the relationship between ratio of every layers roots and soil and burrowing rodents densities is simulated by quadratic equation y=ax2+bx+c(P<0.01), and the correlation coefficient is from 0.7271 to 0.9959.
     The ratio of belowground and aboveground biomass varies with burrowing rodents increasing by bimodal curve and reduces to the minimum value of 54 burrows per 1/16hm2(MP).General the burrowing rodents in use lies in the approximate zero density(AZP) or medium density(MP) the ratio reduces to lower and lowest. At the low density(LP)or high density (HP)the ratio ascends to higher and highest in June. 6.Effects of different burrowing rodents densities on soil layers physical factors:
     Soil temperature changes with soil layer deepening of“V”modle at different burrowing rodents densities plots. The temperarture at 15cm depth is lowest and at 5cm depth it is equal to 25cm depth. Soil moisture,bulk density and pH value have no function relationship directly with burrowing rodents increasing, but has linear correlation with soil layers by y=±ax+b equation.The top soil layer moisture is highest and it decreases with soil layer deepening.The soil moisture of plotⅠ(AZP) is highest and plotⅢ(MP) is lowest of four different plots. Also soil bulk density increases with soil layer deepening for the roots mainly assembles in the first layer and plant peak appears in August. Usually soil reveals reak alkalinity and pH value increases with soil layer deepening, too. PlotⅢ(MP) pH value is more than others, whih is decided by the specific characteristics of heavy degraded meadow.
     7.Effects of different burrowing rodents densities on soil nutrient variation: Soil nutrient content displays the multiplicity with the seasonal variation at different burrowing rodents densities plots. General the content of SOM,TN,TP,AN and AK decreases with soil layer deepening, 0~10cm>10~20cm>20~30cm.The relationship between every nutrient factors content and burrowing rodents densities is significant difference in 0~10cm layer(P<0.05),while it has no significant difference in the second and the third layers. In plant growing season the most content appears in August or September. The order of SOM content is plotⅠ( AZP),plotⅡ(LP), plotⅣ( HP) and plotⅢ( MP), TN content sequence is plotⅠ( AZP),plotⅡ(LP),plotⅣ(HP) and plotⅢ(MP) of four plots. These two factors content change with“V’modle and theirs minimum values appear at 32 burrows per 1/16hm2(LP). TP content maintains invariable in growing season except for in August and AN content of 0~10cm layer is highest than others layers,but 10~20cm and 20~30cm layers are lowest in August. The seasonal dynamic of AK content of plotⅠ(AZP),Ⅱ( LP) andⅢ( MP) is consistent, reaching maximum in August then decreasing .While plotⅣ(HP) is an exception that the minimum value appears in August.
     Taking the growth initial and growth boom period as the example, separately in June and in August. The relationship between soil nutrient factors content and soil layers, burrowing rodents densities separately both can be described with the equation of y=ax2+bx+c.
     With the burrowing rodents increasing soil factors nutrient content is decreasing reversly, but the burrows from 54(MP) to 85(HP) the content climbs up suddenly.The lowest content of every nutrient factors is in plotⅢ( LP) of four plots.
     8. Establishment of suitable burrowing rodents and population density scope: Fully combinated the vegetation and environment of four different burrowing rodents densities plots, it can be deduced that four plots are non-degraded(AZP), lightly degraded(LP), heavily degraded (MP) and moderately degraded(HP) grassland respectively from vegetation succession. Simultaneously it also can be confirmed that the existing conclusion of moderately degraded grassland having the most rodents popolation. From all of above analysis and deduction that 512 burrows in use per 1hm2 is a suitable value and the plateau pikas population scope is from 70 to 110 per 1hm2 from the investigated burrows coefficient. And the conclusion, rodents activities and theirs harm extent are derivative and signal but aggravates the advancement to alpine meadow degradation and succession phase, therefore, only vegetation partial destruction and spot massive distribution lead to the massive plateau pikas moving into, is summarized of this study.
引文
1.Ludwig JA,Whitford WG,Cornelius JM.1989.Effects of water,nitrogen and sulfur amendments on cover,density and size of Chihuahuan desert ephemerals[J].Arid Environment,16:35-42.
    2.Mooney HA,Vitousek PV,Matson PA.1987.Exchange of materials between terrestrial ecosystems and atmosphere[J]. Science,238:926-930.
    3.Camill P and Clark J S. Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary[J]. Ecosystems, 2000,3: 534-544.
    4.Xu X L, Ou Y H,Pei Z Y, Zhou C P. Fate of 15N labeled nitrate and ammonium salts added to an alpine meadow in the Qinghai- Xizang Plateau , China[J]. Acta Botanica Sinica,2003, 45(3): 276-281.
    5.Brown P R, Davis M J, Singleton G R. Can farm-management practice reduce the impact of house mouse population on crops in an irrigated farming system [J] ? Wildlife Research, 2004, 31:579-604.
    6.Arthur A D, Pech R P, Dickman C R. Effects of predation and habitat structure on thepopulation dynamics of house mice in large outdoor enclosures[J]. Oikos, 2005, 108:562-572.
    7.Aho K,Huntly N,Moen J,Oksanen T. 1998. Pikas (Ochotona princeps:Lagomorpha)as allogenic engineers in an alpine ecosystem[J].Oecologia,114:405-409.
    8.Bardgett R D,Wardle D A,Yeates G W. 1998. Linking above-ground and below-ground interactions:How plant response to foliar herbivoryinfluence soil organisms[J]. Soil Bio Chem, 30 :1867-1878.
    9.Ceballos G, Pacheco J, List R. 1999. Influence of prairie dogs(Cynomys ludovicianus)on habitat heterogeneity and mammalian diversity in Mexico[J]. Journal of Arid Environments,41:161-172.
    10.Chapman S K,Hart S C,Cobb N S,et al.2003. Insect herbivory increases litter quality and decomposition:an extension of acceleration hypothesis[J]. Ecology, 84: 2867-2876.
    11.Chien H L, Smith A T. 2003. Keystone status of plateau pikas(Ochotona curzoniae): effect of control on biodiversity of nativebirds. Biodiversity and Conservation,12:1901-1912.
    12.Clark J E,Hellgren E C,Parsons J L,et al. 2005. Nitrogen outputs from feces and urine depositionof small mammals: implications for nitrogen cycling[J]. Oecologia,144:447-455.
    13.Fan N C,Zhou W Y,Wei W H,et al. 1999. Rodent pest management in the Qinghai-Tibet alpine meadow ecosystem.In:Singleton G,Hinds L,Leirs H,Zhang Z B eds. Ecological-based rodent management[M]. Canberra:Arawang Communication Group,285-304.
    14.Jiang Z G,Xia W P. 1985 . Utilization of the food resources by plateau pika[J]. Acta Theriologica Sinica,5 :251-262. (in Chinese)
    15.Jing Z C,Fan N C,Zhou W Y,et al. 1991. Integrate managementof grassland rodent pest in Panpo area[J]. Chinese Journal of Applied Ecology,2 (1):73-80. (in Chinese)
    16.Le Y Z,Zuo K C,Zhang J X,et al.1982. Soil type and basic characteristics at Haibei ResearchStationof alpine meadow ecosystem[M]. In:Xia W P ed. Alpine meadow ecosystem I. Lanzhou:Gansu People’s Publishing House,19-23.
    17.Li Y N,Zhao X Q,Cao G M,et al. 2004. Analyseson climates and vegetation productivity background at Haibei AlpineMeadow Ecosystem Research Station[J]. Plateau Meteorology, 23(4):558-567 .(in Chinese)
    18.Liang J R. 1982. On the restoration of population density of plateau pikaand common Chinese zokor after control[M]. In:Xia W P ed. Alpinemeadow ecosystem I. Lanzhou:Gansu People’s Publishing House,93-100. (in Chinese)
    19.L Martin G. 2003 . The role of small ground-foraging mammals in topsoilhealth and biodiversity:Implications to management and restoration[J].Ecological Management and Restoration,4:114-119.
    20.Merikalio E. 1958. Finnish birds: Their distribution and numbers[M].Fauna Fennica,5:1-181.
    21.Reichman O J,Smith S C. 1990. Burrows and burrowing behaviour bymammals[M]. In: Genoways H H ed. Current Mammalogy,Vol (2).New York:Plenum Press,197-244.
    22.Sirotnak J,Huntly N. 2000. Direct and indirect effects of herbivores on nitrogen dynamics:voles in riparian areas[J]. Ecology,81:78-87.
    23.Smith A T,Foggin M J. 1999. The plateau pika (Ochotona curzoniae)is a keystone species for biodiversity on the Tietan plateau[J]. Ani malconservation,2 :235-240.
    24.Smith A T, Wang X G. 1991. Social relationships of adult black-lippedpikas (Ochotona curzoniae)[J]. Journal of Mammalogy, 72:231-247.
    25.Storer D A. 1984. A simple high sample volume ashing procedure for determination of soil organic matter[J]. Communications in Soil Science and Plant Analysis,15:759-772.
    26.Wang Q Y,Jing Z C,Fan N C. 1996. The dynamics of pest rodents and the integrated management of rodents on alpine meadow[M]. In:Wang Z W,Zhang Z B eds. Theory and practice of rodent pest management. Beijing:Science Press,206-228 .(in Chinese)
    27.Zong H,Fan N C,Yu X F,et al. 1991 . The research on the population spatial patterns of the plateau zokor (Myospalax fontanierii)and the plateau pika (Ochotona curzoniae)in the alpine meadow ecosystem[J].Acta Ecologica Sinica,11 (2):125-129. (in Chinese)
    28.Aho K,Huntly N,Moen J. 1998. Pikas (Ochotona princeps:Lagomorpha)as allogenic engineers in an alpine ecosystem[J].Oecologia,114:405 - 409.
    29.Ceballos G, Pacheco J, List R. 1999. Influence of prairie dogs(Cynomys ludovicianus)on habitat heterogeneity and mammalian diversityin Mexico[J]. Journal of Arid Environments,41:161-172.
    30.Chapman S K,Hart S C,Cobb N S, et al.2003. Insect herbivory increases litter quality and decomposition:an extension of acceleration hypothesis[J]. Ecology, 84: 2867 -2876.
    31.Chien H L, Smith A T. 2003. Keystone status of plateau pikas(Ochotona curzoniae): effect of control on biodiversity of nativebirds[J]. Biodiversity and Conservation,12:1901-1912.
    32.Clark J E,Hellgren E C,Parsons J L. 2005. Nitrogen outputs from feces and urine depositionof small mammals: implications for nitrogen cycling[J]. Oecologia,144:447-455.
    33.Fan N C,Zhou W Y,Wei W H. 1999. Rodent pest management in the Qinghai-Tibet alpine meadow ecosystem[M].In:Singleton G,Hinds L,Leirs H,Zhang Z B eds. Ecological-based rodent management. Canberra:Arawang Communication Group,285-304.
    36.Le Y Z,Zuo K C,Zhang J X,et al.1982. Soil type and basic characteristics at Haibei Research Station of alpine meadow ecosystem[M]. In:Xia W P ed. Alpine meadow ecosystem I. Lanzhou: Gansu People’s Publishing House,19-23.
    37. Ellison, L. 1946. The pocket gopher in relation to soil erosion on mountain ranges[J]. Ecology, 27: 101-114.
    38 Fan, N., Z. Jing, Q. Wang ,et al. 1986. Studies on bromadiolone against the pika and the zokor[J]. Acta Theriologica Sinica, 6: 211-217.
    39. Grinnell, J. 1923. The burrowing rodents of California as agents in soil formation[J]. Journal of Mammalogy, 4: 137-149.
    40 Huntly, N. and O. J. Reichman. 1994. Effect of Subterranean mammalian herbivores on vegetation[J]. Journal of Mammalogy, 75: 852-859.
    41.Martin G. 2003 . The role of small ground-foraging mammals in topsoilhealth and biodiversity: Implications to management and restoration[J].Ecological Management and Restoration, 4: 114- 119.
    42.Reichman O J,Seabloom E W. 2002. The role of pocket gophers as subterranean ecosystem engineers[J]. Trends in Ecology and Evolution,17:44-49.
    43.Reichman O J,Smith S C. 1990. Burrows and burrowing behaviour by mammals[M]. In: Genoways H H ed. Current Mammalogy,Vol (2).New York:Plenum Press,197-244.
    44. Ma, M. 1995. Suggestions for the protection of some pikas[J]. China Nature, 2:26.
    45.Sirotnak J,Huntly N. 2000. Direct and indirect effects of herbivores on nitrogen dynamics:voles in riparian areas[J]. Ecology,81:78-87.
    46.Smith A T,Foggin M J. 1999. The plateau pika (Ochotona curzoniae)is a keystone species for biodiversity on the Tibetan plateau[J]. Ani malconservation,2 :235-240.
    47.Smith A T, Wang X G. 1991. Social relationships of adult black-lipped pikas (Ochotona curzoniae)[J]. Journal of M ammalogy, 72:231-247.
    48.Storer D A. 1984. A simple high sample volume ashing procedure fordetermination of soil organic matter[J]. Communications in Soil Scienceand Plant Analysis,15:759-772.
    49. Nekipelov, N. V. 1954. Changes in numbers of the Daurian pika in southwest Transbaikalia. Izv. Irkutsk. Nauchno-issled. Protivochumnpeo. Ins. Sib. Dal'nego Vost., 12: 171-180.
    50. Schaller, G. B. 1998. Wildlife of the Tibetan Steppe[M]. University of Chicago Press. Chicago.
    51.Zhang Y M,Zhang Z B, Wei W H,et al. 2005. Time allocation of territorial activity and adaptations to environment of predation risk by plateau pikas[J]. Acta Theriologica Sinica,25 (4): 333-338.
    52. Shi, Y. 1983. On the inftuence of rangeland vegetation to the density of plateau pikas (Ochotona curzoniae)[J]. Acta Theriologica Sinica, 3: 181-187.
    53.Zong H,Fan N C,Yu X F,et al. 1991 . The research on the population spatial patterns of the plateau zokor (Myospalax fontanierii)and the plateau pika (Ochotona curzoniae)in the alpine meadow ecosystem[J].Acta Ecologica Sinica,11 (2):125-129. (in Chinese)
    54.Zong H,Xia W P. 1987. Circadian activity rhythms of plateau pikas[J].Acta Theriologica Sinica,7 (3):211-223. (in Chinese)
    55.Du,G.Z.,G.L.Qin.,Z.Z.Li.,et al.2003.Relationship between species richness and pro-ductivity in an alpine meadow plant community[J]. Acta Phytoecologica Sinica, 27: 125-132.
    56.Friedel,M.H.,G.N.Bastin & G.F.Griffin.1988.Range assessment and monitoring of arid lands:the derivation of functional groups to simplify vegetation data[J].Journal of Environmental Management, 27:85-97.
    57.Frissel M J. 1977, Cycling of mineral nutrients in agricultural ecosystems[J]. Agro-Ecosystems, 4:1-25.
    58.Grime,J.P.,J.G.Hodgson & R.Hunt.1988.Comparative plant ecology:a functional approach to British species[M].London: Unwin Hyman.
    59.Grime,J.P.1997. Biodiversity and ecosystem function: the debate deepens[J]. Science,277:1260-1261.
    60.Hector, A. B., Schmid, C., et al., Dimitrakopoulos, L. A., 1999. Plant diversity and productivity experiments in European grassland[J]. Science, 286: 1123-1127.
    61.Hobbs R.J. and Huenneke L.F. Disturbance, diversity, and invasion: implications for conservation. Conserv[J]. Biol. 1992, 6: 324-337.
    62.Hodgson J.G. and A.W.Illius. The ecology and management of grazing systems[J]. CAB International 1996.
    63.Hooper, D. U. and Vitousek, P. M. The effects of plant composition and diversity on ecosystem processes[J]. Science, 1997, 277: 1302-1305.
    64.Huston. M., A Soil nutrients and tree species richness in Costa Rican forests [J]. Biogeogr, 1980:147-157.
    65.Huston,M.A.1997.Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity[J]. Oecologia, 110:449-460.
    66.Huston,M.A.,Aarssen,L.W.,et al.2000.No consistent effect of plant diversity on pro- ductivity[J].Science,289:1255.
    67.IPCC. Common Questions about Climate Change. Second Assessment Report[M]. Cambridge: Cambridge University Press, 1996.
    68.Jenkinson D.S., D.E.Adams & A.Wild. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351:304-306.
    69.Kassen,R.,B.Angus,B.Graham & B.R.Paul. 2000. Diversity peaks at intermediate productivity in a laboratory microcosm[J]. Nature, 406: 508-511.
    70.Kirschbaum, M.U.F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry, 1995,27:753-760.
    71.Korner, C. H. 1993. Sealing from species to vegetation: the usefulness of functional groups. In: Schulze, E. D. & H. A. Mooney eds. Ecosystem function of biodiversity[J]. Berlin: Springer. 99:117-140.
    72.Krankina O.N., R.K. Dixon, A.P. Kirlenko & K.I. Kobak. Global climate change adaptation: examples from Russian boreal forests[J]. Climatic Change, 1997, 36: 197-215.
    73.Mackenzie A., A. Ball and S. R.Virdee. Instant notes ecology[M].Science Press, 2000, 190-193.
    74.May. R. M., How mangy species? [M] Philos.Trans.R.Soc.Lond, 1990, 330:293-304.
    75.Naeem,S.,L.J.Tompson,S.P.Lawler,J.H.Lawton & R.M.Woodfin.1994. Declining biodiversity can alter the performance of ecosystem[J].Nature, 368: 734-737.
    76.Noss R.F. Managing rangelands. In: Noss and Cooperrider(eds)[M], Saving Nature’s Legacy. Island Press, 1994, 220-263.
    77.Oleksyn, J., M.G. Tjoelker & P.B. Reich. Adaptation to changing environment in Scots pine populations across a latitudinal gradient[J]. Silve Fennica, 1998, 32:129-140.
    78.Peng C.H. & M.J. Apps. Simulating carbon dynamics along the Boreal Forest Transect Case Study(BFTCS) in central Canada I. Sensitivity to climate change[J]. Global Biogeochemical Cycles, 1998, 12:393-402.
    79.Root,R.B.1967.The niche exploration pattern of a blue grey gnatcatcher[J]. Ecological Monographs, 37: 317-350.
    80.Rosenzweig C. & M.L. Parry. Potential impact of climate change on world food supply[J].Nature, 1994, 367:133-138.
    81.Smith T.M. & H.H. Shugart. The transient response of terrestrial carbon storage to a perturbed climate[J]. Nature, 1993, 361:523-526.
    82.Swaine,M.D.& T.C.Whitmore.1988.On the definition of ecological species groups in tropical rain forests[J].Vegetatio,75:81-86.
    83.Szaro,R.C.1986.Guild management: an evaluation of avian guilds[J]. Environmental Management, 10: 681-688.
    84.Tilman. D., A.E. Haddi, Drought and biodiversity in grasslands [J]. Oecologia, 1992, 89:257-264.
    85.Tilman. D., Biodiversity: population versus ecosystem stability [J]. Ecology, 1996a, 77:350-363.
    86.Tilman,D.,D.Wedin & J.Knops. Productivity and sustainability influenced by biodiversity in grassland ecosystem.[J]Nature, 1996, 379: 718-720.
    87.Tilman. D., J. Knops, D. Wedin, P Reich, M Richie, E Siemann, The influence of functional diversity and composition on ecosystem processes [J]. Science, 1997, 277:1300-1302.
    88.Tilman,D.1999.The ecological consequences of changes in biodiversity: a search for general principles[J]. Ecology,80:1455-1474.
    89.Tilman,D.,P.B.Reich,J.Knops,D.Wedin,T.Mielke & C.Lehman.2001.Diversity and productivityin a long-term grassland experiment[J].Science, 294: 843-845.
    90.White T.A., B.D. Campbell, P.D. Kemp & C.L. Hunt. Sensitivity of three grassland communities to simulated extreme temperature and rainfall events[J]. Global Change Biology, 2000, 6:671-684.
    91.Whittake,R. H. and G. E. Likens.生物圈与人类,《生物圈的第一性生产力》,(H.里思,R. H.惠特克等著,王业蘧等译)[M].北京:科学出版社,1985:286.
    92.Wilson. E. O, F. M. Peter, Biodiversity [M]. Washington: National Academy Press, 1988, 3-8.
    93.Wilson, J. B. 1999. Guilds, functional types and ecological groups[J]. Oikos, 86:507-522.
    94.任继周.草业科学研究方法[M].北京:农业出版社,1998.中国科学院西北高原生物研究所.高寒草甸生态系统国际学术讨论会论文集[M].北京:科学出版社,1989.
    95.任继周,林慧龙.江河源区草地生态建设构想[J].草业学报,2005,14(2):1-8.
    96.钟祥浩.国内外学术界一直关注的问题:青藏高原研究——兼作开设“青藏高原研究”栏目启事[J].山地学报2005,23(3):257-259.
    97.郭正刚,王根绪,沈禹颖,等.青藏高原北部多年冻土区草地植物多样性[J].生态学报,2004, 24(1):149-155.
    98.刘孝义.土壤物理及土壤改良研究法[M].上海:上海科学技术出版社, 1982,41-52.
    99.李英年,赵新全,曹广民,等.海北高寒草甸生态系统定位站气候、植被生产力背景分析[M].高原气象, 2004,23(4):558-567.
    100.于龙,周立,刘伟.利用数码相机快速获得高原鼠兔挖掘活动形成的次生斑块图像[J].兽类学报,2006,26 (3):241-248.
    101.王金龙,魏万红,张堰铭.种群密度对高原鼠兔类固醇激素水平的影响[J].兽类学报,2007,27 (3):221-228.
    102.周乐.杨生妹,于智勇.高原鼠兔四个地理种群的遗传多样性与遗传分化[J].兽类学报,2006, 26 (3):121-126. 
    103.苏建平,连新明,张同作.甘肃鼠兔贮草越冬及其生物学意义[J]兽类学报,2004,24 (1):23-26.
    104.殷宝法,王金龙,魏万红.高寒草甸生态系统中高原鼠兔的繁殖特征[J]兽类学报,2004,24 (3):223-227.
    105.王金龙,魏万红,张堰铭.高原鼠兔种群的性比[J]兽类学报,200424 (2):178-182.
    106.王金龙,魏万红,张堰铭.不同种群密度下高原鼠兔的行为模式[J]动物学报, 2005,51 (4) : 598-607.
    107.王金龙,魏万红,张堰铭.种群密度对高原鼠兔类固醇激素水平的影响[J]兽类学报,2006,26 (3):241-248.
    108.周乐,杨生妹,于智勇.高原鼠兔四个地理种群的遗传多样性与遗传分化[J]兽类学报,2007, 27 (3):221-228.
    109.张堰铭,张知彬,魏万红.高原鼠兔领域行为时间分配格局及其对风险环境适应的探讨[J].兽类学报, 2005 , 25 (4) : 333-338.
    110.杨洁,赵新全,郭松长.高原鼠兔ob基因的组织表达特征[J].兽类学报,2007,27 (1):33-38.
    111.张毓,刘伟,王学英.高原鼠兔贮草行为初探[J].动物学研究, 2005.26 (5):479-483.
    112.钟文勤,樊乃昌.鼠类在草地生态系统中的作用[J].生物学通报,2002,37(7):17-20.
    113.王祖望,刘季科,苏建平.高原草甸生态系统哺乳动物能量动态研究.Ⅱ:通过高原鼠种群能流的初步估[J].兽类学报,1987,7(3):189-202.
    114.萧运峰,梁杰荣,沙渠.天峻县阳康地区高原鼠兔的分布及其对小嵩草草场植被的影响[M].灭鼠和鼠类生物学研究报告.北京:科学出版社.1982,4:114-124.
    115.沈世英.青海省草原灭鼠经济效益探讨[J].青海畜牧兽区杂志(增刊),1982,23-26.
    116.刘书润.内蒙古锡林郭勒地区布氏田鼠与草原植被相互关系的初步研究[J].中国草原, 1979, 2:27-31.
    117.罗泽珣,郝守身,梁志安.呼伦贝尔盟草原有关布氏田鼠防治方面的某些生物学研究[J].动物学报, 1975, 21(1): 51-61.
    118.施银柱.草原植被影响高原鼠兔密度的探讨[J].兽类学报,1983,3(2):181~187.
    119.梁杰荣,萧运峰.鼢鼠和鼠兔数量的相互关系及其对草场植物的危害[M].灭鼠和鼠类生物学研究报告.北京:科学出版社.1978,3:118-124.
    120.樊乃昌,周文杨,施银柱.青海高寒草甸重要害鼠的生态学及控制对策[M].张知彬,王祖望主编:农业主要害鼠的生态学及控制对策.北京:海洋出版社,1998,239-271.
    121.刘伟,王溪,周立.高原鼠兔对小嵩草草甸的破坏及其防治[J].兽类学报,2003,13(3):21-25.
    122.张堰铭,刘季科.高原鼢鼠挖掘对植物生物量的效应及其反应格局[J].兽类学报, 2002, 28(2):56-64.
    123.梁杰荣.高原鼠兔的家庭结构[J].兽类学报,1981,1(2):159-164.
    124.刘伟,周立,王溪.不同放牧强度对植物及啮齿动物作用的研究[J].生态学报,1999, 19(3): 378-382.
    125.杨振宇,江小蕾.高原鼠兔对草地植被的危害及防治阈值研究[J].草业科学, 2002,19 (4): 63-65.
    126.张堰铭,张知彬,魏万红.高原鼠兔领域行为时间分配格局及其对风险环境适应的探讨[J].兽类学报, 2005,25 (4):333-338.
    127.蒋志刚,夏武平.高原鼠兔食物资源利用的研究[J].兽类学报, 1985,5 (4 ):251-261.
    138.宗浩,夏武平.高原鼠兔似昼夜节律的研究[J].兽类学报, 1987,7(3):211-223.
    129.宗浩,樊乃昌,于福溪.高寒草甸生态系统优势鼠种高原鼢鼠(Myospalax fontanierii)和高原鼠兔(Ochotona curzoniae)种群空间格局的研究[J].生态学报, 1991,11 (2):125-129.
    130.张井勇,董文杰,叶笃正,等.中国植被覆盖对夏季气候影响的新证据[J].科学通报,2003, 48(1):90-95.
    131.裴海昆.不同放牧强度对土壤养分及质地的影响[J].青海大学学报(自然科学版), 2004, 22(4):29-31.
    132.高旭升,田种存,赫学宁,等.三江源区高寒草原草地不同退化程度土壤养分变化[J].青海大学学报(自然科学版),2006,24(5):37-40.
    133.李才,翟庆国,徐锋,等.藏北草地资源及其演化趋势——以申扎地区为例[J].地质通报, 2003, 22(11): 991-998.
    134.干友民,李志丹,泽柏,等.川西北亚高山草地不同退化梯度草地土壤养分变化[J].草业学报,2005,14(2):38-42.
    135.关世英,文芾钦,康师安,等.不同牧压强度对草地土壤养分含量的影响[J].西北高原生物研究所编.草原生态系统研究(第五集)[C].北京:科学出版社,1997:212-214.
    136.贾树海,崔学明,李绍良,等.牧压梯度上土壤理化性质的变化[A].西北高原生物所编.草原生态系统研究[J],1997,10(4):373-379.
    137.张伟华,关世英,李跃进,等.不同恢复措施对退化草地土壤水分和养分的影响[J].内蒙古农业大学学报,2002,21(4):31-35.
    138.张庆费,宋水昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,2000,20(6):1038-1044.
    139.杨建平,丁永建,陈仁升.长江黄河源区多年冻土变化及其生态环境效应[J].山地学报,2004,22(3):278-285.
    140.李新,程国栋.高海拔多年冻土对全球变化的响应模型[J],中国科学(D辑),1999,29(2): 185-192.
    141.张卫国,江小蕾,王树茂,等.鼢鼠的造丘活动及不同休牧方式对草地植被生产力的影响[J].西北植物学报, 2004,24(10):1882-1887.
    142.刘伟,王启基,王溪,等.高寒草甸“黑土型”退化草地的成因及生态过程[J].草地学报, 1999,7(4):300-307.
    143.刘允芬,欧阳华,曹广民,等.青藏高原东部生态系统土壤碳排放[J].自然资源学报,2001, 16(2):152-160.
    144.王根绪,程国栋,沈永平.土地覆盖变化对高山草甸土壤特性的影响[J].科学通报,2002, 47(23):1771-1777.
    145.张知彬,王福生.鼠类对山杏(Prunus armeniaca)种子扩散及存活作用研究[J].生态学报, 2001,21(5):839-845.
    146.樊乃昌,施银柱,封明中.新杀鼠剂“鼠大克”对高原鼠兔的毒效试验[J].兽类学报,1981, 1(2):205-212.
    147.张知彬,王玉山,王淑卿.一种复方避孕药物对围栏内大仓鼠种群繁殖力的影响[J].兽类学报,2005,25(3):269-272.
    148.程瑾瑞,张知彬.啮齿动物对种子的传播[J].生物学通报,2005,40(4):11-13.
    149.张堰铭.高原鼢鼠对高寒草甸群落特征及演替的影响[J].动物学研究,1999,20(6):435-440.
    150.张宪洲,石培礼,刘允芬.青藏高原高寒草原生态系统土壤CO2排放及其碳平衡[J].中国科学D辑,2004,34(增刊):193-199.
    151.徐世晓,赵新全,李英年,等.青藏高原高寒灌丛生长季和非生长季CO2通量分析[J].中国科学D辑,2004,34(增刊):118-124.
    152.程国栋,赵林.青藏高原开发中的冻土问题[J].第四纪研究, 2000,20(6):521-531
    153.张森琦,王永贵,赵永真,等.黄河源区多年冻土退化及其环境反映[J].冰川冻土,2004, 26(1): 1-6.
    154.王权业,景增春,樊乃昌.高寒草甸鼠害的数量动态与鼠害的综合治理[M].见:王祖望,张知彬主编,鼠害治理的理论与实践.北京:科学出版社, 1996, 206-228.
    155.乐炎舟,左克成,张金霞.海北高寒草甸生态系统定位站的土壤类型及其基本特点[M].见:夏武平主编,高寒草甸生态系统.兰州:甘肃人民出版社, 1982,19-33.
    156.刘季科,张云占,辛光武.高原鼠兔数量与危害程度的关系[J].动物学报, 1980,26 (4): 378-385.
    157.刘季科,梁杰荣,周兴民.高寒草甸生态系统定位站的啮齿动物群落与数量[M].见:夏武平主编,高寒草甸生态系统.兰州:甘肃人民出版社, 1982,34-43.
    158.尚占环,龙瑞军.青藏高原“黑土型”退化草地成因与恢复[J].生态学杂志, 2005,24(6): 652-656.
    159.龙瑞军,董世魁,胡自治.西部草地退化的原因分析与生态恢复措施探讨[J].草原与草坪, 2005,113(6):3-7.
    160.梁杰荣.灭鼠后高原鼠兔和中华鼢鼠的数量恢复[M].见:夏武平主编.高寒草甸生态系统.兰州:甘肃人民出版社, 1982, 93-100.
    161.景增春,樊乃昌,周文扬,边疆晖.盘坡地区草场害鼠的综合治理[J].应用生态学报, 1991, 2:73-80.
    162.张卫国,丁连生.降水对高原鼠兔种群消长的影响[J].草业科学,2005,1999, 16 (6):24.
    163.王祖望,刘季科,苏建平,等.高原草甸生态系统小哺乳动物能量动态研究.Ⅱ:通过高原鼠种群能流的初步评估[J].兽类学报,1987,7(3):189-202.
    164.周兴民.人类动对高寒草地生态系统多样性的影响[M].杭州:浙江科技出版社, 1999: 266-286.
    165.张堰铭,张知彬,魏万红.高原鼠兔生活习性的研究:高原鼠兔间断性移动模式与反捕食对策分析[J].兽类学报, 2005,25 (3) : 242-247.
    166.路纪琪,张知彬.鼠类对山杏和辽东栎种子的贮藏[J].兽类学报,2004(12)4 :12.
    167.肖治术,张知彬.啮齿动物的贮藏行为与植物种子的扩散[J].兽类学报,2006,26(1): 89-93.
    168.王文颖,王启基,景增春.江河源区高山嵩草草甸覆被变化对植物群落特征及多样性的影响[J].资源科学,2006,28(2):284-293.
    169.李香真,陈佐忠.不同放牧率对草原植物与土壤C,N,P含量的影响[J].草地学报, 1998, 6(2):90-98.
    170.姜恕.羊草和大针茅草原群落生物量的初步比较研究[A].草原生态系统研究(第1集)[C].北京:科学出版社,1985:11-23.
    171.梁银丽,陈陪元.土壤水分和氮磷营养对小麦根系生理特性的调节作用[J].植物生态学报,1996,20(3):255-262.
    172.刁治民.高寒草地的微生物氮素生理群区系研究[J].土壤,1996,(1):49-53.
    173..程积民.黄土高原草地资源与建设[M].西安:陕西人民出版社,1993.
    174.王启兰,曹广民,王长庭.放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响[J].植物营养与肥料学报,2007,13(5):856-864
    175.杨福囤.矮嵩草草甸生物量季节动态与年间动[A].高寒草甸生态系统国际学术会论文集[C].北京:科学出版社,1988:61-71.
    176.周华坤,周立,赵新全.金露梅灌丛地下生物量形成规律的研究[J].草业学报, 2002,11(2): 59-65.
    177.黄富祥.毛乌素沙地草甸芨芨草-盐爪爪群落地上生物量对气候因子的动态回归分析[J].草业学报,2001,10(4):13-20.
    178.刘伟,周华坤,周立.不同程度退化草地生物量的分布模式[J].中国草地,2005,27(2):9-13.
    179.宇万太,于永强.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927-932.
    180.鄢燕,张建国,张锦华.西藏那曲地区高寒草地地下生物量[J].生态学报, 2005, 25(11) : 311-315.
    181.马玉寿,郎百宁,王启基.“黑土型”退化草地研究工作的回顾与展望[J].草业科学, 1999, 16(2):5-9.
    182.李文靖,张堰铭.高原鼠兔对高寒草甸土壤有机质及湿度的作用[J].兽类学报, 2006, 26 (4):331-337.
    183.周华坤,赵新全,周立.青藏高原高寒草甸的植被退化与土壤退化特征研究[J].草业科学, 2004,21(12):37.
    184.董全民,赵新全,李青云.小嵩草高寒草甸的土壤养分因子及水分含量对牦牛放牧率的响应Ⅱ冬季草场土壤营养因子及水分含量的变化[J]土壤通报, 2005, 36 (4):56-62.
    185.南京农业大学.土壤农化分析[M].北京:农业出版社,1998.
    186.熊顺贵.基础土壤学[M].北京:中国农业大学出版社,2001.
    187.曹广民,吴琴,李东,等.土壤-牧草氮素供需状况变化对高寒草甸植被演替与草地退化的影响[J].生态学杂志,2004,23(6):25-28.
    188.李香真,陈佐忠.不同放牧率对草原土壤C、N、P含量的影响[J].草地学报,1998,6(2):90-98.
    189.张伟华,关世英,李跃进.不同恢复措施对退化草地土壤水分和养分的影响[J]内蒙古农业大学学报,2000,21(4):31-35.
    190.曹广民,鲍新奎,张金霞,等.高寒草甸生态系统植物库磷素贮存及其循环特征[J].高寒草甸生态系统,1995,4:27-34.
    191.王启基,周兴民,周立,等.调控策略对高寒退化草地中的氮、磷、钾含量、积累及转移效应的分析[J].高寒草甸生态系统,1995,4:281-292
    192.张娜,梁一民.黄土丘陵区天然草地地下/地上生物量的研究[J].草业学报,2002,11(2):72-78.
    193.周广胜,张新时.自然植被第一性生产力模型初探[J].植物生态学报, 1995, 19(3):193-200.
    194.周华坤,周立,赵新全等.金露梅灌丛地下生物量形成规律的研究[J].草业学报, 2003,11(2): 59-65.
    195.王启基,周兴民,沈振西,等.恢复生态系统主要植物种群氮、磷、钾含量及其相关性分析[J].高寒草甸生态系统,1995,4: 321-332.
    196.张金霞,曹广民,赵静玫,等.高寒草甸生态系统中矮嵩草草甸的氮、磷、钾动态[J].高寒草甸生态系统,1995,4:11-18.
    197.马克平,刘玉明.生物多样性的测度方法.Ⅰa多样性的测度方法(下)[J].生物多样性, 1994,2(4):231-239.
    198王启基,周兴民,王文颖.高寒草甸主要植物物种多样性的初步研究[J].高原生物学集刊, 1999,14:77-87.
    199.张全国,张大勇.生物多样性与生态系统功能:进展与争论[J].生物多样性,2002, 10(1): 49-60.
    200.杜国帧,李子珍.高寒草甸植物群落中物种丰富度与生产力的关系研究[J].植物生态学报, 2003,27(1):125-132.
    201.李英年,王勤学,古松,等.高寒植被类型及其植物生产力的检测[J].地理学报,2004, 59(1): 40-48.
    202.周兴民主编.中国嵩草草甸[M].北京:科学出版社,2001,131-162.
    203.彭少麟,黄忠良.生产力与生物多样性之间的相互关系研究概述[J].生态科学,2003, 19(1): 1-5.
    204.蔡照光,郎百宁,雷更新.青藏高原草场及其主要植物图谱(青海卷)[M].北京:农业出版社, 1986.
    205.安树青,王峰峰,朱学雷等.土壤因子对次生森林群落物种多样性的影响[J].武汉植物学研究.1997,15:143~150.
    206.洛桑·灵智多杰主编青藏高原的草业发展与生态环境[M].北京:中国藏学出版社,2000, 120-133
    207.白永飞,陈佐忠.锡林河流域羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J].植物生态学报,2000,24(6):641-647.
    208.白永飞,张丽霞,张焱等.内蒙古锡林河流域草原群落植物功能群组成沿水热梯度变化的样带研究[J].植物生态学报,2002,26(3):308-316.
    209.韩国栋,李博,卫智军等.短花针茅草原放牧系统植物补偿生长的研究[J].草地学报. 1999, 7(1):1-7.
    210.贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征[J].生态学报.1997,17(1):91-99.
    211.胡自治,孙吉雄,张映生等.高山线叶嵩草草地的第一性生产和光能转化率[J].生态学报,1988,18(2):121-131.
    212.胡自治.草原分类学概论[M].北京:中国农业出版社.1997,17-25:126-139.
    213.李博.生态学[M].北京:高等教育出版社,2000.
    214.李德新.放牧对克氏针茅草原影响的初步研究[J].中国草原, 1980, 4(1):1-8.
    215.李光棣.高寒禾草-嵩草型草地地下植物量及其季节动态的研究[D].兰州:甘肃农业大学草原系,1985-10.
    216.李光棣,辨别死活根的TTC法[J].《中国草原与牧草》,1986,3(1):34-36.
    217.李海英,彭红春,王启基.高寒矮嵩草草甸不同退化演替阶段植物群落地上生物量分析[J].2004,草业学报,13(5): 26-32.
    218.李青丰,李福生,乌兰.气候变化与内蒙古草地退化初探[J].干旱地区农业研究. 2002, 20(4): 98-102.
    219.刘庆.青藏高原东部(川西)生态脆弱带恢复与重建研究进展[J].资源科学,1999,21(5):81-85.
    220.杨万勤,钟成章,陶建平.缙云山森林土壤速效P的分布特征及其与物种多样性的关系研究[J].生态学杂志.2001,20(4):24-27.
    221.马克平,周瑞昌,郭亚胜.小叶章草甸地下生物量形成规律的研究[J].草业科学, 1992,9(2): 24-28.
    222.马克平.试论生物多样性的概念[J].生物多样性,1993,1:20-22.
    223.马克平.生物群落多样性的测度方法[A].见:中国科学院生命多样性委员会编,生物多样性研究的原理与方法[C].北京:中国科学技术出版社,1994,141-165.
    224.任海,彭少麟.恢复生态学导论[M].北京:科学出版社, 2001, 37.
    225.戎郁萍,韩建国,王培.不同草地恢复方式对新麦草草地土壤和植被的影响[J].草业学报,2002,11(1):17-23.
    226.孙海群.草地退化演替研究进展[J].中国草地,1999,(1):51-56.
    227.王伯荪,彭少鳞.植被生态学[M].北京:中国环境科学出版社, 1997.
    228.王长庭,王启基,龙瑞军等.高寒草甸群落植物多样性和初级生产力沿海拔梯度变化的研究[J].植物生态学报,2004,28(2):240-245.
    229.王启基,周兴民,张堰青等.高寒小嵩草草原化草甸植物群落结构特征及其生物量[J].植物生态学报,1995,19(3):225-235.
    230.王启基,王文颖,邓自发.青海海北地区高山嵩草草甸植物群落生物量动态及能量分配[J].植物生态学报,1998,(22):222-230.
    231.汪诗平,李永宏,王艳芬等.不同放牧率下冷蒿小禾草草原放牧演替规律与数量分析[J].草地学报,1998,6(4):199-304.
    232.王艳芬,汪诗平.不同放牧率对内蒙古典型草原地下生物量的影响[J].草地学报, 1999,7(3): 198-202.
    233.吴彦,刘庆,乔永康等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J].植物生态学报.2001,25(6):648-655.
    234.谢应忠.植物生态学导论[M].银川:宁夏人民出版社.1999:46-48.
    235.阎传海.淮河下游地区针叶林多样性研究[J].生态学杂志.1998,17(2):11-15.
    236.杨福囤,王启基,史顺海.矮嵩草草甸生物量季节动态与年间动态[A].见:中国科学院西北高原生物研究所.高寒草甸生态系统学术讨论会论文集[C].北京:科学出版社,1989.61-71.
    237.杨力军,李希来.青南高海拔地区高寒草甸植物群落多样性的研究[J].草原与草坪.2000,2:32-35.
    238.马玉寿.退化草地形成机理与恢复模式研究[D].甘肃农业大学,2006.
    239.苏金明,傅荣华,周建斌等.统计软件SPSS系列使用实战篇[M].北京:电子工业出版社,2002.
    240..唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700