用户名: 密码: 验证码:
基于人工智能与三维数值模拟的乌竹岭隧道围岩稳定性系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以对浙江省乌竹岭隧道地质条件的详细调研为基础,从围岩压力、地表下沉、围岩分类和塌方的角度,以非线性理论为基本思想,对隧道围岩稳定性进行系统研究。论文首次提出了将小波降噪、时间序列相空间重构、GA-BP神经网络三者相结合的非线性围岩压力、地表下沉预测方法,基于互信息的知识相对约简算法与GA-BP神经网络相结合的非线性围岩类别识别方法,以三维裂隙网络和三维离散元数值模拟相结合建立“不确定性模型”和“确定性模型”相结合的隧道塌方预测方法。以围岩压力、地表下沉监测数据为基础,以小波降噪理论剔除监测数据中的噪声信息,以时间序列相空间重构技术重构时间序列,建立GA-BP神经网络样本集,训练遗传算法优化神经网络围岩压力、地表下沉预测模型,并将预测模型应用于乌竹岭隧道围岩压力、地表下沉监测预测,与以往预测方法相比,训练迭代次数少,预测结果精确。通过对隧道围岩分类影响因素的研究,以MIBARK算法对围岩分类影响因素进行属性约简,得出影响围岩分类的最小相对约简,以约简后的属性集作为GA-BP围岩分类识别模型的输入,将训练的模型应用于乌竹岭隧道围岩分类,训练迭代次数少,识别准确率高。以乌竹岭隧道节理裂隙调查为基础,利用三维裂隙网络技术得出优势节理组、节理组宽度和平均间距,借助三维离散元数值模拟技术建立隧道塌方预测的数值模拟模型,成功预测了乌竹岭隧道塌方过程。对隧道围岩稳定性系统研究方法更具有客观性,更适合岩体这种非线性材料的稳定性分析。研究成果可为隧道开挖、支护和塌方的防治提供科学依据,并体现论文选题具有科学意义和创新性,具有应用和推广价值。
China is a mountainous country and the topography is complicated, two-thirds of which is mountains and hills. Along with flourish of Chinese highway construction project, the construction scale of tunnels is larger and larger, and stability problems of wall rock also become more prominent in tunnel construction process.
     Tunnels are constructed in rock mass which has some certain stress history, then the nature of tunnels will be impacted by the nature of wall rock of tunnels. Wall rocks of tunnels are tunnel geological body, which have experienced many geological processes and destruction, formed certain rock composition and structure and existed in certain geological environment. Wall rocks is called rock mass as mechanical objects, while referred to a part of rock mass which is impacted by tunnel excavation. In highway tunnel construction process, due to the equilibrium of natural stress state of rock mass is destructed, unloading rebound and stress re-distribution of tunnel surrounding rock take place. When this kind of rebound stress and re-distribution stress surpass wall rock intensity, the engineering rock mass will be unstable and damage, which brings harms to the tunnel construction and management.
     In view of the fact that the stability of surrounding rock is much more important in highway tunnel design and construction. In this paper,combining with the geological prospecting material, rock mechanics tests and the field monitoring gauging experiment. Then the paper comprehensive evaluated the stability of wall rock of tunnels from different aspects, obtains some valuable highway-tunnel stability appraisal theory to tunnel’s design, construction and operation management. The theory has great practical and theoretical significance to successful construction and safe operation of tunnel.
     In the paper, taking Wuzhuling mountain range tunnel in Zhejiang Province as an example, based on detailed investigation to geological conditions of the tunnel. Carry out systematic research to tunnel’s wall-rock stability using nonlinear theory as the basic idea when consider aspects of wall-rock stress, surface subsidence, rock classification and landslides. In the paper, three methods are proposed for the first time, the 1st is non-linear wall-rock stress, surface subsidence prediction method, which combined wavelet noise reduction with time series phase space reconstruction and GA-BP neural network; and the 2nd is nonlinear discriminating method, which combined GA-BP neural network with MIBARK arithmetic; the 3th is tunnel collapse forecast method combining“the uncertainty model”with “the deterministic model”which based on the unify of three-dimensional fracture network and three- dimensional discrete element numerical simulation.
     Paper used the date of the rock-mass pressure and ground surface settlement, based on the wavelet de-noising theory to remove the noise monitoring data information, to exclude information on the time series of noise prediction model of interference, improve accuracy of model prediction. And by the time series phase space reconstruction. Reconstruction of time series techniques, excavation of the important system information, and to set up GA-BP neural network sample set, the training of genetic algorithm to optimize neural network surrounding rock stress, surface subsidence prediction model, and prediction model was applied to Wuzhuling tunnel surrounding rock stress, monitoring of surface subsidence prediction, prediction with previous methods, the training iteration number less accurate prediction results. Paper in order to rock pressure, surface subsidence monitoring data based on wavelet de-noising theory to remove the noise monitoring data information, to exclude information on the time series of noise prediction model of interference, improve accuracy of model prediction. And by the time series phase space reconstruction reconstruction of time series techniques, excavation of the important system information, and to set up GA-BP neural network sample set, the training of genetic algorithm to optimize neural network surrounding rock stress, surface subsidence prediction model, and prediction model was applied to Wuzhuling tunnel surrounding rock stress, monitoring of surface subsidence prediction, prediction with previous methods, the training iteration number less accurate prediction results.
     Through a comparative study show that the rock classification are many factors, is a highly non-linear and non-deterministic problem. Such questions must be non-linear theory to study ways to get the most objective judge the results. Paper put forward the theory of nonlinear surrounding rock classification research new ideas. Since non-linear theory has a strong data mining and knowledge discovery capabilities, be able to set up a good mapping ability of the recognition model, be able to study a high degree of approximation of the problem. Through the Tunnel classification factors research, mutual information-based knowledge of the relative reduction algorithm on the factors affecting rock classification attribute reduction, the impact of rock classification drawn the smallest relative reduction to property after Reduction Set as the GA-BP model of rock classification and identification of input, the trained model was applied to WuZhuling tunnel rock classification, training iterations number small, the high rate of recognition accuracy.
     Tunnel as a jointed rock mass, the deformation and damage process is a nonlinear process, the study of tunnel landslide discrete element numerical simulation techniques are very appropriate. Based on joints investigate of Wuzhuling tunnel, using three-dimensional fracture network technology to get advantage jointed group, joint width and the average distance between joints, with three-dimensional discrete element numerical simulation technology to build the tunnel cave-prediction of numerical simulation model, successfully predict landslide of Wuzhuling tunnel. Systematic study of stability of tunnel surrounding rock was more objectivity, more suitable for rock materials using such nonlinear stability analysis.
     By the systematic non-linear analysis of tunnel rock-mass stability, some conclusions can be obtained:
     1. By monitoring the time-varying of the rock-mass pressure and ground surface settlement and analyzing the characteristic and principle of changing of the two parameters with time, the best time to support can be determined and the stability of the rock-mass can be judged. But, generally, there may be some“noisy”in the monitoring data of rock-mass pressure and the time series of ground surface settlement. And to delete the noise, the noise reducing of the monitored data based on wavelet technology is effective, after which more accurate character information can be provide to monitored data analysis and prediction model.
     2. To evaluate the effect of noise reducing on signal field, the indexes of Signal-Noise Ratio (SNR) and Signal-Noise Ratio Gain are usually used in the area of signature. The both indexes require knowing the pure signal no-polluted by noise, which can’t be determined in engineering monitor. From the phase of smoothness and similarity, using the smoothness and root-mean-square error to evaluate the effect of noise reducing of the monitoring data, the optimal result of noise reducing can be found effectively. Thus the process of evaluation is more scientific and objective.
     3. It is confined to understand the intrinsic mechanism of temporal series for its complexity as well as some essential uncertainties existed possibly. Taking the data mining of characteristic and principle of time series as the aim, phase-space reconstruction techniques will be needed. In this paper, the phase-space reconstruction of the monitored data that is noise reduced is adopted applying the methods of mutual information and Cao which is used to determine the time delay and embedding dimension in Phase-space reconstruction techniques. The data set reconstructed act as the sample set of the GA-BP predicting model, which is used to train the network. The predicting model gained through this way above is more capable to include the characteristic of time-varying of monitored data and has a higher precision.
     4. BP neural network can approximate any continuous function at any precision. While some problems such as local minimum and slow rate of convergence still exist. Genetic algorithm takes the encoding of decision variable as operand, objective function value as the searching information directly; uses searching information from many search points simultaneously; thus, can approximate the optimal solution at global scope. Using the program of neural network optimized by genetic algorithm by Matlab, the weight and threshold of the BP neural network are optimized. In regard to the network training, the problem of trapping in local minimum easily is avoided, and the rate of convergence is faster. Meanwhile, the purpose of optimizing the network is reached, and the ability of solving the predicted problems is increased.
     5. This paper presents a method of constructing neural network sample set using wavelet de-noising and phase-space reconstruction technology for the first time, optimize the weight values and the threshold values of genetic algorithm, construct the surrounding rock stress and the nonlinear model of ground settlement, the results showed that this method can reject the noise information such as artificial factors of monitoring data, reduce the effect of artificial division time series and artificial adjusting parameters workload, improve learning speed of neural networks. The prediction accuracy is also considerable.
     6. This paper based on the analysis of influencing factors of surrounding rock classification, using MIBARK algorithm to reduce the influence factors of surrounding rock classification, the results showed that after the reductions,minimum knowledge reduction can fully reflect the main influencing factors of the WuZhuling tunnel rock classification, provide a most simple and optimum evaluation index set for the subsequent nonlinear identification.
     7. MIBARK algorithm is developed at the basis of rough Set Theory. Its reduction result is simplest and unique. The simplest knowledge reduction results from the MIBARK algorithm contains mutual information between the condition attribute and decision attribute and has the same decision-making ability with the original condition attribute. Construct sample set based on the simplest evaluation index using the MIBARK algorithm, establish rock classification model using genetic algorithm optimized neural network model. This model has low inputting sample set dimension, low training process iterative times, high recognition accuracy.
     8. This paper first proposed using MIBARK algorithm-GA-BP neural network rock nonlinear identify model, the attribute reduction result does not need artificial filtrate, BP network weights and network threshold evolutionary generated, explored a new means to surrounding rockmass classification by nonlinear method .
     9. The paper analyzed jointed field survey data of Wuzhuling tunnel ,get width and distance information of dominant joint set group, constructed "uncertainty model" of fracture network, and combining“certainty model”of joints information near the working face, using three-dimensional discrete element numerical simulation technique, set up the tunnel cave-prediction numerical simulation model. Accurately determined the stability of the not opened segment wall rock at the direction of the working face tunneling, determined the location and scale of the block destruction happened, This method made up the shortage of the traditional finite element analysis can’t analysis block control damage. Provide a study idea for tunnel landslide.
引文
[1]王梦恕.21世纪山岭隧道修建的趋势[J].铁道标准设计,2000,4:38-40.
    [2]谢和平.灾害环境下重大工程安全性的基础研究进展[C].第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004:68-73.
    [3]轩辕啸雯.21世纪初中国地下工程概况[J].施工技术,2002,31(3):50-51.
    [4]重庆大学,中国科学院武汉岩土力学研究所.国家自然科学基金重点项目—隧道及地下空间构筑物的稳定性与可靠性中期报告[R].重庆:重庆大学,2005.
    [5]王建宇.隧道工程和地下空间开发在可持续发展中的地位[J].世界隧道.1996,(3):l-3.
    [6]王梦恕.21世纪是隧道及地下空间大发展的年代[J].隧道建设.2000,(1):7-10.
    [7]王梦恕.中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家[J].铁路标准设计. 2003,(1):1-4.
    [8]刘伟.21世纪初的我国公路隧道关键技术[J].公路交通技术,2000,1:30-35.
    [9]易敏,韩立华.公路隧道围岩稳定性分析和衬砌技术现状综述[J].现代交通技术,2005,3:36-41.
    [10]戴文亭,白宝玉.我国隧道及地下工程发展现状和前景展望[J].东北公路,2000,4:90-92.
    [11]李晓红.隧道新奥法及其量测技术[M].北京:科学出版社,2002.
    [12]孙钧.山岭隧道工程的技术进步[J].西部探矿工程.2000,(1):1-6.
    [13]高大钊.岩土工程的回顾与前瞻[M].北京:人民交通出版社,2001:130-150.
    [14]吴梦军等.公路隧道围岩稳定性研究现状与展望[J].重庆交通学院学报,2003,22(2):24-28.
    [15]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京.煤炭工业出版社,1983:1-7.
    [16]林银飞,郑颖人.弹塑性有限厚条法及工程应用[J].工程力学,1997,14(2):108-112.
    [17]朱素平,周楚良.地下圆形隧道围岩稳定性的粘弹性力学分析[J].同济大学学报,1994,22(3):329- 333.
    [18]刘保国,孙钧.岩体流变本构模型的辨识及其应用[J].北方交通大学学报,1998,22(4):10-14.
    [19] Kachanov L M.On the time to failure under creep condition[J]. Izv, Akad,Nauk USSR Otd.Tekhn Nauk,1958,8:26-31.
    [20] Kachanov L M.Introduction to continuum damage mechanics[M].Martinu Nijhoff Publishers. Dordrecht,The Netherlands,1986.
    [21] Lemaitre, J et Chaboche, J.L. Aspect Phénoménologique de la Rupture par Endommagement J.de Méc.Appl.,1978,2(3):318-365.
    [22] Lemaitre J.Local approach of fracture[J].Eng.Frac.Mech.,1986,25:5-6.
    [23] Lemaitre J,Chaboche J L.Mechanics of solid Material[M].Cambridge University Press,1990.
    [24] Chaboche J. L. Eescription Thermodynamique et Phénoménologique de la ViscoplasticitéCyclique Endommagement. O.N.E.R.A. pub. 1978,3.
    [25] Krajcinovic D. Continuum Damage Mechanics. Appl. Mech. Rov.1984,37(1).
    [26]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [27] T.Kawamoto,Y.Ichikawa,T.Kyova.Deformation and Fracturing Behaviour of Discontinous Rock Mass and Damage Mechanics Theory[J].Int. J.Num.Analy. geo,1988,12(4):321-327.
    [28]李术才,李树忱,朱维申,等.三峡右岸地下电站厂房围岩稳定性断裂损伤分析[J].岩土力学,2000, 21(3):193-197.
    [29]孙钧,朱合华.软弱围岩隧洞施工性态的力学模拟与分析[J].岩土力学,1994,15(4):20-32.
    [30]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [31]朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用[M].上海:同济人学出版社,1997.
    [32]汪成兵.软弱破碎隧道围岩渐进性破坏机理研究[D].上海:同济大学,2007.
    [33]宋丽霞,陶干强,王清良.隧道围岩稳定性数值模拟研究现状与发展方向[J].矿业快报,2007,6(6): 16-20.
    [34] K.J.Shou. A Three-Dimensional Hybrid Boundary Element Methodfor Non-LinearAnalysisof a WeakPlane Near anUnderground Excava-tion [J].Tunnelling and Underground Space Technology, 2000,15(2):215-226.
    [35]王鲁明,赵洪先,华安增.分层介质对巷道裂隙围岩稳定性影响的数值分析[J].矿山压力与顶板管理,2004,(3):8-14.
    [36]魏作安.锚喷支护巷道围岩变形与破坏的边界元分析[J].有色冶金设计与研究,1995,16(3):3-5.
    [37] Cundall P A. Formulation of a three-dimensional distinct elelment model-PartⅠ:a scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. Int J Rock Mech Min Sci Geomech Abstr.1988,(25):10-16.
    [38] Cundall P A. A computer model for simulating progressive large scale movements in blocky rock systems[C]//Muller Led. Proceeding Symposium International Society Rock Mechanics. Rotterdam: A.A.Balkama,1971:8-11.
    [39]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1992.
    [40]罗卫华.山区高速公路陡坡上路基稳定性分析方法与治理对策[J].中南公路工程,2005,(2):10-44.
    [41]王涛,盛谦,陈晓玲.基于直接法节理网络模拟的三维离散单元法计算[J].岩石力学与工程学报, 2005,(10):1649-1653.
    [42]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算[J].岩土力学,2005,26(12):1936-1940.
    [43]王涛,陈晓玲,杨建.基于3DGIS和3DEC的地下洞室围岩稳定性研究[J].岩石力学与工程学报, 2005,24(19):3476-3481.
    [44]王贵君.节理裂隙岩体中不同埋深无支护暗挖隧洞稳定性的离散元法数值分析[J].岩石力学与工程学报,2004,23(7):1154-1157.
    [45]廖巍,徐海清,刘贵应.岩体结构面组合对巷道围岩稳定性的影响[J].安全与环境工程,2004,11(2): 65-67.
    [46] Shi GH. Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block system[D].Berkeley: Dept. of Civil Engineering, University of California,1988.
    [47] Shi GH, Goodman RE. Generalization of two-dimensional discontinous deformation analysis for forward modeling[J].Int J Numer Anal Methods Geomech 1989,(13):359-80.
    [48] Belytschko T, Lu YY, Gu L. Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37:229-56.
    [49]唐辉明.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2001.
    [50]鄢建华,汤雷.水工地下工程围岩稳定性分析方法现状与发展[J].岩土力学,2003,24,Supp.:681-686.
    [51] Deere, D.U..Technical description of rock cores for engineering purpose[J].Felsmechanik und Ingnieurgeglogie,1963,1(1):16-22.
    [52] Deere DU, Hendron AJ, Patton FD, Cording EJ. Design of surface and near surface construction in rock. In: Proceedings of the Eighth US Symposium on Rock Mechanics—Failure and Breakage of Rock, Newyork: 1967:237-302.
    [53] International Society for Rock Mechanics(ISRM), Commission on standardization of laboratiory and field tests. Suggested methods for the quantitative description of discontinuities in rock masses. Int. J. Rock Mech. Min. Sci & Geomech. Abstr,1978,15(6):319-368.
    [54] Barton, N.,Lien,R.andLunde ,L.,Eng,Classification of Rock Masses forthe Design of Tunnel Support[J], RockMechanics,1974,6:189-236.
    [55] Barton N, Loset F, Lien R, Lunde J. Application of the Q-system in design decisions. In: Bergman M, editor. Subsurface space, 1980,2:553-61.
    [56] Barton N. Application of Q-system, index tests to estimate shear strength and deformability of rock masses. In: Proceedings of the International Symposium on Engineering Geology and Underground Construction, vol. 1(II), Lisbon, Portugal, 1983: 51-70.
    [57] Arild Palmstrom.Characterizing rock masses by the RMi for use in practical rock engineering : Part 1: The development of the Rock Mass index (RMI)[J].Tunnelling and Underground Space Technology, 1996,11(2):175-188.
    [58] Arild Palmstrom.Characterizing rock masses by the RMi for use in practical rock engineering, part 2: Some practical applications of the rock mass index (RMI)[J].Tunnelling and Underground Space Technology, 1996,11(3):287-303.
    [59] Bieniawski ZT. Engineering Rock Mass Classification.Chichester,Wiley,1989.
    [60] Bieniawski ZT. Determining rock mass deformability: experience from case histories. Int J Rock Mech Min Sci Geomech Abstr1978,15:37-48.
    [61]刘佑荣,童宏刚,杜时贵.公路隧道围岩质量评价系统研究[C].第六次全国岩石力学与工程学术大会论文集,北京:中国科学技术出版社,2000:660-663.
    [62]高谦,任天贵,明士祥.采场巷道围岩分类的概率统计分析方法及其应用[J].煤炭学报,1994,19(2): 131-139.
    [63]冯玉国.灰色优化理论模型在地下工程围岩稳定性分类中的应用[J].岩土工程学报,1996,18(3):62-66.
    [64]刘启千,徐光黎.工程岩体质量分级的模糊综合评判[J].地球科学-中国地质大学学报,1989,(3):73- 78.
    [65]陆兆溱,王京,吕亚平.模糊模式识别法在围岩稳定性分类上的应用[J].河海大学学报(自然科学版), 1991,19(6):97-101.
    [66]吕小平.隧道围岩分类的层次类比系统方法[J].水文地质工程地质,1993,(4):10-13.
    [67]王迎超,严细水,胡建平,等.隧道围岩模糊分类研究[J].华东公路,2007,(5):53-57.
    [68]铃木昌次,古川浩屏,井上洋司,等.基于模糊回归模型的隧道围岩分类与岩石特性[J].隧道译丛, 1992,(12):12-16.
    [69]于震平,李铁汉.一种围岩稳定性分类方案的模糊处理[J].水文地质工程地质,1996(4):5-7.
    [70]莫君政,达呤霞.山岭隧道洞口浅埋地段的围岩稳定性评价[J].隧道及地下工程,1991,12(4):19-23.
    [71]黄宏伟,杨新安.隧道锚喷支护设计的工程类比模糊经验法[J].隧道及地下工程,1997,18(3):52-56.
    [72]曹庆林.用神经网络方法预测围岩类别[J].冶金矿山设计与建设,1994,(5):12-14.
    [73]霍润科,刘汉东.神经网络法在地下洞室围岩分类中的应用[J].华北水利水电学院学报,1998,(2): 61-66.
    [74]雷学文,汤斌,王瑞芳.工程围岩稳定性分类的人工神经网络识别[A].中国岩石力学与工程学会第七次学术大会论文集[C],北京:中国科学技术出版社,2002:300-301.
    [75]李天斌,王睿.ART1神经网络在隧道围岩分类中的应用[J].成都理工大学学报(自然科学版),2006, (5):455-459.
    [76]邱道宏,陈剑平,阙金声,等.基于粗糙集和人工神经网络的洞室岩体质量评价[J].吉林大学学报(地球科学版),2008,(1):86-91.
    [77]胡宝清.可拓评价方法在围岩稳定性分类中的应用[J].水利学报,2000,(2):66-70.
    [78]原国红,陈剑平,马琳.可拓评判方法在岩体质量分类中的应用[J].岩石力学与工程学报,2005,24(9): 1539-1544.
    [79]黄祥志,佘成学.基于可拓理论的围岩稳定分类方法的研究[J].岩土力学,2006,27(10):1800-1814.
    [80]左昌群,陈建平.基于可拓学理论的围岩分级方法在变质软岩隧道中的应用[J].地质科技情报, 2007,(3):75-78.
    [81]康志强,周辉,冯夏庭,等.地下隧洞岩体质量的可拓学理论评价[J].地下空间与工程学报,2008,(2): 259-264.
    [82]徐凤毅.阜新矿区回采巷道围岩稳定性分类[J].矿山压力与顶板管理,1994,1:29-32.
    [83]杨小永,伍法权,苏生瑞.公路隧道围岩模糊信息分类的专家系统[J].岩石力学与工程学报,2006, 25(1):100-105.
    [84]付正飞,张世飙,郭刚,等.概率论方法在云岭隧道围岩分类中的应用研究[J].岩石力学与工程学报, 2006,(S1):3063-6368.
    [85]赖永标,乔春生,刘开云,等.支持向量机在围岩稳定性分类中的应用[J].水利学报,2006,(9):1092- 1096.
    [86]宫凤强,李夕兵,张伟.隧道围岩分级的距离判别分析模型及应用[J].铁道学报,2008,(3):119-122.
    [87]王吉亮,陈剑平,杨静.距离判别分析法在公路隧道围岩分类中的应用[J].吉林大学学报(地球科学版),2008,38(6):999-1004.
    [88]宫凤强,李夕兵,高科.地下工程围岩稳定性分类的突变级数法研究[J].中南大学学报(自然科学版),2008,(5):1081-1086.
    [89] Karanagh K and Clough R W.Finite element Application in the characterization of Elastic solids.Int.J solids structures,1971,7:11-13.
    [90] Sakurai S.Determination of Initial stresses and mechanical properties of viscoelastic underground medium,proc3 rd ISRM Cong,Denver 1-13 1974:1169-1174.
    [91] Kirstern H.A.Determination of Rock Mass Elastic Moduli by Back Analysis of Deformation Measurements,Expoation for Rock Engineering,ed by Z.T.B ieniamshi,1976,1:165-172.
    [92] Gioda Q,Maier G.Direct search solution of an inverse problem in elastoplasticity:identification of cohesion,f riction angle and in-situ stress,by pressure tunnel tests.Tnt,J.Num.Meth.Engrg, 1980,15: 1822-1848.
    [93] Sakurai S,Abe S.A design approach to dimensioning underground openings.3rd international conference in 1979,Numerical Methodsin Geomechanics,Aachen,649-661.
    [94] Kavanagh K.T., Clough R.W., Finite element application in the characterization of elastic solids. Int.J. Solids Structures,1972,7:11-23.
    [95] Sakurai S.,A Design Approach to Dimensioning Underground Opening, 3th Int. Conf. Num. Geom, 1974.
    [96] Kirsten H.A., Determination of rock mass elastic moduli bu back analysis of deformation measurement. In:Proc. Symp. On Expliration for Rock Eng., Johannesburg, 1976:1154-1160.
    [97] Gioda G., Maier G., Direct Search Solution of An Inverse Problem in Elasto-Plasticity: Identification of Cohesion, Friction Angle and In-situ Stress by Pressrue Tunnel Text, Int. Num. Meth. Engre., 1980,15:1823-1848.
    [98] Maiar G., Jurina L., Podolak K., On model identification problems in rock mechanics. In:Proc.Symp. on the Geotechnics of Structurally Complex Formation, Capri,1977:255-261.
    [99] Gioda G,Sakurai S.Back analysis procedures for the interpretation of field measurements in gemechanics.Int J.Num.Anal.Meth.Geomech,1987,11:397-408.
    [100]杨志法,刘竹华.位移反分析法在地下工程设计中的初步应用[J].地下工程,1981,(2):15-24.
    [101] Maierq Gioda G.Optimization methods for Parametric identification of geotechnigue system.Num Meth.Geomech,Bostom.1981:273-304.
    [102]冯紫良,杨林德,等.初始地应力的反推原理[J].同济大学学报,1983,(3):18-25.
    [103] Sakurai S,Takeuchi K.Back analysis of measured displacement of tunnel.Rock Mech.And Rock Engrg,1983,16:173-180.
    [104] CividiniA,M aier Get al.Parameter estimation of a static geotechnical model using a Baye's approach,Int,J.rock Mech and Geotech,Abster,1983,2(5):215-226.
    [105]杨林德.初始地应力及E值反演计算的边界单元法[C].第一届全国边界元会议论文集.北京:中国土木工程学会,1985,37-49.
    [106]吴凯华.隧洞围岩原始应力与弹性常数反分析[J],土木工程学报,1985,(2):28-40.
    [107]郑颖人.弹塑性问题反演计算的边界元法[J],中国土木工程学会第三届年会论文集,北京:中国土木工程学会,1986:92-102.
    [108]王建宇.隧道开挖引起的围岩变形过程及岩体变形模型的反分析[J].土木工程学报,1986,(4):30- 41.
    [109] Zhuweishen,el al.Three-dimensional FEM analysis and back analysis for deformationmonitoring of Ertan Hydropower station chamber.Proceedings of the InternationalSymposium on Engineering in Complex Rock ormations,Beijing,Science Press,1986,802-808.
    [110] Gens A,et al.Parameters identification from line wise observation measurement,Proc E lonmig Stutgart,1986,14(2):16-18.
    [111]严克强,等.位移反分析的有限元无界元祸合方法及其在工程上的应用[C].第一届全国计算岩土力学研讨会论文集.武汉:中国土木工程学会.1987,(3):11-22.
    [112]陶振宇,曾庆义.地应力场函数反分析[J],武汉水利电力学院学报,1987(3):11-22.
    [113]王芝银.地下巷道考虑空间效应的增量反分析[J].西安矿业学院学报,1988(4):32-39.
    [114] Gioda G,Sakurai S.Back analysis procedures for the interpretation of field measurementsin gemechanics.Int J.Num.Anal.Meth.Geomech,1987,11:397-408.
    [115] Feng Ziliang,Lewis RW.Optimal estimation of in-situ ground stress from displacement measurements .Int.7.Num.Anal.Meth.Geomech,1987,11:397-408.
    [116]刘怀恒.地下工程位移反分析原理应用及其进展[J].西安矿业学院学报,1988(3):18-28.
    [117]吴凯华.岩土隧洞量测位移的灰色预测反分析[C].全国第三届岩土力学数值分析与解析方法讨论会文集.上海:中国土木工程学会,1988:55-67.
    [118]郑颖人.位移反分析的弹性矩阵分解法极其在岩土工程中的应用[C].全国第三届岩土力学数值分析与解析方法讨论会文集.上海:中国土木工程学会,1988:446-454.
    [119]冯紫良.地下洞室围岩初始地应力的优化估计[J].地下工程技术,1988(1):76-85.
    [120]王芝银,李云鹏.地下工程围岩粘弹塑性参数的估计[C],全国第三届岩土力学数值分析与解析方法讨论会文集.上海:中国土木工程学会,1988:398-412.
    [121]和再良.天生桥软弱岩体变形量测的反分析计算[C],全国第三届岩土力学数值分析与解析方法讨论会文集.上海:中国土木工程学会,1988:415-420.
    [122]徐谋进.二向不等压应力场中隧道围岩粘弹性位移反分析[C].全国第三届工程地质大会论文集,武汉:武汉大学出版社,1988:581-589.
    [123]吕爱钟.巷道开挖围岩参数及地应力可辩识性的探讨[J].岩石力学与工程学报,1988,(72):155-164.
    [124]朱维申,等.考虑时空效应的地下洞室变形观测及反分析[J].岩石力学与工程学报,1989,8(4):346- 353.
    [125]冯紫良,杨志法.关于弹塑性位移反分析的若干研究[M].北京:地震出版社,1989:87-101.
    [126]龚晓南,Gudeh..G..反分析法确定固结过程中土的力学参数[J].浙江大学学报:自然科学版,1989, 23(6):841-84.
    [127]吴中如,阮焕祥.混凝土坝测资料的反分析[J].河海大学学报:自然科学版,1989,17(2):10-18.
    [128]张玉军.围岩流变参数反分析方法[J].岩土木工程学报,1990,12(6):84 90.
    [129]吕爱钟,王泳嘉.隧洞位移反分析的测点最优布置见:第四届全国岩土力学数值分析与解析方法讨论文集[C].泰安:山东矿业学院出版社,1991:101-113.
    [130]蒋斌松.巷道金属支架荷载反算[C].第四届全国岩土力学数值分析与解析方法讨论会文集,泰安:山东矿业学院出版社,1991:140-150.
    [131]孙钧,黄伟.岩石力学参数弹塑性反演问题的优化方法[J].岩石力学与工程学报,1992,11(3):221- 229.
    [132]杨林德,何裕仁.天荒坪抽水蓄能电站试验洞的位移反分析研究[J].岩土工程学报,1992,14(2):37- 43.
    [133]刘维宁.岩土工程反分析方法的信息论研究[J].岩石力学与工程学报,1993,12(3):193-205.
    [134]黄宏伟,孙钧.基于Bayesian广义参数反分析[J].岩石力学与工程学报,1994,13(3):219-228.
    [135]朱永全,张清.桃坪隧道围岩参数的随机反演[J].石家庄铁道学院学报,1995,8(2):37-41.
    [136]林育梁,樱井春辅.应用模糊有限元法的一种反分析形式[J].岩土工程学报,1995,17(5):48-56.
    [137]李立新,王建党,李造鼎.神经网络模型在非线性位移反分析中的应用[J].岩土力学,1997,18(2): 62-66.
    [138]樊琨.基于人工神经网络的岩土工程力学参数反分析[J].河海大学学报,1998,26(4):98-102.
    [139]乔春生,张清,黄修云.岩石工程数值分析中选择岩体力学参数的神经元网络方法[J].岩石力学与工程学报,2000,19(1):64-67.
    [140]周保生,林江,于海学,等.人工神经网络在煤矿巷道围岩移近量预测中的应用[J].系统工程理论与实践,2000,(1):136-139.
    [141]高浪,谢康和.人工神经网络在岩土工程中的应用[J].土木工程学报,2002,35(4):77-81.
    [142]邓建辉,李掉芬.BP网络和遗传算法在岩石边坡位移反分析中的应用[J].岩石力学与工程学报, 2001,20(1):1-5.
    [143]李守巨,刘迎曦,王登刚.基于遗传算法的岩体初始应力场反演[J],煤炭学报,2001,26(1):13-17.
    [144]李晓红,靳晓光,亢会明,卢义玉.隧道位移智能化反分析及其应用[J].地下空间,2001,21(4):333- 339.
    [145]陈建锋,石振明,陈竹昌.遗传算法在参数反演中的应用[J].土工基础,2001,15(1):1-4.
    [146]刘世君,徐卫亚,王红春,等.遗传算法的改进及其在岩体位移反分析中的应用[J].电力勘测,2002, (2):10-13.
    [147]李守巨,刘迎曦,王登刚,等.基于神经网络的岩体渗透系数反演方法及其工程应用[J].岩石力学与工程学报,2002,21(4):479-483.
    [148] ]蒋中明,徐卫亚,邵建富.基于人工神经网络的初始地应力场三维反分析[J].河海大学学报,2002, 30(3):52-56.
    [149]易达,徐明毅,陈胜宏,等.人工神经网络在岩体初始应力场反演中的应用[J].2004,25(6):943-946.
    [150]刘玉静.基于进化神经网络的岩土边坡稳定性预测方法[J].煤矿安全,2005,36(8):48-50.
    [151]马进红,李磊.林广平.基于进化CP神经网络的岩土本构模型辨识[J].西部探矿工程,2005,增:52- 54.
    [152]浙江省交通规划设计研究院.乌竹岭隧道工程地质勘察报告[R].杭州:浙江省交通规划设计研究院,2005.
    [153]邱道宏.括苍山高速公路隧道岩爆非线性预测研究[D].长春:吉林大学,2008.
    [154]周卫滨.苍岭隧道岩爆预测和防治研究[D].杭州:浙江大学,2005.
    [155]刘允芳,肖本职.西部地区地震活动与地应力研究[J].岩石力学与工程学报,2005,24(24):4502- 4508.
    [156]张秉鹤.括苍山特长公路隧道相对浅埋洞段岩爆机理及防治措施研究[D].长春:吉林大学,2007.
    [157]田其煌.基于小波技术的软土路基沉降数据分析方法研究[D].河海大学,2007.
    [158]张贤达.现代信号处理[M].北京:清华大学出版社,1995.
    [159]戎丽霞.基于最优小波包基的信号去噪算法[J].德州学院学报,2005,21(2):72-75.
    [160]张翠芳.小波降噪及其在MATLAB中的仿真与比较[J].信息技术,2008,(3):4-16.
    [161]杜立志,殷琨,张晓培,等.基于最优小波包基的降噪方法及其应用[J].2008,5(1):25-29.
    [162]王淑.基于阵列信号和小波降噪理论的路面平整度检测系统及其算法研究[D].西安:长安大学,2003.
    [163]高成.MATLAB小波分析与应用[M].北京:国防工业出版社.2007.
    [164]文莉.小波变换在去噪及结构动态特性分析中的应用研究[D].合肥工业大学,2002.
    [165]陈强,黄声享,王韦.小波去噪效果评价的另一个指标[J].测绘信息与工程,2008,33(5):13-14.
    [166]汪莹鹤,王保田.基于小波降噪与最小二乘支持向量机的公路软基沉降预测模型[J].公路交通科技,2008,25(6):40-49.
    [167]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [168]中国科学院物理研究所微弱信号检测小组.微弱信号的检测(下)[J].物理,1978,(1):45-50.
    [169]林嘉宇,王跃科,黄芝平,等.语音信号相空间重构中时间延迟的选择-复自相关法[J].信号处理,1999,15(3):220-225.
    [170] Fraser A M,Swinney H L.Independent coordinates for strange attractors from mutualin formation.Physical Review A,1986,33(2):1134-1140.
    [171] Cao L.Practical method for determining the minium embedding dimension of a scalartime series.Physica D:Nonlinear Phenomena,1997,110(1-2):43-50.
    [172] Kim H S,Eykholt R,Salas J D,et al.Nonlinear dynamics,delay times,and embedding windows.Physica D:Nonlinear Phenomena,1999,127(1-2):48-60.
    [173]闻新,周露,李翔,等.MATLAB神经网路仿真与应用[M].北京:科学出版社,2003.
    [174]冯夏庭.智能岩石力学导论[M].北京:科学出版社,2000.
    [175]李学桥,马莉.神经网络工程应用[M].重庆:重庆大学出版社,1996.
    [176]王坛华.基于三维网络模拟技术的裂隙网络水力研究及隧道涌水非线性预测[D].长春:吉林大学.2008.
    [177]张文修,吴伟志,梁吉业,等.粗糙集理论与方法[M].北京:科学出版社,2001,(7):1-36.
    [178]于海涛. Rough集理论在数据约简中的应用[J].安徽教育学院学报,2004,(5):21-23.
    [179]阙金声.三峡工程涪陵区水库塌岸非线性预测研究[D].长春:吉林大学,2007.
    [180] Pawlak Z. Rough set approach to knowledge-based decision support[J].European Journal of Operational research,1997,99(23):48-57.
    [181] Pawlak Z. Rough sets and fuzzy sets[J]. Fuzzy Sets and Systems,1985,(17):99-102.
    [182]苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,(6):681-684.
    [183] Skowron A etal.From Rough Set Theory to Evidenee Theory.Advances in the DemPster Shaefr Theory of Evidenec.New York. John Wiley&Sons Inc..1994:193-246.
    [184]李雄飞,谢忠时等.基于粗集理论的约简算法[J].吉林大学学报.2003(1)33:82-87.
    [185]苗夺谦,王珏.粗糙集理论中概念与运算的信息表示[J].软件学报,1999.10(2):113-116.
    [186]王彪,陈剑平,李钟旭,等.人工神经网络在岩体质量分类中的应用[J].世界地质,2004,23(1):64-68.
    [187]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2003.
    [188]付正飞.山区隧道围岩分类与洞口边坡稳定性研究[D].武汉:华中科技大学,2006.
    [189]李天斌,王睿.ART1神经网络在隧道围岩分类中的应用[J].成都理工大学学报(自然科学版),2006,33(5):454-459.
    [190]周峰.山岭隧道塌方风险模糊层次评估研究[D].长沙:中南大学,2008.
    [191]朱焕春,Brummer Richard,Andrieux Patrick.节理岩体数值模拟计算方法及其应用(一):方法与讨论[J].岩石力学与工程学报,2004,23(20):3444-3449.
    [192] CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock systems[C]//? Nancy. Proceeding Symposium International Society Rock Mechanics. Rotterdam: A.A.Balkama,1971:8-11.
    [193]王泳嘉,刑纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1992.
    [194] STRACK O D L, CUNDALL P A. The distinct element method as a tool for research in granular media, PartⅠ[R]. Minnesota: University of Minnesota,1978.
    [195] CUNDALL P A, STRACK O D L. The distinct element method as a tool for research in granular media, Part II [R]. Minnesota: University of Minnesota,1979.
    [196]陈剑平,肖树芳,王清.随机不连续面三维网络计算机模拟原理[M].长春:东北师范大学出版社,1995.
    [197]陈剑平,尚晓春,卢波,等.岩体随机不连续面优势组数划分[J].成都理工学院学报,2001, 28(增): 86-92.
    [198]孙广忠著,岩体结构力学[M].北京:科学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700