用户名: 密码: 验证码:
考虑沉积环境和应力历史的黄土力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以洛川黄土标准剖面为研究对象,根据前人对黄土与环境研究所取得的举世瞩目的成果,对黄土物理力学性质沿深度的变化差异进行系统分析;以结构特性及其强度研究为桥,将黄土与环境的研究与黄土力学特性研究有机地结合起来;对考虑结构性的黄土压缩性、抗剪强度以及考虑结构性的黄土湿陷性进行了研究,并建立了考虑结构性和应力历史的黄土本构关系。属于基础性的研究,但是对黄土研究的领域具有一定的补充和扩展作用,同时会促动环境土力学研究的发展。在黄土力学研究领域的理论意义显而易见,会给黄土地区的高边坡工程、公路隧道、铁路隧道以及地下建筑工程设计施工中参数的选取提供一定的理论支持。对黄土的工程力学研究具有重要的理论指导和实践意义。主要取得了以下成果:
     (1)洛川标准剖面黄土-古土壤的主要物理、力学性质以及湿陷特性,均沿深度出现了幅度不等的波动性变化,而且波峰、波谷出现于古土壤以及上覆或下伏黄土层中。静力触探原位测试曲线更清晰地印证这种现象,说明黄土与古土壤、黄土层内以及不同时代的古土壤均存在着明显的结构性差异。
     (2)结合前人在黄土与环境方面的研究成果,通过分散及不分散处理的颗粒分析试验,得出了黄土中碎屑颗粒明显多于古土壤而粘土颗粒少于古土壤以及古土壤中集粒含量远远大于黄土的认识;结合电镜扫描图片分析,探讨了洛川标准剖面黄土-古土壤序列结构以及结构性差异的形成过程和原因,指出了干冷和温湿的古气候旋回是黄土与古土壤结构差异形成的最关键因素。
     (3)通过高压固结试验分析,发现标准剖面的黄土-古土壤均呈超固结状态。这种现象是由黄土正常堆积后的环境变化和固结历史造成的。即在黄土的初始结构形成后,在不同的应力作用时间和温湿、干冷气候旋回条件下,黄土及古土壤的结构得到不同程度的加强,存在“后期加固结构强度”。
     (4)通过高压固结、直接剪切以及三轴剪切试验对比,分析了后期加固结构强度的求取方法可行性和适用性。发现直接剪切试验受试验压力的影响,在求取后期加固结构强度以及抗剪强度指标时均具有局限性,而三轴剪切和高压固结试验获取的后期加固结构强度比较接近,是可行的方法。
     (5)建立了环境因素以及应力历史与后期加固结构强度的定量关系,然后定量地研究了后期加固的结构强度与黄土-古土壤序列的物理、力学性质的关系,将环境因素以及应力历史引入到黄土力学研究领域内。
     (6)分析了原状土样完全饱和的实质,是后期加固结构强度的完全丧失和初始结构强度的部分破坏。因此,通过原状、重塑和饱和三种试样的高压固结试验可以得出黄土及古土壤结构对水的敏感程度。
     (7)从环境和应力历史角度分析了黄土湿陷的原因,可以由内因和外因两方面探讨。内因是黄土遇水后结构强度的降低以及受古气候演化、环境变迁和应力作用时间等控制形成的差异初始含水量和结构水敏度。古土壤形成于温湿的环境,受水影响时间较长,初始含水量大,结构水敏度较小,湿陷性较小;而黄土形成于干冷的环境,受水影响时间较短,初始含水量小,结构水敏度较大,湿陷性较大。而外因则包括水及荷载的变化。在饱水条件下,外加荷载大到足以破坏后期加固结构强度时,黄土及古土壤便开始发生湿陷变形。
     (8)通过对摩尔强度包络线及应力-应变特性的分析,探讨了后期加固结构强度的发挥特征。认为包线初始段即弹性变形阶段,对应着初始结构强度的发挥;包线中间段即弹塑性变形阶段,对应着后期加固结构强度的发挥到完全丧失;包线最后的水平段即塑性变形阶段,后期加固结构强度完全丧失,土体进入塑性流动状态。
     (9)考虑土体在受荷过程中的后期加固结构强度的发挥特征,引入可以表达其发挥程度的参数,对邓肯-张模型进行修正,使得它具有了更广泛的适用性。由于邓肯-张模型及其各种修正模型均不适用于强硬化型应力-应变关系,又提出了考虑黄土结构损伤的对数模型,很好地描述了强硬化型的应力-应变关系。
Taking Luochuan loess standard profile as the object of study, differences of physical mechanics properties of loess which vary with depth are analyzed systematically on the basis of the remarkable achievements on loess and environment study by former researchers. Study on Loess and environment is organically combined with research on Loess mechanics properties based on taking structural behaviors of Loess and its strength properties. The compressibility and shear strength of the loess with considered the structural property and collapsibility of Loess with considered structural property are taken on study, and stress-strain relation of loess with structural properties and stress history were considered is established. These belong to basis study, but it is a certain kind of supplement and expandedness to the field of loess study and also a driving force to the development of study on environmental soil mechanics. Its academic meaning in the field of loess mechanics study is obvious, and it will provide a certain kind of academic support to the choice of parameter in the design and construction of projects such as high slope engineering, highway tunnels, railway tunnels and underground constructions in loess area. It is also an important guide and practical significance to the study on loess engineering mechanics. The main achievements obtained in the thesis are as follows:
     (1)The major physical, mechanical properties and collapsibility of loess-fossil soil of Luochuan standard profile all appear different wavy changes with depth. The wave crest and trough appear in the fossil soil, overlying or underlying loess layers. The curve of Cone penetration test on-site confirmed this phenomena clearly, and it also showed that there exist obvious structural differences between loess and fossil soil, among the fossil soil layers formed in different times and the loess layers formed in the same times.
     (2)Combined with the achievements obtained by former researchers on loess and environment, and through the analysis tests of particles which are treated by the way of disperse and non-disperse, the new understandings of the content of clastic particles in loess is obviously more than in fossil soil while the content of clay particles is on the contrary, and the content of grain in fossil soil is far more than that in loess are obtained. Combined with the analysis of electric mirror scanning pictures, the formative process and reason of the sequence structure of loess-fossil soil and structural differences of Luochuan standard profile are discussed, and paleoclimate gyration with character of dry-cold and warm-wet is pointed out to be the most crucial actor for the formation of the structural differences between loess and fossil soil.
     (3)By the analysis of high pressure consolidation test, it is discovered that loess-fossil soil of the standard profile are all over-consolidated. This phenomena is caused by the environmental change and consolidation history after the normal accumulation of loess, namely. After the formation of initial structure of loess, structures of loess and fossil soil were strengthened in different degrees, where exists“structural strength of later reinforcement”, under the conditions of different stress affecting time and climate gyration with character of warm-wet and dry-cold.
     (4)Compared with the tests of High Pressure Consolidation, Direct Shearing and Triaxial shear, the feasibility and applicability of the method for obtaining structural strength of later reinforcement are analyzed. It is found that the direct shearing test is affected by the test pressure, and there exists limitation in obtaining the structural strength of later reinforcement and the index of shear strength. But the tests of High Pressure Consolidation and Triaxial shear are feasible methods because the structural strength of later reinforcement obtained from them agrees with each other.
     (5)Quantitative relation between environmental factor, stress history and structural strength of later reinforcement is established. Then the relation between structural strength of later reinforcement, physical and mechanical property of sequence of loess-fossil soil is quantitatively studied. Environmental factor and stress history are introduced to the research field of loess mechanics.
     (6)The entire saturation essence of undisturbed soil sample, are the totally loss of structural strength of later reinforcement and partly damage of initial structural strength. Therefore, the sensitive degree towards water of the structure of loess and fossil soil can be concluded by the high pressure consolidation test with undisturbed soil sample, remolded soil sample and saturated soil sample.
     (7)The causes of loess collapsibility are analyzed from two aspects: environment and stress history, which could be explored from internal cause and external cause. The internal causes are the structural strength of loess will be reduced when meets water, and the differential initial water content and structural water sensitivity formed by the changes of paleoclimate and environment and the time of stress-effects. The fossil soil formed in the warm and humid environment, had a relatively long effect by the water, a large initial water content; the structural water sensitivity and collapsibility are relatively small. Loess formed in the dry and cold environment, had a relatively short effect by the water, a small initial water content; the structural water sensitivity and collapsibility are relatively large. The external causes include the changes of water and loading. Under the condition of saturation, loess and fossil soil will begin to appear collapsible deformation when the applied load is large enough to destroy the structural strength of later reinforcement.
     (8)Through the analysis of Mohr strength envelop and stress-strain property, the character of exertion of the structural strength of later reinforcement is discussed. It is believed that the initial section of Mohr strength envelop is the elastic deformation stage which is correspond to the exertion of initial structural strength; the middle section of Mohr strength envelop is the elastic-plastic deformation stage which is correspond to the variation from exertion to completely lost of structural strength of later reinforcement;the last horizontal section of Mohr strength envelop is the plastic deformation stage which is correspond to the completely lost of structural strength of later reinforcement, and the soil comes into the plastic-flow state .
     (9)Considering the exertion character of the structural strength of later reinforcement in the process of bearing loading and introducing the parameters which can show the exertion-degree of the structural strength of later reinforcement, the Duncan–Chang model is modified, has a more extensive applicability. But because the Duncan- Chang model and all of its modified models are all not suitable for the most harden type stress-strain relation, the logarithmic model considering the loess structural damage is brought forth, which, describes this stress-strain relation very well.
引文
[1]孙建中,黄土学[M].香港:香港考古学会出版.2005.6
    [2]刘东生等,黄土与环境[M].北京:科学出版社.1985.10
    [3]刘祖典,黄土力学与工程[M].西安:国家自然科学基金资助出版.1996.8
    [4]西北陕西省水利科学研究所,西北黄土的性质[M].西安:陕西人民出版社.1959.9
    [5]中国科学院土木建筑研究所土力学研究室,黄土基本性质的研究[M].北京:科学出版社.1961.12
    [6]刘东生等,黄河中游黄土[M].北京:科学出版社.1964.7
    [7]刘东生等,中国的黄土堆积[M].北京:科学出版社.1965.9
    [8]刘东生等,黄土的物质成分和结构[M].北京:科学出版社.1966.7
    [9]王永炎等,中国黄土研究的新进展[M].西安:陕西人民出版.1985.8
    [10]刘东生等,黄土、第四纪地质、全球变化[C].北京:科学出版社.1992.7
    [11]张宗枯,中国黄土[M].北京:地质出版社.1989.6
    [12]石建省等,黄土与古气候演化[M].北京:地质出版社.1998.10
    [13]刘祖典.西北黄土的物理力学性质[M].北京:地质出版社.1950
    [14]王永炎、林在贯等,中国黄土的结构特征及物理力学性质[M].科学出版社.1990.3
    [15]郑晏武,中国黄土的湿陷性[M].科学出版社. 1982.6
    [16] ZhengS H, Wang Y,Chen C Y.Studies on the stable isotopes in carbonates in Luochuan loess section:Applicability ofthe Ca daduies as paleoclimate indicators[J]. In: Liu T S ed. Aspects of Loess Research. Beijing:China Ocean Press,1987. 283~290
    [17] Hendy C H. The isotope geochemistry of speleothems—I. The calculation of effects of different modes of formation on isotopic composition of speleothems and their applicability as paleoclimatic indicators[J]. Geochimica et Cosmochimica Acta,1971,35:801~824
    [18] Gu Z Y. The carbonate isotopic composition of the loess2paleosol sequence and its implication of paleoclimatic change.Chi nese Science B ulletin[J].1991,36(20):1979~1983
    [19] Gu Z Y,Liu R M,Liu Y. Response of the table isotopic composition of loess2paleosol carbonate to paleoenvironmentalchanges[J]. In:Liu T S ed. Loess ,Environment and Global Change. Beijing:Science Press,1991. 82~92
    [20] Lin B H,Liu R M ,An Z S. Preliminary research on stable isotopic compositions of Chinese loess[J]. In: Liu T S ed.Loess,Environment and Global Change. Beijing: Science Press,1991. 124~131
    [21]林本海,刘荣谟.最近800ka黄土高原季风变迁的稳定同位素证据[J].科学通报, 1992,37(2):178~180
    [22]顾兆炎等.中国第四纪黄土地球化学研究进展[J].第四纪研究, 2000,20(1):41~55
    [23] Kukla G,Heller F,Liu X M et al. Pleistocene climates in China dated by magnetic susceptibility[J].. Geology,1988(16):811~814
    [24] Ding Zhongli,Yu Zhiwei,Liu Dongsheng. Progress in loess research(part 3):Time scale[J]. Quaternary Sciences,1991,4:336~348. (丁仲礼,余志伟,刘东生.中国黄土研究新进展(三)时间标尺[J].第四纪研究,1991,4:336~348)
    [25] Yue Leping,Xue Xiangxi.The comparative study of magnetostratigraphy and biostratigraphy in Chinese loess area [J] .Quaternary Sciences. 1996 ,3:239~245. (岳乐平,薛祥熙.中国黄土磁性地层与生物地层对比[J].第四纪研究,1996,3:239~245)
    [26] Wu Naiqin,Rousseau D, Liu Dongsheng. Land mollusk records from the Luochuan loess sequence and their paleoclimatal significance[J].Science in China (D),1996,39(5):494~502
    [27] Wu N,Rousseau D, Liu Dongsheng. Climatic instability recorded by the mollusk assemblages from the late glacial loess deposits in China[J] . Chinese Science Bulletin, 1999,44(13):1 238~1242
    [28] Lu Houyuan,Wang Yongjie. A study on phytoliths in loess profile and paleoenvinronmental evolution at Heimugou in Luochuan,Shanxi province,since late Pleistocene [J] . QuaternarySciences,1991,(1):72~84.(吕厚远,王永吉.晚更新世以来洛川黑木沟黄土地层中植物硅酸体研究及古植被演替[J].第四纪研究,1991,(1):72~84.)
    [29] Wu Naiqin,Lu Houyuan, Nie Gaozhong, et al . The study of phytoliths in C3 and C4 grasses and its paleoecological significance[J] . Quaternary Sciences,1992,(3):241~251 (吴乃琴,吕厚远,聂高众等. C3、C4植物及其硅酸体研究的古生态意义[J] .第四纪研究,1992,(3)::241~251)
    [30] An Zhisheng,Wei Lanying,Lu Yanchou. A preliminary study of soil stratigraphy in Luochuan loess profile[J]. Quaternary Sinica,1985,6 (1):166~173.(安芷生,魏兰英,卢演俦.洛川黄土剖面土壤地层学的初步研究[J].中国第四纪研究,1985,6(1):166~173 )
    [31] An Zhisheng,Wei Lanying. The fifth layer paleosol in the Lishiloess and their paleoclimatic significance[J]. Acta PedologicaSinica,1980 ,17(1):12~16 (安芷生,魏兰英.离石黄土中的第五层古土壤及其古气候意义[J].土壤学报,1980,17(1): 12~16)
    [32] Heller F,Liu Dongsheng. Magnetism of Chinese loess deposits[J]. Geophys J R Astron Soc,1984,77:125~141
    [33] Wang Luo,Liu Dongsheng,Han Jiamao,et al . Environmental magnetism of Chinese Quaternary loess : A brief review[J]. Advance in Earth Sciences,2000,15(3): 335~341 (旺罗,刘东生,韩家懋等.中国第四纪黄土环境磁学研究进展[J].地球科学进展,2000,15(3):335~341)
    [34] Lu Huayu, An Zhisheng ,Liu Hongbin et al . Periodicity of east Asian winter and summer monsoon variation during the past2500 ka record by loess deposits at Luochuan on the central Chinese loess plateau[J]. Geological Review,1988, 44(5): 553~558(鹿化煜,安芷生,刘洪滨等.洛川黄土记录的最近2500ka东亚冬夏季风变化周期[J].地质论评,1998,44(5):553~558)
    [35] An Zhisheng,Kukla GJ,Porter S C et al . Magnetic susceptibility evidence of monsoon variation of the loess plateau of central China during the last 130 ,000 years[J]. Quaternary Research,1991,36:29~36
    [36] Heller F,Shen C,Beer J et al. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications[J]. Earth and Planetary Science Letters,1993,114:385~390
    [37] An Zhisheng,Sun D,Zhang X et al . Accumulation sequence of Chinese loess and climatic records of Greenland ice core during the last 130ka[J]. Chinese Science Bulletin,1995,40(15):1272~1276
    [38] Porter S C,An Z. Correlation between climate events in the north Atlantic and China during the last glaciation[J]. Nature,1995,375:305~308
    [39] Zheng Honghan,Gu Xiongfei,Han Jiamaoet al . Clay minerals in loess of China and their tendency in loess section[J]. Quarternary Sinica,1985,6(1):158~165(郑洪汉,顾雄飞,韩家懋等.中国黄土的粘土矿物及其在地层剖面中的变化趋势—洛川和陇西黄土剖面的初步研究[J].中国第四纪研究,1985,6(1):158~165)
    [40] Zheng Honghan. Paleoclimatic records of Clay minerals in loess,China[J]. Quaternary Sinica,1985,6 (2) :41247(郑洪汉.中国黄土中粘土矿物的古气候记录[J].中国第四纪研究,1985,6(2):41~47)
    [41] Ji Junfeng,Chen Jan,Lu H. Origin of illites in the Luochuanloess section Evidence from TEM study[J]. Chinese ScienceBulletin,1999,44(4):372~375
    [42] Ji Junfeng,Chen Jun,Wang Hongtao. Crystallinity of illite fromthe Luochuan loess2paleosol sequence,Shanxi province Indicators origin and paleoclimate of loess[J]. Geological Review,1997,43(2):181~185(季峻峰,陈骏,王洪涛.陕西洛川黄土-古土壤剖面中伊利石结晶度-黄土物质来源和古气候环境的指示[J].地质论评,1997,43(2):181~185)
    [43] Heller F,Liu T. Magnetostratigraphical dating of loess deposits in China[J]. Nature,1982,300:431~433
    [44] Liu Dongsheng,An Zhisheng. A preliminary magnetostratigraphic study of the Beihanzhai loess section[J]. Geochimica,1984,2:134~137.(刘东生,安芷生.洛川北韩寨黄土磁性地层学的初步研究[J].地球化学,1984,2:1342137)
    [45] Yue Leping. New progress in the paleomagnetic study of loess[J]. Geological Review,1985,31(5):453~460. (岳乐平.我国黄土古地磁学研究进展[J].地质论评,1985,31(5):453~460)
    [46] Chen W,Peng G,ed. Dating of Younger Geosystems[M].Beijing:Earthquake Press, 1991.2002218.(陈文寄,彭贵主编.年轻地质体系的年代测定[M].北京:地震出版社,1991. 200~218)
    [47] Ge Tongming. Magnetostratigraphical research of Luochuan loess sediments[J]. Marine Geology and Quaternary Geology,1984,4(1):37~44.(葛同明.洛川黄土沉积层的磁性地层学[J].海洋地质与第四纪地质,1984,4(1):37~44)
    [48] Kukla G,Heller F,Liu X. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology,1988,16:811~814
    [49] Lu Huayu,An Zhisheng,Vandenberghe J,et al. A dating model of loess stratigraphy in the central Chinese loess plateau and its preliminary application[J].Acta Sedimentologica Sinica. 1997,15 (3):150~152.(鹿化煜,安芷生,Vandenberghe J等.洛川黄土地层定年的一个模式及其初步应用[J].沉积学报,1997,15(3):150~152])
    [50] Lu H,Liu X, Zhang F,et al . Astronomical calibration of loesspaleosol deposits at Luochuan, central Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology,Palaeoecology,1999,154:237~246
    [51] Forman S L. Late Pleistocene chronology of loess deposition nearLuochuan,China [J]. Quaternary Research,1991,36:19~28
    [52]丁仲礼,刘东生,刘秀铭等.中国黄土的土壤地层学与第四纪气候旋回[J].见刘东生主编.黄土·第四纪地质·全球变化(第一集).北京:科学出版社,1992.34~36
    [53]郭正堂,丁仲礼,刘东生.黄土中的沉积-成壤事件与第四纪气候旋回[J].科学通报,1996,41(1):56~59
    [54] Porter S C, An Z S. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature,1995,375:305~308
    [55]郭正堂,刘东生,吴乃琴等.最后两个冰期黄土中记录的Heinrich型气候节拍[J].第四纪研究,1996 (1):132~138
    [56]丁仲礼,刘东生,任剑璋等.晚更新世季风-沙漠系统千年尺度的不规则变化及其机制问题[J].中国科学,D辑,1996,26(5): 385~391
    [57]丁仲礼等.黄土高原过去130 ka来古气候事件年表[J].科学通报,1998,46(6):567~574
    [58]赵景波.黄土地层中的CaCO3与环境[J].沉积学报,1993,1(1):136~142
    [59]赵景波.黄土中古土壤CaCO3淀积层与大气降水入渗形式研究[J].地理科学,1995,15(4):344~350
    [60]赵景波.黄土地层化学成分迁移深度与含量研究[J].陕西师范大学学报,1999,27(3):103~107
    [61]赵景波.风化淋滤带地质新理论—CaCO3淀积深度理论[J].沉积学报,2000,18(1):29~35
    [62] An Z S,Kukla G,Porter S C,et al. Late Quatermary dust flow on the Chinese loess plateau. Catena,1991,18:125~132
    [63] Xiao J L,Porter S C,An Z S,et al. Grain size of quartz as an indicator of winter monsoon strengh on the Chinese Loess Plateau of central China during the last 130000yr[J]. Quatermary Research,1995,43:22~29
    [64] Porter S C,An Z S. Correlation between climate events in the North Atlntic and China during the last Glaciation[J].Nature,1995,375:305~308
    [65]薛祥煦,鹿化煜,周杰.陕西旬邑新近系红土剖面粒度组成的古气候意义[J].沉积学报,2002,20(1):118~123
    [66] Xiao Jule,Zheng Hongbo,Zhao Hua. Variation of winter monsoon intensity on the loess plateau,central China during the last 130000 years:evidence form grain size distribution[J]. The Quaternary Research,1992,(31):13~19
    [67] Ding Zhongli,Yu Zhiwei,Rutter N W,et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Sciences Reviews,1994,(13):39~70
    [68]安芷生,Porter S C, Chappell J等.最近130ka洛川黄土堆积序列与格陵兰冰芯记录[J].科学通报. 1994,39(24):2 254~2 256
    [69]鹿化煜,安芷生.黄土高原黄土粒度组成的古气候意义[J].中国科学,D辑,1998,28(3):278~283
    [70]鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,42 (1):66~69
    [71]彭淑贞,郭正堂.风成三趾马红土与第四纪黄土的粘土矿物组成异同及其环境意义[J].第四纪研究,2007,27(2):277~285
    [72] Liu X M,Shaw J,Liu T S,et al. Magnetic mineralogy of Chinese loess and its significance[J]. Geophys. J . Int .1992,108:301~308
    [73]郑洪汉.黄土高原黄土-古土壤的矿物组成及其环境意义[J].地球化学,1994, (S1)
    [74]师育新,戴雪荣,李节通.末次间冰期兰州黄土记录中的粘土矿物及其环境意义探讨[J].海洋地质与第四纪地质,1997,17 (1):87~94
    [75] He X B,Tang KL, Lei X Y. Heavy mineral record of the Holocene environment on the Loess Plateau in China and its pedogenetic significance[J]. Catena ( Giessen),1997,29 (3~4):323~332
    [76]孙有斌,鹿化煜,安芷生.黄土-古土壤中石英颗粒的粒度分布[J].科学通报,2000,45(19):2094~2097
    [77]张永双,曲永新.黄土高原马兰黄土粘土矿物的定量研究[J].地质评论,2004,50(5):530~537
    [78]张铭杰,张昱,李小虎等.干旱半干旱地区土壤矿物组成特征及其环境意义[J].兰州大学学报,2007,43(3):1~7
    [79]何良彪.海洋沉积岩芯中粘土矿物变化与古气候变迁的关系[J].科学通报,1982,27(13),809~812
    [80]李珍,聂树人.西宁黄土沉积及其物质来源[J].地球科学,1999,24(6):581~584
    [81]何生胤.西宁盆地湟水河流阶地与高原演化特征分析[J].水利与建筑工程学报,2007,5(3):81~85
    [82]樊恒文,肖洪浪,段争虎等.中国沙漠地区降尘特征与影响因素分析[J].中国沙漠,2002,22(6):559~565
    [83]叶玮.新疆伊犁地区黄土矿物特征与沉积环境[J].干旱区研究,2002,17(4):1~10
    [84] Kukla G,An Z S,et al. Magnetic susceptibility record of Chinese loess[J].Trans Royal Society of Edinburgh:Earth sciences,1990,81:263~288
    [85] Barbara A Mahera,Hu Meng Yun,Helen M.Robertsb,Ann G Wintle,Holocene loess ccumulation and soil development at the western edge of the Chinese Loess Plateau:implications for magnetic proxies of palaeorainfall[J].Quatemary Science Reviews,2003,(22):445~451
    [86]杨石岭,丁仲礼. 7.0Ma以来中国北方风尘沉积的游离铁_全铁值变及其古季风指示意义[J].科学通报,2000,45(22):2453~2456
    [87]魏建晶,郭正堂. 900ka以来黄土_古土壤序列记录的风尘铁含量变化及其古气候意义[J].科学通报,2003,48(11):1214~1218
    [88]贾蓉芬,彭先芝,周正等.西峰和段家坡剖面S5-1层段磁性矿物的成分与组合特征[J].地球化学,2004,33(2):171~177
    [89]卢玉东,孙建中,张骏等.用全铁含量作为黄土替代性气候指标推算古温度[J].干早区地理,2005,28(4):450~454
    [90]孙斌,郭正堂,尹秋珍等.西宁第四纪黄土-古土壤序列中的可溶盐、来源及环境意义[J].第四纪研究,2006,26(4):649~656
    [91]季峻峰,陈骏,W. B alsam等.黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究[J].第四纪研究,2007,27(2):221~229
    [92]刘青松,邓成龙,潘永信.磁铁矿和磁赤铁矿磁化率的温度和频率特性及其环境磁学意义[J].第四纪研究,2007,27(6):955~962
    [93]盛雪芬,陈骏,杨杰东等.不同粒级黄土-古土壤中碳酸盐碳氧稳定同位素组成及其古环境意义[J].地球化学,2002,31(2):105~112
    [94]刘连文,王洪涛等.黄土醋酸淋溶实验及其碳酸盐组分的地球化学特征[J].岩石矿物学杂志.2002,21(1):69~75
    [95]王箫风,郑祥民,许健等.山东长岛黄土沉积物的磁性与碳酸盐特征及其环境意义初探[J].云南地理环境研究,2007,19(4):133~138
    [96]刘丛强,赵志琦,肖应凯.黄土中硼的同位素组成变化及其气候示踪意义研究[J].四纪研究,2000,20(4)
    [97]刘丛强,赵志琦,肖应凯.黄土_古土壤沉积物中酸溶相硼的分离及其同位素测定[J].地球化学,2000,29(4):351~357
    [98]刘丛强,赵志琦,肖应凯.黄土风化过程的硼同位素地球化学研究[J].中国科学(D辑),2002,32(6):507~513
    [99]刘东生,孙继敏,吴文祥.中国黄土研究的历史、现状和未来—事实与故事相结合的讨论[J].第四纪研究,2001,21(3):185~207
    [100]谢定义.黄土力学特性与应用研究的过去、现在和未来[J].地下空间,1999,19(4):273~285
    [101]倪万魁,颜斌,刘海松等.湿陷性黄土工程特性及地基处治技术研究[R].西安,长安大学,2005.12
    [102]高国瑞.兰州黄土显微结构与湿陷机理探讨[J].兰州大学学报,1997(1)
    [103]高国瑞.中国黄土的湿陷性[J].中国科学,1980(12)
    [104]高国瑞.中国黄土的微结构[J].中国科学,1980(20)
    [105]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651~656
    [106]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形-强度的关系[J].水利学报,1999,(10):1~6
    [107]谢永涛,张鸿儒.关于“土结构性及其定量化参数研究的新途径”的讨论[J].岩土工程学报,2000,512~513
    [108]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):1~6
    [109]邵生俊,周飞飞,龙吉勇.原状黄土结构性及其定量化参数研究[J].岩土工程学报,2004,26(4):531~536
    [110]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993,(4)
    [111]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1996,18 (1):95~97
    [112]马莉英,齐伟.黄土状土的蠕变方程及其蠕变特性[J].试验技术与试验机,1997,37(1):41~42
    [113]郭增玉,张朝鹏,夏旺民.高湿度Q2黄土的非线性流变本构模型及参数[J].岩石力学与工程学报,2000,19 (6) : 780~784
    [114]郭增玉,冯同新.高湿度Q 2黄土的试验流变特性[J].地下水,2004,26(1):70~73
    [115]马莉英,肖树芳,王清.黄土的流变特性模拟与研究[J].实验力学,2004,19(2):178~182
    [116]吴燕开,陈红伟,张志征.饱和黄土的性质与非饱和黄土流变模型[J].岩土力学,2004,25(7): 1143~1146
    [117]杨军,姚正学,王念秦.流变力学原理在黄土滑坡研究中的应用[J].甘肃科学学报,2006,18(1):40~43
    [118]刘保健,张晓荣,程海涛.应变控制下压实黄土的动三轴试验研究[J].岩土力学,2007,28(6):1073~1076
    [119]林斌.考虑损伤效应的黄土流变模型研究[J].长安大学,2005.5
    [120]岩土工程学报,2006,28(2):123~277
    [121]张炜,张苏民.非饱和黄土的结构强度特性[J].水文地质工程地质,1990,(4): 22~25
    [122]邢义川,吴培安,骆亚生等.非饱和原状黄土三轴试验方法研究[J].水利学报,1996,(1):47~52
    [123]蒋明镜、沈珠江、赵魁芝等.结构性黄土湿陷性指标室内测定方法的探讨[J].水利水运科学研究,1999,(1):65~70
    [124]胡再强,沈珠江,谢定义.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19 (6):775~779
    [125]党进谦,李靖.非饱和黄土的结构强度与抗剪强度[J].水利学报,2001,(7):79~83
    [126]田堪良,张慧莉,张伯平等.黄土的结构性及其结构强度特性研究.水力发电学报,2005,24(2):64~67
    [127]陈存礼,胡再强,高鹏.原状黄土的结构性及其与变形特性关系研究[J].岩土力学,2006,27(11):1891~1896
    [128]吴志刚,党进谦,高建勇.非饱和黄土抗剪强度与结构强度的关系特性[J].人民长江,2007,38(1):117~118
    [129]宋章,程谦恭,张炜等.原状黄土的结构强度变形特性分析[J].铁道工程学报,2007,(3):6-11
    [130]岳应利.黄土高原西部黄土工程物理性质及其成因[J].中国沙漠,2004,24(6):680~684
    [131] E.W.Brand,R.P.Brenner.软粘土工程地质学[M].北京:中国铁道出版社,1991,71~117
    [132]陕西省地质矿产局第二水文地质队黄土研究组.陕西黄土工程地质性质研究报告[R].西安.1984
    [133]刁桂仪.黄土中游离氧化铁的古气候意义[J].地质地球化学.1982,(9):58~59
    [134]赵景波.黄土地层中的CaCO3与环境[J].沉积学报,1993,11(1):136~142
    [135]赵景波.黄土中古土壤CaCO3沉积层及其意义[J].西安工程学院学报,1998,20(3):46~49
    [136]于天仁,陈志诚.土壤发生中的化学过程[M].北京:科学出版社,1990,1~35
    [137]文启忠等.中国黄土地球化学[M].北京:科学出版社,1989
    [138]中华人民共和国国家标准.土工试验方法标准[S].北京:中国计划出版社,1999
    [139]张军平.黄土的结构性与先期固结压力[D].长安大学硕士论文.2007,36~42
    [140]陕西省计划委员会.湿陷性黄土地区建筑规范(GB50025-2004)[S].北京:中国建筑工业出版社,2004
    [141]齐吉琳,谢定义等.土结构性的研究方法及现状[J].西北地震学报,2001,23(1):99~103
    [142]秦耀东.土壤物理学[M].北京:高等教育出版社,2003,1~27
    [143]李云峰.黄土渗透性与空隙性关系的研究[M].北京:地质出版社,1994
    [144]杨忠芳.现代环境地球化学[M].北京:高等教育出版社,1999,114~122
    [145]南京大学地质学系.地球化学[M].北京:地质出版社,1979,316~334
    [146]武汉地质学院地球化学教研室.地球化学[M].北京:高等教育出版社,1979,329~335
    [147]胡瑞林,李向全,官国琳等.粘性土微结构定量模型及其他工程地质特征研究[M].北京:地质出版社,1995
    [148]卢肇钧.粘性土抗剪强度研究的现状与展望[J].土木工程学报,1999,32(4):1~9
    [149]刘海松,倪万魁,颜斌等.黄土结构强度与湿陷性关系初探[J].岩土力学,2008,29(3):22~26
    [150]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33 (4):35~40
    [151]胡再强,谢定义,沈珠江.黄土稳定孔隙比原理的试验研究[J].水利学报,2002,(8):97~100
    [152]田堪良,张慧莉,骆亚生等.黄土的结构强度及其定量分析方法[A].岩石力学新进展与西部开发中的岩土工程问题[C].北京:中国科学技术出版社,2002:178~180
    [153]骆亚生,谢定义,邢义川.原状黄土的地区湿陷特性及其潜在湿陷率[J].西北农林科技大学学报,2002,(5):90~95
    [154] Hanzawa H,Adachi K. Overconsolidation of alluvial clays[J]. Soils and Foundations,1983,23(4):106~118
    [155] Hong Z,Tsuchida T. On compression characteristics of Ariake clays[J].Canadian Geotechnical Journal,1999,36(5):807~814
    [156] Schmertmann J H. The mechanical aging of soils[J].Journal of the Geotechnical Engineering Division,American Society of Civil Engineers,1991,117(9):1288~1330
    [157]张诚厚,袁文明,戴济群.软粘土的结构性及其对路基沉降的影响[J].岩土工程学报,1995,17(5): 25~32
    [158]王国欣.软粘土结构性及其扰动状态模型研究[D].长春建筑工程学院,2003
    [159]王国欣,肖树芳,周旺高.原状结构性土先期固结压力及结构强度的确定[J].岩土工程学报,2003,25(2): 249~251
    [160]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1): 3~13
    [161]党靖,胡李俐,南帅.含水量及天然密度对土体抗剪强度参数的影响研究[J].中国西部科技,2007,(5): 14~15
    [162]翟静阳,冷伍明.粘性土物理力学指标的变异性及相互关系[J].铁道建筑技术,2001,(1):49-51
    [163]罗世毅.水平层状地基中附加应力与沉降计算分析[D].长安大学硕士论文,2003
    [164]米海珍,李如梦,牛军贤.兰州原状黄土剪切强度特性的试验研究[J].兰州理工大学学报,2006,32(4):109~111
    [165]米海珍,李如梦,牛军贤.含水量对兰州黄土剪切强度特性的影响[J].甘肃科学学报,2006,18(1):78~81
    [166]李保雄,牛永红,苗天德.兰州马兰黄土的物理力学特性[J].岩土力学,2007,28(6):1077~1082
    [167]李保雄,苗天德.黄土抗剪强度的水敏感性特征研究[J].岩石力学与工程学报,2006,25(5):1003~1008
    [168]扈胜霞,周云东,陈正汉.非饱和原状黄土强度特性的试验研究[J].岩土力学,2005,26(4):660~672
    [169]应捷,杜燕宁.原状非饱和黄土抗剪强度特征及试验研究[J].工程勘察,2006,(8):6~10
    [170]岳应利.黄土工程力学性质的变化及控制因素[J].陕西师范大学学报,2002,30(1):110~114
    [171]马时冬.拟似超压密粘土的强度特性[J].岩土工程学报,1986,8(1):31~37
    [172]魏汝龙.正常压密饱和粘土的抗剪强度理论[J].岩土工程学报,1985,7(1):1~14
    [173]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1992,94~102
    [174]厉伟.湿陷性黄土固有属性的研究探讨[J].科技情报开发与经济,2000,10(6):51~52
    [175]胡再强,沈珠江,谢定义.非饱和黄土的显微结构与湿陷性[J].水利水运科学研究,2000,(2):68~71
    [176]黄义,张引科.非饱和土土-水特征曲线和结构强度理论[J].岩土力学,2002,23(3):268~277
    [177]孙陶.邓肯-张非线性弹性模型的研究现状[J].水电站设计,2006,22(3):48~52
    [178]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996:55~56
    [179]赖勇,宋雄伟,施建勇.土体小应变下的非线性特征试验研究[J].河海大学学报,2005,33(3):93~97
    [180]王立忠,李玲玲.温州煤场软土结构性试验研究[J].土木工程学报,2002,35(1)88~92
    [181]李作勤.有结构强度的欠压密土和力学特性[J].岩土工程学报,1982,20(1):100~110
    [182] Tavenas,Leroueil. Effects of stresses and time on yielding of clays [A]. Proc. of 9th ICSMFE [C]. Tokyo,1977,319~326
    [183]王立忠,赵志远,李玲玲.考虑土体结构性的修正邓肯-张模型[J].水利学报,2004,(1)82~89
    [184] Duncan J M,Chin-Yung Chang. Nonlinear analysis of stress and strain in soils [J].ASCE,1970,96(SM5):1629~1653
    [185]沈珠江,章为民.损伤力学在土力学中的应用[A].第三届全国岩土国力学数值分析与解析方法讨论[C].珠海:中国力学学会岩土力学专业委员会,1988
    [186]沈珠江.结构性粘土的弹塑性损伤力学模型[J].岩土工程学报,1993,15(3):21~28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700