用户名: 密码: 验证码:
延安Q_2黄土的力学及流变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土是一种具有地域性分布的特殊土体,其物理力学性质随地域不同而具有显著的差异。本文以延安Q_2黄土为研究背景,以黄土的结构性和流变特性为研究的核心内容,通过对不同含水量延安Q_2黄土进行常规物理特征试验、单轴无侧限压缩试验、常规三轴压缩试验、单轴蠕变试验、扫描电子显微镜观测以及三轴蠕变试验研究,运用力学分析和数值分析等方法对延安Q_2黄土的力学参数及结构损伤特征随含水量的变化规律、剪切变形破坏特征、蠕变变形破坏特征以及本构模型等进行了系统的研究,本研究工作对黄土高原地区的各类岩土工程设计有着重要的理论和实践意义。
     本文的主要成果有:
     (1)通过常规物理性质试验研究了延安Q_2黄土的颗粒组成、矿物成分等;通过单轴无侧限压缩试验和常规三轴压缩试验研究了黄土的结构强度、粘聚力c以及摩擦系数tanφ等力学参量随含水量的变化规律。
     (2)CU剪切试验表明,Q_2黄土的应力应变关系呈强软化型至较强软化型,该本构关系可用刘祖典教授(1996)提出的强软化型本构模型来描述。依据试验结果深入研究了模型参数随含水量和围压的变化规律,讨论了应变速率对黄土应力应变曲线的影响情况;总结了黄土剪切破坏的整体变形方式、破坏类型和变形破坏力学模式。
     (3)单轴压缩试验中,延安Q_2黄土的应力损伤门槛值随含水量的增加呈指数函数减小,而黄土的应变损伤门槛值与含水量的关系不大,初始弹性模量随含水量的增加呈幂函数降低。采用刚度损伤和强度损伤假设及统计损伤方法,求取了宏观参量和微观结构变化的黄土损伤变量表达式,分别建立了黄土刚度损伤、强度损伤和统计损伤本构模型,并比较了各模型的特点。
     (4)大量蠕变试验结果表明,延安Q_2黄土单轴蠕变破坏应力随含水量的增加呈指数函数减小,相同含水量条件下蠕变破坏应力与结构强度的比值约为0.8;三轴蠕变试验中含水量和围压对黄土蠕变破坏应力有着很大的影响,依据试验结果研究了黄土蠕变破坏应力随含水量和围压的变化规律;总结了三轴蠕变黄土的整体变形及破坏特征。
     (5)通过对延安原状Q_2黄土和单轴蠕变破坏黄土进行扫描电子显微镜观测发现,蠕变前原状黄土的结构以支架大孔隙胶结结构和镶嵌微孔隙胶结结构为主,蠕变后则转为以镶嵌微孔隙胶结结构和凝块状胶结结构为主,黄土蠕变过程的实质就是随着外荷载的增加土体颗粒结构连接由结构硬化逐步转变为结构软化的过程。
     (6)依据蠕变试验结果,运用Riemann-Liouville型分数阶微积分算子理论探索性地建立了黄土软体流变本构模型,并对模型参数变化规律进行了研究;运用模型理论建立了黄土的粘弹塑性流变模型,在此基础上引入统计损伤理论建立了考虑瞬时损伤的黄土统计损伤流变本构模型和能反映黄土加速蠕变阶段的蠕变损伤流变本构模型。
     (7)采用ANSYS进行前处理,用APDL语言提取计算所需的相关信息,用MATLAB6.5编制了Q_2黄土粘弹塑性损伤流变模型的平面应变有限元计算程序。利用编制的有限元程序,对延安Q_2黄土蠕变试验进行了有限元分析,结果表明该模型可以较好的反映黄土的流变特性。
The loess is a special kind of regionally distributed soil whose physical mechanics nature varies significantly in different regions. Taking the Q_2 loess of Yan’an as the researching material while focusing on the structural and the rheological properties of the loess, this paper has carried on a series of research tests and experiments, namely, the conventional physical feature test of the Yan’an Q_2 loess with different water content, the conventional unaxial compression test, the conventional triaxial compression test, the unaxial creep experiment, the observation through scanning electronic microscope as well as the triaxial creep experiment. A systematic research has also been conducted on Q_2 loess, through mechanics analysis and numerical analysis, to discover the mechanics parameters and the law of the characteristic change of the structural damage due to the change in the water content, and the destruction characteristics of detrusion and total creep, the constitutional model, and so on, which has an important theoretical and practical significance on the designing of ground projects of all kinds on the Loess Highlands area.
     The main achievements of this paper include:
     (1) Researching into the basic physical target characteristics of the granular compositions and the mineral components by way of the conventional physical feature test, researching into the law of change of mechanics parameters (mainly include structure strength of the loess, the cohesive force, the friction coefficient) owing to the change in water content.
     (2) It is indicated from the CU shear test that stress-strain relations of the Q_2 loess assume the strong conditioning to the stronger conditioning. This construction relation can be described by the strong conditioning model proposed by Professor Liu Zudian (1996). Discussions have also been conducted about the law of the change of those model parameters with the change in the water content and confining pressures, and about the influences of the strain speed on the stress-strain curve based on the results of the test. Summaries have been reached on the whole distortion way due to the loess shearing destruction, the type of destruction and the mechanics pattern of the distortion destruction.
     (3) The unaxial compression test indicated that stress damage threshold value of Yan’an Q_2 loess decreases exponentially with the increase in water content, while, the damage strain threshold value of the loess has little relation with the water content, and the initial elasticity module decreases by power function with the increase in the water content. By means of the assumption of the rigidity damage and the intensity damage and statistical method of measuring the damages, this research paper seeks for the expressions of the macroscopic parameters and the microscopic structure change for the loess damage, and establishes models of rigidity damage, intensity damage and statistical damage of the loess, and compares the features between these models.
     (4) It is indicated from the result of a massive amount of creep tests that the unaxial failure stress of the Yan’an Q_2 loess decreases exponentially with the increase in the water content, the ratio of the creep failure stress to structural intensity under the same water content is approximately 0.8; while in triaxial creep test, the water content and confining pressure have tremendous influence on the creep failure stress of the loess. Based on the testing result, it is also discussed the law of the change in the creep failure stress of the loess with the changes in water content and confining pressure. The whole distortion characteristics and shape of the triaxial creep leoss have been summarized as well.
     (5) It is indicated through the observational analysis by scanning electronic microscope into the Yan’an original Q_2 loess and the unaxial creep damaged loess that the structure of the original loess is featured primarily, before the creeping, by supportive megapore cemented structure and mosaic micropore cemented structure, while after the creeping it transfers to the micropore cemented structure and congeal cemented structure primarily. The essence of the loess creep process is that the soil granular structure connection is changing, with the increasing in the outside load, from structure hardening to structure conditioning.
     (6) Based on the result of the creep test, the soft rheological constitutional model is established exploratorily through the Riemann-Liouville score step calculus operator theory, and the changing law of the model parameters has been explored as well. The visco-elasticity-plasticity rheological model of the loess is established by the modeling theory; with this basis , two kinds of rheological constitutional models are established, one considers loess statistical damage caused by instant damages by introducing statistical damage theory, and the other considers creep damages while the loess accelerating creep process can be well reflected.
     (7) This paper carries out the preprocess using ANSYS, gets related information needed in computing by the APDL language, and compiles the plane strain finite element computational program with MATLAB6.5 language. By using the established finite element program, finite element analysis is carried out on the creep test of the Yan’an Q_2 loess whose result shows that this model can well reflect the rheological characteristics.
引文
[1]刘东生等.黄土与环境[M].北京:科学出版社,1985
    [2]孙建中.黄土学(上篇)[M].香港:香港考古学会出版社,2005
    [3]胡在强,沈珠江等.非饱和黄土的结构性研究[J].岩石力学与工程学报,2000,19(6):775-779
    [4]安芷生.洛川黄土剖面土壤地层学的初步研究[J].中国第四纪研究,1985,6(1):166-173
    [5]刘祖典.陕西关中黄土变性和参数的探讨[J].岩土工程学报,1985,6(3):24-31
    [6]刘东生等.黄土的物质成分和结构[M].北京:科学出版社,1985
    [7]高国瑞.黄土微结构分类与湿陷性[M].中国科学,1980(12):1203-1208
    [8]钱鸿缙,王继堂等.湿陷黄土地基[M].北京:中国建筑出版社,1985
    [9]陈正汉,许镇鹏等.关于黄土湿陷的若干问题[J].土木工程学报,1986,19(3):86-94
    [10]师管孝,姚建勇.强夯法处理湿陷黄土得试验研究[J].陕西建筑,1989
    [11]关文章.湿陷性黄土工程性能新篇[M].西安:西安交通大学出版社,1992
    [12]王永焱,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990
    [13]刘祖典,董思远.黄土湿陷变形的塑性特性和本构关系,非饱和土理论与实践学术研讨会论文集,1992.3
    [14]齐吉琳,谢定义等.土结构性的研究方法及现状[J].西北地震学报, 2001,23(1):99-103
    [15] Leigh D S, Knox J C. Loess of upper Mississppi Valley driftless area[J].Quaternary Research,1994,43:31-40
    [16] Ajaz A, Parry R.H.G. Stress-strain behavior of loess in unaxial compression[J]. Geotechnique,1975,25(3):495-512
    [17]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999
    [18]谢定义.试论我国黄土力学研究中的若干新趋向[M].岩土工程学报,2001,23(1):3-13
    [19] Pecsi M. Interpretation of structure in loess research[C].International symposium on loess research.Xi’an,1987:85-106
    [20] Rowe R K. et cal. Calculated and observed behavious of a reinforced embankment over soft compressible soil. Can Geotech J,1996,32(2):324-338
    [21] Kabilamany K,Ishihara.K.Cyclic behavior of sand by the multiple shear mechanism model.Soil Dynamics and Earthquake Engineering,1991,10(2):24-83
    [22]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1996,1(81):95-97
    [23]王永焱.黄土的显微结构及其在地质时代与区域上的变化—扫描电子显微镜下的研究[M].黄土与第四纪地质,陕西人民出版社,1982
    [24]刘松玉,方磊.试论粘土粒度分布的分析结构[J].工程勘察,1992:1-4
    [25]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑),1993(7)
    [26]高国瑞.兰州黄土显微结构与湿陷机理探讨[J].兰州大学学报,1979(01)
    [27]张宗枯.我国黄土显微结构研究[J].地质学报,1964,44(3)
    [28]王现国.豫西东部黄土工程特性研究[J].水文地质工程地质,2005,32(2):58-61
    [29]高凌霞.西安地区黄土湿陷性的影响因素[J].大连民族学院学报,2003,5(1):66-69
    [30]米海珍,李如梦等.含水量对兰州黄土剪切强度特性的影响[J].甘肃科学学报,2006,18(1):78-81
    [31] Terzaghi K. Theoretical soil mechanics[M]. New York:Wily,1999
    [32]陈宗基.对我国土力学、岩体力学中若干重要问题的看法[J].第一届土力学及基础工程学术会议论文集,中国建筑工业出版社,1964
    [33]施建勇,赵维炳等.土体变形规律研究进展[J].水利水电科技进展,1998,18(1):24-26
    [34]张朝鹏.黄土的非线性流变本构模型及其在逆作法工程中的应用[硕士学位论文][D].西安理工大学,2000
    [35]沈珠江.岩土破损力学:理想脆弹塑性模型[J].岩土工程学报,2003,25(3):253-257
    [36]邵生俊,谢定义.土的变形非线性与剪缩剪胀性新认识[J].岩土工程学报,2000,22(1):72-76
    [37]李广信.高等土力学[M].北京:清华大学出版社,2004
    [38] DuncanJM,Chang CY.Nonlinear analysis of stress and strain in soils. Proc.ASCE,JSMFD 1970,96(SM5),1629-1633
    [39]沈珠江.理论土力学[M].北京:中国水利水电出版社,1996
    [40]徐秉业,刘信声.应用弹塑性力学(第1版)[M].北京:清华大学出版社,1995
    [41]徐卫亚.边坡及滑坡环境岩石力学工程研究[M].北京:中国环境科学出版社,2000
    [42]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1996
    [43]高国瑞.黄土显微结构分析及其在工程勘察中的应用[J].工程勘察,1980(6):25-28
    [44] Gao Guorui. Microstructure of loess soil in China relative to geologic environment,A special publication on geologic environment and soil properties. ASCE Convention, Houston, TX, 1983:121-136
    [45] Gao Guorui. Formation and development of the structure of collapsingloess in China. Engineering Geologic. Amsterdam. 1988,(25):235-245
    [46] W.L Kubiena. Micropedology, 1938
    [47] Liao Shengxiu. Microstructure types and collapsibi lity of loess in China. Geotechnical properties of loess in China, China Architecture & Building Press, Beijing China:32-36
    [48] Wang Qing, Chen Jiangping. Study of composition structure and engineering geological properties of loessial soil in Northeast China. Geotechnical properties of loess in China,China Architecture & Building Press, Beijing China:37-43
    [49]常宝琦.黄土湿陷性的初步研究[J].中国科学院哈尔滨土建所黄土基本性质研究论文集,1961
    [50]苗天德,王正贵.考虑微结构失稳的湿陷性和黄土变形机理[J].中国科学(B辑)1990(1):86-96
    [51]胡瑞林,李向全等. 21世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质,1999(4):5-8
    [52]胡瑞林,李向全等.土体微结构力学—概念、观点、核心[J].地球学报,1999,20(2):150-156
    [53]沈珠江.黄土损伤力学模型探索[J].第七届土力学与基础工程学术会议论文集,1994:145-149
    [54]沈珠江.黄土的二元介质模型[J].水利学报,2003(7):1-6
    [55]沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000,21(1):1-4
    [56]谢定义、齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656
    [57]牛军贤.基于WF三轴系统非饱和土损伤统计本构模型试验研究[硕士学位论文][D].兰州理工大学,2006
    [58] Geuze ECW A,Tan Tjong Kie. The mechanical behavior of clays. Oxford:Proc.2nd.Int,Congress on Rheology,1953:67-71
    [59] Chen Zongji. Structure mechanics of clay. China Science,1959,8(1):41-45
    [60]陈冬元.上海地区饱和软粘土蠕变微观机理及其流变模型与工程计算的研究[D].同济大学,1993
    [61]吴紫江,马巍,蒲毅彬等.冻土蠕变变形特征的细观分析[J].岩土工程学报,1997,19(3):1-6
    [62]乔平定,李增均.黄土地区工程地质[M].北京:水利电力出版社,1990
    [63]詹美礼,钱家欢等.软土流变特性试验及流变模型[J].岩土工程学报,1993,15(3):54-62
    [64]门福录.黄土地基中应力分布问题之初步研究,黄土基本性质研究[M].北京:科学出版社,1961
    [65]林斌.考虑损伤效应的黄土流变模型研究[D].长安大学,2005
    [66]王艳婷.黄土流变特性试验分析及本构模型的研究[D].长安大学,2006
    [67]袁静,龚晓南,益德清.岩土流变模型的比较研究[J].岩石力学与工程学报,2001,20(6):772-779
    [68]龚晓南,袁静,益德清.岩土流变模型研究的现状与展望—第九届全国结构工程学术会议特邀报告[A].工程力学,2000(增):145-155
    [69]王常明.土流变学研究现状与趋势[J].世界地质,1998,17(4):33-37
    [70]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1993
    [71]谢宁.上海地区饱和软粘土的流变特性[J].同济大学学报,1996,24(3):233-237
    [72]侍倩.饱和软粘土蠕变特性试验研究[J].土工基础,1998,12(3):40-44
    [73]马莉英,肖树芳,王清.黄土的流变特性模拟与研究[J].实验力学,2004,19(2):178-182
    [74]袁建新.土的粘弹塑性关系[J].岩土工程学报,1982,4(4):29-44
    [75]刘雄.岩土流变学概论[M].北京:地质出版社,1994
    [76]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001
    [77]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996,21(5):498-503
    [78] C.C维亚洛夫著,杜余培译.土力学的流变原理[M].北京:科学出版社,1987
    [79] Tan Tjong-Kie. Development of rheology research in recent 20 years[C]. 5nd ICOSOMEF,1961:141-142
    [80]刘颖.黄土的流变性质[A].中国科学土木建筑研究报告集13号[R], 1961: 125-133
    [81]陈铁林,李国英等.结构性粘土的流变模型[J].水利水运工程学报,2003,(2):7-11
    [82]赵明华,肖燕等.软土流变特性的室内试验与改进的西原模型[J].湖南大学学报(自然科学版),2004,31(1):48-51
    [83]何开胜,沈珠江.结构性粘土的弹粘塑性损伤模型[J].水利水运工程学报,2002,(4):7-10
    [84]郑永来,周澄,夏颂佑.岩土材料粘弹性连续损伤本构模型探讨[J].何海大学学报,1997,25(2):114-116
    [85]孙吉主,王勇.考虑损伤和流变的软土路基变形分析[J].武汉理工大学学报,2006,28(4): 75-78
    [86]施斌,姜洪涛.速率过程理论在粘性土蠕变模拟中的应用[J].水利学报,2002(11):66-73
    [87]李建中,曾祥熙.用内蕴时间进行粘土流变研究[J].固体力学学报,2000,21(2):171-174
    [88]谢星.西安地区Q2黄土损伤特性及非线性流变模型研究[D].长安大学,2007
    [89]骆亚生,谢定义,邵生俊等.非饱和黄土结构特性变化的主要影响因素[J].水土保持通报,2005,25(2):36-39
    [90]李兰.黄土微结构的试验研究[J].水文地质工程地质,2004,31(3):17-19
    [91]王胜源.饱和粘土微粒结构及其工程特性研究[J].华南港工,1999,(2):25-30
    [92]胡瑞林等.粘性土微观结构定量模型及其工程地质性质研究[M].北京:地质出版社,1995
    [93]蒲毅彬,陈万业等.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报,2000,22(1):49-54
    [94]党进谦,李靖.非饱和黄土的结构强度与抗剪强度[J].水利学报,2001,(7):79-84
    [95]党进谦.非饱和黄土的结构强度及其应用[J].西北农业大学学报,1998,26(5):48-51
    [96]何青峰,林斌,赵法锁.西安地区马兰黄土的结构强度研究[J].水文地质工程地质,2007,34(5):21-24
    [97]党进谦,郝月清.含水量对黄土结构强度的影响[J].西北水资源与水工程,1998,9(2):15-19
    [98]黄文熙.土的工程性质[M].北京:水利电力出版社,1984
    [99]国家标准.土工试验方法标准GB/T 50123-1999[M].北京:中国计划出版社,1999
    [100] J.Lowe, T.C.Johnson,Use of back pressure to increase degree of saturation of tri-axial test speciments,Research Conference on shear strength of cohesive soils,1960
    [101]三轴剪切资料的整理[R].广东省水电科学研究所,1976.12
    [102]土工试验规程(SD128-84)(第一分册).水利电力出版社,1987.8
    [103]何开胜,沈珠江.结构性土的微观变形和机理研究[J].河海大学学报,2003,31(2):161-165
    [104]何青峰,林斌,赵法锁.马兰黄土的应力—应变本构方程[J].工程地质学报,2007,15(1):71-76
    [105]华南理工大学等.地基及基础(第二版)[M].北京:中国建筑工业出版社,1991.11
    [106]赵明华.土力学与基础工程(第一版)[M].武汉:武汉工业大学出版社,2000.7
    [107]卢全中.裂隙性黄土的力学特性及其工程灾害效应研究[D].长安大学,2007
    [108]沈珠江,陈铁林.岩土力学分析新理论:岩土破损力学[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集(上册),北京:清华大学出版社,2003:1-7
    [109]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994
    [110]谢定义. 21世纪土力学的思考[J].岩土工程学报,1997,19(4):111-114
    [111]邵生俊,周飞飞等.原状黄土结构性及其定量化参数研究[J].岩土工程学报,2004,26(4):531-536
    [112]蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1998,20(2):102-108
    [113]张炜,张苏民.湿陷性黄土的结构强度特性[J].水文地质工程地质,1990(4):22-26
    [114]沈珠江,章为民.损伤力学在土力学中的应用[A].第三届全国岩土力学数值分析与解析方法讨论会论文集(Ⅱ),1998
    [115] Shen Z J. Development of structural model for soils. In 9th Internationnal Conference Computer Methods andAdvances in Geo-mechanics.Wuhan,1997(Ⅰ):235-240
    [116]葛修润,任建喜,蒲毅彬等.岩土损伤力学宏细观试验研究[M].北京:科学出版社,2004
    [117] Kachanov L M. On the Time to Failure under Creep Condition. Izv,Akad,Nauk,USSR,Otd. Tekhn Nauk. 1958,8:26-31
    [118] Kachanov L M.Introduction to Continuum Damage Mechanics.Martinus Nijhoff Publishers. Dordrecht,The Netherlands.1986
    [119] Rabotnov Y N. On the Equations of State for Creep. In:Progress in Applied Mechanics. 1963, 307-315
    [120] Lamaitre J. Local Approach of Fracture. Eng.Frac.Mech,1986
    [121] Chaboche J L. Continuum Damage Mechanics—a Tool to Discribe Phenomena before Ctrack Initiation. Num. Eng.Design,1981,64:233-247
    [122]沈为.损伤力学[M].武汉:华中理工大学出版社,1995
    [123]余寿文.损伤力学概论[M].北京:清华大学出版社,1992
    [124]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业大学出版社,1993
    [125]曹文贵,张升,赵明华.基于新型损伤定义的岩石损伤统计本构模型[J].岩土力学,2006,27(1):41-46
    [126]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55-61
    [127]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628-633
    [128]罗晓辉,白世伟.结构性土体强度的统计损伤模型分析[J].岩土工程学报,2001,26(5): 712-714
    [129]沈珠江.现代土力学的基本问题[J].力学与实践,1998,20(16):1-6
    [130]张梅英等.岩土介质微观力学动态观测研究[J].科学通报,1993,38(10):11-17
    [131] Lambe T. W. The Structure of Compacted Clay. J. SMFD, ASCE, 1958, Vol.84.No.SM2
    [132]沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运科学研究,1993,(4):247-255
    [133] Lemaitre J. Damage Measurement[J].Engineering Fracture Mechanics,1987,28(6):643-661
    [134]曹文贵,赵明华,刘成学.基于Weibull分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004,23(19):3226-3231
    [135]曹文贵,赵明华,刘成学.基于统计损伤理论的德鲁克—普拉格岩石强度准则的修正[J].水利学报,2004,(9):18-23
    [136] Lemaitre J. How to Use Damage Mechanics[J].Nuclear Engineering and Design,1984,80(3):233-245
    [137]徐卫亚,韦立德.岩石统计损伤本构模型的研究[J].岩石力学与工程学报,2002,21(6):787-791
    [138]杨圣奇,徐卫亚,韦立德.单轴压缩下岩石统计损伤本构模型与试验研究[J].河海大学学报(自然科学版),2004,32(2):200-203
    [139]韦立德,徐卫亚,杨春和等.具有统计损伤的岩石弹塑性本构模型研究[J].岩石力学与工程学报,2004,23(12):1971-1975
    [140]张晟,陈胜宏.不连续岩体的三维弹粘塑性复合单元模型研究[J].岩石力学与工程学报,2004,23(20):3393-3396
    [141]杨志法,王芝银,刘英等.五强溪水电站船闸边坡的粘弹性位移反分析及变形预测[J].岩土工程学报,2000,22(1):66-71
    [142] Krajcinovic D, Silva M A G. Statistical Aspects of the Continuous Damage Theory[J].Int.J Solids Structure,1982,18(7):551-562
    [143]王春来,徐必根,李庶林等.单轴受压状态下钢纤维混泥土损伤本构模型研究[J].岩土力学,2006,27(1):151-154
    [144]肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1991
    [145]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2000
    [146]吴德伦,黄质宏,赵明阶.岩体力学[M].重庆:重庆大学出版社,2002
    [147]宋飞.石膏角砾岩非线性流变模型研究及有限元分析[D].长安大学,2006
    [148] Perzyna P. Fundamantal Problems in Visco-Plasticity[A]. in:Recent Advances in Applied Machnics[C]. New York:Academic Press,1966
    [149] Borja R.I. and Kavanzanjian Jr.E. A Constitutive Model for the Stress-Strain-Time Behaviour of‘Wet’Clays,Geotechnique,London. England,35(3):283-298
    [150] H.s.Hsieh. Kavanzanjian Jr.E. and Borja,R.I. Double-Yield-Surface Model Theory, J.Geotech. Engrg, ASCE,116(9):1381-1401
    [151] Kaliakin V.N. and Dafalias Y.F.Theoretical Aspects of the Elastoplastic-Viscoplastic Bouding Surface Model for Cohesive Soils, Soils and Foundations, Vol.30, No.3:pp.11-24
    [152] Dafalias Y.F. and Hermann L.R. Bouding Surface PlasiticityⅡ:Application to Isotropic Cohesive Solid, J. of Engrg. Mechanics, ASCE, Vol.112, No. EM12, pp.1263-1291
    [153] Desai C.S. and Zhang D.Viscoplastic Model for Geologic Materials with Generalized Flow rule, Int. J. for Numerical and Analytical Methods in Geomechanics, Vol.11: 603-620
    [154]郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报,1996,18(5):1-13
    [155]贾乃文.粘塑性力学及工程应用[M].北京:地震出版社,2000
    [156]杨绪灿,杨桂通,徐秉业.粘塑性力学概论[M].北京:中国铁道出版社,1985
    [157]徐日庆,龚晓南,王明洋.粘弹性本构模型的识别与变形预报[J].水利学报,1998,(4):75-80
    [158]朱珍德,徐卫亚.岩体粘弹性本构模型辨识及其工程应用[J].岩石力学与工程学报,2002,16(5):32-36
    [159]殷德顺,任俊娟,和成亮等.一种新的岩土流变模型元件[J].岩石力学与工程学报,2007,26(9):1899-1903
    [160] Nonnenmacher T F. Fractional Relaxation Equations for Visco- elasticity and Related Phenomenal[C]//VASGUEZJC,JOND. Rheological Modelling : Thermodynamical and Statistical Approaches. Berlin:Springer,1991:309-320
    [161] Nonnenmacher T F, Gloeckle W G. A Fractional Model for Mechanical Stress Relaxation[J]. Philosophical Magazine Letters, 1991,64(2):89-93
    [162] Gloeckle W G, Nonnenmacher T F. Fractional Integral Operators and Fox Functions in the Theory of Viscoelasticity[J]. Macromolecules, 1991,24(24):6426-6434
    [163] Kempfle S, Schafer I, Beyer H. Fractional Calculus via Functional Calculus Theory and Applications[J].Nonlinear Dynamics, 2002,29(1):99-127
    [164] Suarez J I, Vinagre B M, Calderon A J. Using Fractional Calculus for Lateral and Longitudinal Control of Autonomous Vehicles [C]//Computer Aided Systems Theory-EUROCUST 2003. Berlin:Springer,2003:337-348
    [165] West B J. Fractional Calculus in Bioengineering[J].Journal of Statistical Physics, 2007,126(6):1285-1286
    [166] Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco:Freeman,1982
    [167] Nonnenmacher T F, Metzler R. On the Riemann-Liouville Fractional Calculus and Some Recent Applications[J]. Fractals,1995,3(3):557-566
    [168] Zhou Guangquan, Liu Xiaomin. Viscoelastic Theory[J]. Hefei:University of Science and Technology of China Press, 1996
    [169]郑颖人,沈珠江等.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002
    [170]龚晓南.土塑性力学(第二版)[M].杭州:浙江大学出版社,1999
    [171]赵法锁,张伯友,卢全中等.某工程边坡软岩三轴试验研究[J].辽宁工程技术大学学报(自然科学版),2001,20(4):478-480
    [172]赵法锁,张伯友,彭建兵等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527-1532
    [173]宋飞,赵法锁,卢全中.石膏角砾岩流变特性及流变模型研究[J].岩石力学与工程学报,2005,24(15):2659-2664
    [174]蒲奎英,范华林.流变损伤模型及其应用[J].河海大学学报,2001,29(增):17-20
    [175]杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602-1604
    [176]王贵君.一种盐岩流变损伤模型[J].岩土力学,2003,(增):81-84
    [177]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002
    [178]金丰年,范华林,蒲奎英.岩石蠕变损伤模型研究[J].工程力学,2000,(S):227-231
    [179]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998
    [180]李同录,李萍.岩土工程数值分析[M].西安:陕西人民教育出版社,2004
    [181]王勖成,卲敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1997
    [182]唐辉明,宴鄂川,胡新丽.工程地质数值模拟的理论与方法[M].武汉:中国地质大学出版社,2001
    [183] D.R.J.欧文,E.辛顿著;曾国平等译.塑性力学有限元—理论与应用[M].北京:兵器工业出版社,1989
    [184]龚曙光,谢桂兰. ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004
    [185]博弈创作室. APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004
    [186] P.I.Kattan著;韩来彬译. MATLAB有限元分析与应用[M].北京:清华大学出版社,2004
    [187]宋建辉,涂志刚. MATLAB语言及其在有限元编程中的应用[J].湛江师范学院学报,2003,24(6):101-105
    [188]石博强,赵金. MATLAB数学计算与工程分析范例教程[M].北京:中国铁道出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700