用户名: 密码: 验证码:
核磁共振多匝线圈找水技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核磁共振找水(MRS)方法是一种直接有效的找水方法。该方法在全球多个国家和地区成功找到了地下水,为解决全球水资源短缺问题提供了新思路。MRS找水技术的逐渐成熟和应用领域的不断扩展,对MRS技术本身提出了新的要求,例如在矿井和隧道突水探测、堤坝渗漏检测等应用领域,传统的MRS找水探测横向和纵向分辨率较低,线圈铺设易受地形影响,导致核磁共振找水探测深度受到限制。本文针对这些问题,提出基于多匝线圈的MRS找水技术。完成了多匝线圈地下水MRS信号数值计算与分析;建立了多匝线圈MRS阻抗模型并完成了多匝线圈阻抗特征分析;给出了不同参数多匝线圈对应的MRS找水探测能力分析与计算方法;开展了多匝线圈MRS找水仪关键技术研究并完成了仪器系统研制;完成了多匝线圈MRS找水仪室内测试与标定工作;开展了多匝线圈MRS找水测量数据处理方法研究,针对多匝线圈造成的MRS找水探测误差,提出了MRS找水信号初始振幅精密回推计算方法和激发脉冲矩校正方法,改善了测量数据反演解释精度;基于研制开发的多匝线圈找水仪开展了MRS野外实验,应用12.5米4匝线圈实现了对地下37.5米深度处含水层的探测。实验结果表明:通过增加线圈匝数,可以实现大于线圈边长3倍以上深度地下水的探测,并提高MRS找水探测分辨率。
     本文完成的核磁共振多匝线圈找水技术研究,为拓展该技术应用领域,提高找水探测能力提供了研究基础。
MRS (Magnetic Resonance Sounding) is an effective and direct method for undergroundwater detecting. It has wide Happlication prospectHs in solving the problem of global waterresources shortage. The maximum exploration depth is about 150m (NUMIS system using150m side length loop, single turn). As the developing of the technique and extendingapplication fields for underground water detecting, new technical requirements areHcontinuouslyH proposed for MRS itself. For some new application fields such as Hwater inrushHprospecting of tunnel as well as mine and Hdam leakageH inspecting, loop size is often limitedwhich will cause am obvious exploration depth decreasing. Low exploration resolution causeby that also limited MRS application in fields such as HfissureH, karst cave and faultunderground water detecting. New techniques are required for these new application fields.
     The study of multi-turn loop MRS technique is conducted in the paper corresponding tothe problem above. The study is based on the enhancement of MRS exciting power andreceiving signal of multi-turn loop. In the paper, underground water with depth more than 2-3times of multi-turn loop side length is effectively detected. The paper receives Hfinancial aidHsfrom Key Projects in the National Science & Technology Pillar Program during the EleventhFive-Year Plan Period, the Hministry of educationH and the Department of Science &Technology of Jilin province.
     The major work of this paper is as follows:
     (1) Numerical simulation of multi-turn loop MRS signal for different undergroundwater is provided. MRS signal calculation method with one TX/RX loop is given based onHsuperposition Hand reciprocal principle. The calculation method of MRS exciting magneticfield and tipping angel is also discussed in passing series. With the established undergroundwater model, the initial amplitude-exciting pulse moment curve can be calculated. Thenumerical simulation result of the paper provides the Htheoretical basisH and numericalfoundataions for multi-turn loop and prototype designing as well as MRS exploration.
     (2) MRS multi-turn loop features are studied. As the variable impedance causes problems for multi-turn loop MRS exploration, the relations between loop inductance contains loop size,loop turn and loop paving are studied. The effective exploration depth of loops with differentsize and turn is calculated based on previous studies according to different explorationconditions. The results of effective exploration depth calculation for different loops to 6mthick with 20% water content layered underground water are provided in the paper. Thedesigning and fabrication of MRS multi-turn loop are also given.
     (3) The key technique of multi-turn loop MRS TX/RX apparatus is studied based onstudy basis of Jilin University. In the paper, the transmitting waveform quality, the receivingresonance matching method, very low MRS signal conditioning and dead time controlinfluenced by variable loop impedance is discussed and the corresponding solution methodsare given. Related simulation work is carried out to inspect the effect for instrumentationoperating parameters configuration.
     (4) The multi-turn loop MRS acquisition data processing method is studied from aspectssuch as acquisition data evaluation, acquisition data pretreatment and the acquisition datainversion. The MRS signal back-stepping and exciting pulse moment calibration methodcorresponding to MRS hardware system is mainly introduced.
     (5) Detailed inspection of multi-turn loop MRS hardware system key parameters iscarried out in the lab. Inspection platform is introduced and the inspecting method is alsogiven. The testing result of the improved MRS system is in consistent with the simulationresult of chapter 4.
     (6) According to the studies above, field experiments are carried out in Wanxingwoputest site in Jilin province. The Hgeographical positionH, natural and cultural conditions and theEM noise of the test site are analized. Relative outdoor tests are carried out to verify thesimulation result of multi-turn loop influencing experiment effect and determine theexperimental MRS parameters configuration. The testing results of 50m side length withsingle turn, 25m side length with 2 turn, 12.5m side length with 4 turn and 6.25m side lengthwith 8 turn are given. The experimental results indicate that the smaller size, multi-turn loopcan effectively detect the underground water as deep as 2-3 times of its side length. It is alsoverified that the smaller size multi-turn loop exploration achieves higher resolution forshallow underground water exploration.
     The key Hinnovative pointsH are as follows:
     (1) A more HflexibleH and practical multi-turn loop MRS exploration method is proposed.Multi-turn loop with certain side length realizes underground water as deep as 2-3 times of itsside length. The method is based on transmitting EM field and receiving signal enhancement of multi-turn loop. Series of experiments are carried out using a group of multi-turn loops inWanxingwopu testing site in Jilin province. The feasibility and effect of multi-turn loopdetecting is verified by the field experiments in the testing site.
     (2) A method of effective exploration depth for different multi-turn loop withdifferent size and turn calculation is proposed. The environmental noise, sensivity of MRSsystem, information of underground water (obtrained from existing Hgeological dataH) and loopimpedance are integrated in the method. The MRS exploration experience and numericalsimulation results are also considered. Effective exploration depth of different loops is thencalculated based on the conditions listed above. The method supplies a practical guidings formulti-turn loop MRS exploration for underground water.
     (3) The matching method of variable multi-turn loop and MRS hardware system isproposed. The method analyzes and calculates the influencing effects on transmittingwaveform quality control, receiving resonance matching, the very low MRS signalconditioning and dead time configuration. Solution method is supplied for variable testingloop and MRS hardware system. Experimental result verifies the simulation calculation andmetching method.
     (4) An exciting pulse moment calibration method based on transmitting waveformquality inconsistency caused by variable loops impedance is proposed. The method makes useof transmitting waveform quality calculation result and calculates the ratio (exciting pulsemoment calibration factor) of the integral of actural transmitting current and ideal transmittingcurrent. The factor is used for inversion result calibration. The method is used for multi-turnloop MRS exploration data calibration. Calibrated result is in consistent with the acturalunderground water conditions.
     Field experimental results verify the inference of the paper. The using of 12.5m sidelength with 4 turn loop achieves effective underground water detecting with depth of37.5-39m with about 5% water content. Also the use of 6.25m side length and 8 turnmulti-turn loop achieves 13-25m depth underground water detecting about 10% water content.The study of the paper supplies an effective and feasible way of MRS application for newapplication fields such as Hmine and tunnel water inrushH detecting, Hdam leakageH detecting,Hgeological disaster forecastHing.
引文
[1]陈文升.核磁共振地球物理仪器原理[M].北京:地质出版社.1992-07.
    [2] Stewart K. Sandberg. Resolution improvement in geoelectrical soundings applied to groundwater investigations[C]. Sixtieth annual international meeting and exposition. SEG Abstracts (1990). 60:406-409.
    [3] Glyn Parry Jones. Management of underground water resources[J].Quarterly Journal of Engineering Geology and Hydrogeology. Oct 1971; 4: 317-328.
    [4]唐慧杰,陈冬君,黄海玲.物探找水方法综述[J].黑龙江水利科技. 2004, (01).
    [5]林君.电磁探测技术在工程与环境中的应用现状[J].物探与化探.2000.24 (3) :167-177.
    [6]林君,现代地球物理仪器的开发与应用[J].地质装备. 2004. 5(2) :3-7.
    [7] Jonathan F. Stebbins and Ian Farnan. Nuclear magnetic resonance spectroscopy in the earth sciences; structure and dynamics[J].Science (July 1989), 245(4915):257-263
    [8] Legchenko, Anatoly V,Some aspects of the performance of the surface NMR method[C]. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies, vol.66:936-939, 1996
    [9] Kristina Keating, Rosemary Knight, A laboratory study of the effect of magnetite on NMR relaxation rates[J]. Journal of Applied Geophysics. 2008, 66(3-4): 188-196.
    [10] Bray, C.L., Iannopollo, S., Hornak, J.P. Design and characterization of a sub-surface MRI system[C]. 15th Triennial Conference for the ISMAR. 2004:165.
    [11] Cohen, M.H. and Mendelson, K.S. 1982, Nuclear magnetic relaxation and the internal geometry of sedementary rocks: [J]. Appl. Phys, 53:1127–1135.
    [12] Hore, P.J., Nuclear magnetic resonance[M].America:New York Oxford University Press. 1996.
    [13] M. Lubczynski and J. Roy Magnetic resonance sounding; new method for ground water assessment[J].Ground Water (April 2004), 42(2) :291-303.
    [14] M. Lubczynski and J. Roy. Hydrogeological interpretation and potential of the new magnetic resonance sounding (MRS) method[J].Journal of Hydrology (December 2003), 283(1-4):19-40.
    [15] Robert Wyns, Jean-Michel Baltassat, Patrick Lachassagne, Anatoly Legchenko, Jacques Vairon, and Francis Mathieu. Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France) [J]. Bulletin de la Societe Geologique de France, Jan 2004; 175: 21 - 34.
    [16] P. Kinchesh, A. A. Samoilenko, A. R. Preston, and E. W. Randall. Stray field nuclear magnetic resonance of soil water; development of a new, large probe and preliminary results[J]. Journal of Environmental Quality (April 2002), 31(2) :494-499.
    [17] Jean Roy, Alain Rouleau, Michel Chouteau, Michel Bureau. Widespread occurrence of aquifers currently undetectable with the MRS technique in the Grenville geological province, Canada[J].Journal of Applied Geophysics, 2008, 66(3-4): 82-93.
    [18] J.M. Vouillamoz, G. Favreau, S. Massuel, M. Boucher, Y. Nazoumou, A. Legchenko.Contribution of magnetic resonance sounding to aquifer characterization and recharge estimate in semiarid Niger[J].Journal of Applied Geophysics. 2008, 64: 99–108.
    [19] Konstantinos Chalikakis, Mette Ryom Nielsen, Anatoly Legchenko. MRS applicability for a study of glacial sedimentary aquifers in Central Jutland, Denmark[J].Journal of Applied Geophysics.2008, 66(3-4): 176-187.
    [20] Kamhaeng Wattanasen, Sten-?ke Elming. Direct and indirect methods for groundwater investigations: A case-study of MRS and VES in the southern part of Sweden[J].Journal of Applied Geophysics, 2008, 66(3-4): 104-117.
    [21] J.M. Vouillamoz, B. Chatenoux, F. Mathieu, J.M. Baltassat, A. Legchenko. Efficiency of joint use of MRS and VES to characterize coastal aquifer in Myanmar[J].Journal of Applied Geophysics. 2007, 61: 142-154.
    [22] Anatoly Legchenko, Jean-Michel Baltassat, Alexey Bobachev, Charlotte Martin, Henri Robain, and Jean-Michel Vouillamoz. Magnetic resonance sounding applied to aquifer characterization[J]. Ground Water (June 2004). 42(3) :363-373.
    [23] David O Walsh. Multi-channel surface NMR instrumentation and software for 1D/2D groundwater investigations[J]. Journal of Applied Geophysics, 2008,66(3-4,1): 140-150.
    [24] Reinhard Meyer1, Michael van Schoor2 and Jan Greben. Development of and Tests with the NMR[C].10th SAGA Biennial Technical Meeting and Exhibition Technique to Detect Water Bearing Fractures,2007.
    [25]李振宇,高秀花,潘玉玲.核磁共振测深方法的新进展[J].CT理论与应用研究. 2004, (02). Vol.13 No.2:7-10.
    [26]雷卓翰,潘玉玲,杨熹云.地球物理勘探及地球化学勘探方法在城市建设中的应用[M].北京:地质出版社. 2006.
    [27]万乐,袁照令,潘玉玲.地面核磁共振感应系统(NUMIS)及其在找水中的应用[J].物探与化探. 1999, (05). Vol. 23 ,No. 5:331-334.
    [28] F.Vermeersch, B. Texier, J.Bernard. Comparison of various loop geometries in magnetic resonance soundings on the pyla sand dune. [C].2nd International workshop on the magnetic resonance sounding method applied to non-invasive groundwater investigations, 2003.117-120.
    [29]张昌达,潘玉玲.关于地面核磁共振方法资料岩石物理学解释的一些见解[J].工程地球物理学报. 2006 Vol.3,No.1:1-8
    [30]袁照令,万乐,李振宇,潘玉玲.核磁共振方法在湖北某地找水的效果[J].长江流域资源与环境. 2000, Vol. 9 No. 3:327-331.
    [31]孙淑琴,林君,李海生.用地面核磁共振方法评估含水层涌水量的实例[J].地球物理学进展. 2008,8(4) :1317-1321.
    [32]张小华.核磁共振找水仪原理样机的设计与实现[D].吉林:吉林大学. 2006.
    [33]孙淑琴.地面MRS找水探测地下水数值模拟与影响因素分析[D].吉林:吉林大学.2005
    [34] Shuqin Sun, Jun Lin, Haisheng Li, Yiping Zhao. Combining Surface NMR Measurements and Hydrogeological Parameters to Estimate the Yield Capacity of Water-Saturated Layers.[C].19th International Workshop on Electromagnetic Induction in the Earth.2008.10:36-40.
    [35] Hertrich, M., Braun, M., Yaramanci, U..Magnetic resonance soundings with separated transmitter and receiver loops[J].Near Surface Geophysics, 2005, 3: 131-144.
    [36] A. Legchenko, M. Ezersky, C. Camerlynck, A. Al-Zoubi, K. Chalikakis, and J-F. Girard. Locating water-filled karst caverns and estimating their volume using magnetic resonance soundings[J].Geophysics, 2008, 73(5) : 51-61.
    [37] Li Jingyang, Ji Chuanmao, Yan Guiquan, Liu Kangxiang, and Liang Feng. Characteristics and assessment on water resources of Huanghou karst underground drainage at Dushan in South Guizhou Province[J].Carsologica Sinica (September 1999), 18(3) :234-244.
    [38] Cheng Xing and Yang Zijiang. A discussion on the factors of underground water regulation in karst areas[J].Carsologica Sinica (March 2000). 19(1) :52-57.
    [39] Yu Jingcun and Li Zhidan. The exploration of the water gushing structure of a coal mine using high-resolution tri-electrode sounding[J].Coal Geology & Exploration (October 1997).25(5) :38-41.
    [40]王应吉,孙淑琴,李伟等.核磁共振技术在煤矿突水监测中的应用设想[J].煤矿安全.2007,38(9):66-69.
    [41] J. Demchak, J. Skousen, P. Ziemkiewicz, and G. Bryant. Comparison of water quality from 12 underground coal mines in 1968 and 1999[J].Green Lands (2001), 31(1) :48-60.
    [42]潘玉玲,Jean BERNARD,李振宇,熊玉珍,甘涛.轻便新型核磁共振找水仪及其在堤坝监测中的应用[J].大坝与安全.2004(01):27-29.48.
    [43]刘国辉,张献民,贾学民.地下水资源电法勘探新技术[M].北京:地震出版社. 2007.
    [44]张荣,胡祥云,杨迪琨等.地面核磁共振技术发展述评[J].地球物理学进展. 2006(01):284-289.
    [45]尹成勇,潘玉玲.核磁共振技术在找水中的应用[J].地下水. 1996, (04):158-160.
    [46] Tang Yimin. Underground water system in mining areas and their properties[J].Hunan Geology (June 1996), 15(2) :93-97.
    [47] Yaramanci, U. New technologies in ground water exploration-Surface nuclear magnetic resonance[J].Geologica Acta. 2004, 2(2) :109-120.
    [48] Lubczynski, M.W., Roy, J.. MRS contribution to hydrogeological system parameterization[J].Near Surface Geophysics. 2005, 3: 131-139.
    [49] Russel C. Hertzog, Timothy A. White and Christian Straley,Using NMR Decay-time Measurements to Monitor and Characterize DNAPL and Moisture in Subsurface Porous Media[J].JEEG. 2007, 12(4) :293-306.
    [50] Legchenko, Anatoly; Valla, Pierre. A review of the basic principles for proton magnetic resonance sounding measurements[J].Journal of Applied Geophysics, vol.50, no.1-2: 3-19, May 2002.
    [51]阮百尧.均匀水平大地上频率域垂直磁偶源电磁场数值滤波解法H[J].H桂林工学院学报H. 2005,(01):14-18.
    [52]张纪勋,范志平.瞬变电磁技术在巷道超前探测中的应用[J].中国煤田地质. 2006,(03):60-61.
    [53]刘志新,于景村,郭栋.矿井瞬变电磁法在水文钻孔探测中的应用[J].物探与化探, 2006,(01):59-61.
    [54] Legchenko, A.V., Semenov, A.G., Shirov, M.D., A device for measurement of subsurface water saturated layers parameters. 1540515[P].USSR Patent. 1990.
    [55] Descloitres, Marc, Ruiz, Laurent; Sekhar, M, Legchenko, Anatoly; Braun, Jean-Jacques, Mohan Kumar, M S, Subramanian, S. Characterization of seasonal local recharge using electrical resistivity tomography and magnetic resonance sounding[J].Hydrological Processes, vol. 22, no. 3:384-394, 30 Jan 2008.
    [56] Legchenko, A V. A practical accuracy of the surface NMR measurements[C].Conference and Technical Exhibition - European Association of Geoscientists and Engineers, vol.58, abstr. M025, 1996.
    [57] Mike Müller-Petke, Ugur Yaramanci. Resolution studies for Magnetic Resonance Sounding (MRS) using the singular value decomposition[J].Journal of Applied Geophysics. 2008, 66(3-4): 165-175.
    [58]邓靖武,潘玉玲,熊玉珍.探查地下水的新方法——地面核磁共振找水方法的应用研究[J].现代地质. 2004, (01):121-126
    [59]孙淑琴,林君,张庆文,嵇艳鞠.氢质子弛豫过程[J].物探与化探. 2005,29(2) :153-156.
    [60] Valla, Pierre; Legchenko, Anatoly,One-dimensional modelling for proton magnetic resonance sounding measurements over an electrically conductive medium[J].Journal of Applied Geophysics.vol.50, no.1-2:217-229, May 2002.
    [61]王鹏.均匀地电条件下地面核磁共振三维正演[D].武汉:中国地质大学. 2007年.
    [62] Yaramanci, U. New technologies in ground water exploration; surface nuclear magnetic resonance[J].Geologica Acta, vol.2, no.2:109-120, 2004.
    [63] J.-F. Girard, A. Legchenko, M. Boucher, J.-M. Baltassat. Numerical study of the variations of magnetic resonance signals caused by surface slope[J].Journal of Applied Geophysics. 2008, 66(3-4): 94-103.
    [64] Braun, M., Hertrich, M., Yaramanci, U.. Study on complex inversion of magnetic resonance sounding signals[J].Near Surface Geophysics. 2005(3) : 155–163.
    [65]宁从前.核磁共振测井精细处理解释方法与应用研究[D].中国石油天然气总公司中国科学院渗流流体力学研究所. 2001.
    [66] Mohnke, O; Braun, M; Yaramanci, U. Inversion of decay time spectra from surface NMR data[J].Protokoll ueber das Kolloquium Elektromagnetische Tiefenforschung, vol. 19 :78-81, 2001.
    [67] Guillen, A; Legchenko, Anatoly. Application of linear programming techniques to the inversion of proton magnetic resonance measurements for water prospecting from the surface[J].Journal of Applied Geophysics.vol.50, no.1-2:149-162, May 2002.
    [68] Shuqin Sun, Jun Lin, Zhongxing Wang, Qingming Duan, Yingji Wang, Yanqiu Jiang. Numerical Simulation of the Investigation Depth Based on SNMR for Groundwater Exploration[C].第七届中国国际地球电磁学术讨论会论文集. 2005: 203-208.
    [69] Qian Wei and Laust B. Pedersen. Spatial averaging of the vertical magnetic field in central-loop configuration[J].Geophysics (October 1993), 58(10):1507-1510.
    [70] B. K. Bhattacharyya. Electromagnetic fields of a small loop antenna on the surface of a polarizable medium[J].Geophysics (October 1964). 29(5) :814-831.
    [71] Jisoo Ryu, H. Frank Morrison, and Stanley H. Ward. Electromagnetic fields about a loop source of current[J].Geophysics (1970). 35(5) :862-896.
    [72] Albert Orsinger and Robert van Nostrand. A field evaluation of the electromagnetic reflection method[J].Geophysics (July 1954).19(3) :478-489.
    [73] C.L. Bray, N.C. Schaller, S.L. Iannopollo, M.D. Bostick, G. Ferrante, A. Fleming, and J.P. Hornak. A Study of 1H NMR Signal from Hydrated Synthetic Sands[J].Journal of Environmental & Engineering Geophysics. Mar 2006; 11: 1-8.
    [74] Weichman, P.B., Lun, D.R., Ritzwoller, M.H., Lavey, E.M. Study of surface nuclear magnetic resonance inversion problems[J].Applied Geophysics, (50):129-147.
    [75] Weichman, P.B., Lavey, E.M., Ritzwoller, M.H. 2000. Theory of surface nuclear magnetic resonance with applications to geophysical imaging problems[J].Phys. Rev. E, (62): 1290-1312.
    [76] Girard, J.-F., Legchenko, A., Boucher, M. Stability of MRS signal and estimating data quality[J].Near Surface Geophysics (3) :187-194.
    [77] Abragam, A..The Principles of Nuclear Magnetism[M].Oxford University. Press. 1961:648
    [78] Yaramanci, U; Hertrich. Inversion of magnetic resonance sounding data,Boletin [J].Geologicoy Minero. vol. 118, no. 3:473-488, 2007.
    [79]戴苗.地面核磁共振找水正反演研究[D].武汉:中国地质大学.2008年.
    [80] Legchenko, Anatoly V; Valla, Pierre. Processing of surface proton magnetic resonance signals using non-linear fitting[J].Journal of Applied Geophysics, vol.39,(2) :77-83, May 1998.
    [81]赵岩松,张一鸣,夏平畴.核磁共振测井系统中主要电磁场问题的探讨[J].电工技术学报. 1999, (05):74-80.
    [82] Braun, Martina; Hertrich, Marian; Yaramanci, Ugur. Complex inversion of surface-NMR signals; extending the limits of model resolution Proceedings[C].Symposium on the Application of Geophysics to Engineering and Environmental Problems(SAGEEP). vol.2004: 856-868, Feb 2004.
    [83]李军峰,李文杰.航空电磁发射线圈自感系数的精确计算[J].物探化探计算技术2007.10:17-20.
    [84] Warren L. Stutzman. Gary A. Thiele著.线圈理论与设计(第二版)[M].北京:人民邮电出版社. 2006.
    [85]吴英,江永清,周兆英,田中小野,江刺正喜. MRI微型RF接收线圈的设计与制作[J].Semiconductor Optoelectronics, 2006. 27(5) :556-559.
    [86]于生宝,王忠,嵇艳鞠,林君.瞬变电磁法浅层探测技术[J].电波科学学报.2007,21(2) :284~287.
    [87]姜志海,岳建华,刘志新.矿井瞬变电磁法在老窑水超前探测中的应用[J].工程地球物理学报. 2007,(04):291-294.
    [88] Ji Yanju, Lin Jun, Yu Shengbao, Wang Zhong, and Wang Jing. A study on solution oftransient electromagnetic response during transmitting current turn-off in the ATTEM system[J].Acta Geophysica Sinica (2006).49(6) :1884-1890.
    [89] O. A. Khachay. Prisoyedinennyy impedans ramki, raspolozhennoy na poverkhnosti dvukhsloynoy sredy. Combined impedance of a loop placed on the surface of a two-layered medium (in Elektrometricheskiye issledovaniya pri poiskakh i razvedke rudnykh mestorozhdeniy)[J].Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, USSR (1977) 124-129.
    [90]王国良,张旭良,崔保丽.核磁共振装置用线圈电感量的估算与测量[J].医疗装备.1998,(01):16-17.
    [91]王振东,曾荣伟,何雪洲.直接探测地下水的新技术——核磁共振技术[J].中国地质. 1996, (04). 24.28.
    [92] A.Legchenko, M. Ezersky, J.-F. Girard, J.-M. Baltassat, M. Boucher, C. Camerlynck, A. Al-Zoubi. Interpretation of magnetic resonance soundings in rocks with high electrical conductivity[J].Journal of Applied Geophysics, 2008, 66(3-4): 118-127.
    [93]孙淑琴,林君,张世雄.导电性对地面MRS信号的影响研究[J].物探化探计算技术. 2005:128-130.
    [94] Jean-Michel Vouillamoz, Marc Descloitres, Jean Bernard, Pierre Fourcassier, and Laurent Romagny. Application of integrated magnetic resonance sounding and resistivity methods for borehole implementation; a case study in Cambodia[J].Journal of Applied Geophysics (May 2002), 50(1-2):67-81.
    [95] George R. Rossman. Analytical Methods for Measuring Water in Nominally Anhydrous Minerals[J].Reviews in Mineralogy and Geochemistry, Jan 2006; 62: 1-28.
    [96] Martina Braun, Ugur Yaramanci. Inversion of resistivity in Magnetic Resonance Sounding[J].Journal of Applied Geophysics. 2008, 66(3-4): 151-164.
    [97] Legchenko, A. MRS measurements and inversion in presence of em noise[J]. Geologicoy Minero. vol. 118, no. 3:489-507, 2007.
    [98] Legchenko, Anatoly; Valla, Pierre. Removal of power-line harmonics from proton magnetic resonance measurements[J].Journal of Applied Geophysics. vol.53, no.2-3:103-120, Aug 2003.
    [99] Yechieli, Y; Kafri, U; Goldman, M; Legchenko, A,Delineation of fresh and saline groundwater bodies along the Dead Sea shore using the TDEM and NMR methods[C].Annual Meeting - Israel Geological Society. vol.1999, 96.
    [100] J. F. Girard, M. Boucher, A. Legchenko, J.-M. Baltassat. 2D magnetic resonance tomography applied to karstic conduit imaging[J].Journal of Applied Geophysics, 2007, 63 : 103–116.
    [101] Schirov, M., Legchenko, A., Creer, G.. New direct non-invasive ground water detection technology for Australia[J].Exploration Geophysics. 1991, 22: 333–338.
    [102] Semenov, A.G., Schirov, M.D., Legchenko, A.V., Burshtein, A.I., Pusep, A.Ju.. Device for measuring parameters of an underground mineral deposit. 2198540 [P]. GB Patent 1989.
    [103] Hansruedi Maurer and David E. Boerner. Optimized and robust experimental design; a non-linear application to EM sounding[J].Geophysical Journal International (February 1998), 132(2) :458-468.
    [104]肖立志等著;孟繁莹译.核磁共振测井原理与应用[M].北京:石油工业出版社. 2007.
    [105] Varian, R.H., Ground liquid prospecting method and apparatus[P].3019383:US. 1962.
    [106]程德福,林君.智能仪器[M].北京:机械工业出版社. 2005.
    [107]张小华,林君,王应吉,孙锋.地面核磁共振(NMR)找水仪发射机的研制[J].仪器仪表学报. 2006, 27(7) :689-692.
    [108] Elena Cherkaeva and Alan C. Tripp. On optimal design of transient electromagnetic waveforms [C]. SEG Annual Meeting Expanded Technical Program Abstracts with Biographies (1997). 67 438-441.
    [109]汪金山.正弦激励下RLC串联二阶电路暂态过程研究[J].哈尔滨理工大学学报. Vol.4 No.1:93-96.
    [110]赵一丁,马淑华,舒冬梅.基于谐振的大功率正弦波信号发生器[J].仪器仪表学报. 2003, 24(4) :79-81.
    [111]王应吉,李伟,孙淑琴,姜艳秋.基于MSP430的质子旋进式磁力仪设计[J].吉林大学学报(信息科学版).2006,3:336-340.
    [112]荆三红.现代常用核磁共振测井仪器的性能比较[J].科技资讯. 2008,(01):66-67.
    [113]周凯波,李丹,汤天知,李梦春.核磁共振测井仪前置放大电路的低噪声分析[J].华中科技大学学报(自然科学版). 2008,(01):91-94.
    [114]李道本.信号的统计检测与估计理论[M].北京:科学出版社. 2004.
    [115] Emmanuel C. Ifeachor. Barrie W. Jervis著.数字信号处理实践方法(第二版)[M].北京:电子工业出版社.2004.
    [116]高东旭.核磁共振找水仪弱信号放大器设计[D].吉林:吉林大学.2008.
    [117]孙淑琴,林君,王应吉,中心频率可调节的滤波电路的设计与实现[J].电子测量与仪器学报. 2006,20(6) :59-63.
    [118] Bela Toth and Mihaly Megyery. Evaluation of pulse tests with noise suppressing [J].SPE Formation Evaluation (June 1997), 12(2) :132-136.
    [119] Huang Haoping. Evaluation of svd noise rejection by s/n analysis in frequency domain[J].Computing Techniques for Geophysical and Geochemical Exploration (1992), 14(2) :113-11.
    [120] J. A. Bland. Discussion on‘Least-squares fitting of the linear Mohr envelope’by R. J. Lisle & C. S. Strom[J].Quarterly Journal of Engineering Geology and Hydrogeology, Feb 1983; 16: 85.
    [121] R. J. Lisle and C. S. Strom. Least-squares fitting of the linear Mohr envelope[J].Quarterly Journal of Engineering Geology and Hydrogeology, Feb 1982; 15: 55 - 56.
    [122] Richard B. Tucker and Nicholas C. Crawford. Non-linear curve-fitting analysis as a tool for identifying and quantifying multiple fluorescence tracer dyes present samples analyzed with spectrofluorophotometer and collected as part of a dye tracer study of groundwater flow[C].Multidisciplinary Conference on Sinkholes and the Engineering andEnvironmental Impacts of Karst (1999), 7:307-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700