用户名: 密码: 验证码:
季冻区高性能路面水泥混凝土路用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥混凝土路面作为一种主要的路面结构类型在我国占有相当大的比例,从全国来看,目前水泥路面(等级公路)约占总里程的50%,吉林省约占60%。然而,在原材料、施工控制和环境等影响因素的共同作用下,水泥路面发生了多种病害,尤其在季冻区混凝土耐久性劣化现象十分突出,给后期维修养护带来极大的困难,为解决路面混凝土出现的问题,充分体现水泥路面强度高、抗车辙、使用年限长的优点,结合季冻区的特点,开展高性能路面水泥混凝土的研究具有十分重要的意义。
     本论文依托吉林省重点工程科研课题,首次系统性地提出了掺入矿质超细粉和高效引气减水剂实现路面混凝土高性能化系统的技术方法,对配制的高性能路面混凝土(简称HPPC)各项路用性能进行了全面地研究。
     论文首先分析了吉林省水泥混凝土路面病害机理特征,针对问题开展了本地区活性掺合料的物理化学性能试验,并通过5种超细粉的活性对比和超细粉与水泥品种和外加剂的配伍性试验研究,提出了适合季冻区HPPC的材料组成和技术指标要求。
     开展了基于耐久性的高性能路面混凝土配合比研究,采用“最大紧方密度试验方法”选择粗集料级配和最优砂率,通过正交设计试验优化了混凝土配合比,找出显著性影响因素,提出了以耐久性为主要考核目标(抗冻性、抗渗性和强度)、适合季冻区高性能路面混凝土的配合比设计方法。
     通过力学性能研究(抗压、抗折强度,弯拉弹性模量),比选确定了HPPC中矿质超细粉的最佳掺量、双掺的比例和胶凝材料的总量,并对各指标的影响因素进行分析研究。论文全面系统地对HPPC耐磨性、抗渗性、抗冻性、收缩性以及抗疲劳性等耐久性能进行了分析研究,针对季冻区气候特点,自行设计了盐冻耦合加速冻融破坏试验方法,试验表明HPPC抗盐冻能力、抗渗水性能大幅超过基准普通混凝土;同时也指出掺入沸石粉和粉煤灰要慎重,不合适的掺入量和配合比会降低混凝土的耐磨性和收缩性能。
     本研究还通过扫描电镜(SEM)、压汞测孔法和X-射线衍射(XRDA)、差热(DTA)分析试验,全面、深入地分析了HPPC的强度和耐久性形成的微观机理和结构特征。研究结果显示:HPPC中C-S-H的含量远高于基准混凝土,其孔隙率明显降低,孔结构、孔级配得到了很好地改善,混凝土中胶凝孔(<10nm)占总孔比例的70%以上,因此其抗冻、抗渗性能更好。
     本研究还修筑了HPPC的试验路,试验证明HPPC具有施工控制技术可行,工作性易于控制,路面平整度好、裂缝较少等优点,后期取芯试验表明HPPC的抗弯拉强度、抗氯离子渗透能力,内部气泡形态、数量等特性均优于对比路段。
     最后,通过对HPPC的综合性能及性价比的评价分析得出,HPPC在抗冻性、抗渗性、力学性能、疲劳寿命这四个主要指标上均较基准混凝土有明显的提高,其综合性能是基准混凝土的1.65倍,其性价比是基准混凝土的1.6倍,证明了HPPC不仅具有优良的路用性能,而且还具有较好的经济和社会效益。
     由此可见,本研究成果对提高季冻区水泥混凝土路面的建设质量,充分利用地产资源,改进本地区水泥路面混凝土的设计和施工技术,推动水泥路面在季冻区的发展具有积极的意义!
As a main type of pavement structure, cement concrete pavement accounts for a considerable proportion in our country. Up to now cement concrete pavement accounts for about 50% of the total mileage all over the whole country, and 60% in Jilin province. However, under the cooperative effect of raw material, construction control, environment etc., various diseases occurred in the cement pavement. Especially the degradation of concrete durability was extremely serious, and it brought great difficulties to the later maintenance. In order to solve these problems, and show the virtues of cement pavement such as high performance, anti-rutting and long working life etc., it is tremendously significant to carry out the study on high performance pavement concrete combining with the characteristic of seasonal frozen region.
     This paper was supported by the key project scientific research of Jilin province. It put forward the technical method for the first time by adding mineral ultra-fine powder and superplasticizer of air entraining agent to realize the high performance pavement concrete system, and made a comprehensive study on various road performances of high performance pavement concrete(HPPC). The paper firstly analyzed the disease mechanism character of cement concrete pavement in Jilin province, and processed physico-chemical properties experiment of bioactive admixture in this region. By making a bioactive comparison towards 5 ultra-fine powders and testing research to the ultra-fine powder, cement and admixture, the material components and technical index suitable for HPPC in the seasonal frozen region was presented.
     The match ratio research of high performance pavement concrete based on durability was put forward. The coarse aggregate gradation and optimal sand ratio was selected by“maximum density test method”. The study optimized the concrete match ratio through orthogonal design test and found out the prominent influencing factors. Bring forward durability as a main target (frost resistance, resistance to hydraulic pressure and strength), the match ratio design method that suitable for HPPC in the seasonal frozen region was presented.
     The optimal admixture amount of mineral ultra-fine powder in the HPPC, proportion and total amount of binder material were confirmed by mechanical properties research (compressive strength, rupture strength, elastic modulus), and took a analysis on the influencing factors of each index.
     This paper made a comprehensively and systematically study on wear resistance, resistance to hydraulic pressure, frost resistance, shrinkage performance and anti-fatigue character and so on. In accordance with the climate character of seasonal frozen region, accelerating freezing and thawing damage test by coupling with frost and salt was designed. It shows that frost and salt resistance, resistance to hydraulic pressure of HPPC overrun the common cement by a large margin. In addition, the proportion to mixture of powdered zeolite powder and fly ash must be appropriate, or else it will reduce the wear resistance and shrinkage property of concrete.
     The study also comprehensively and thoroughly analyzed the micro-mechanism and structure feature of strength and durability forming of HPPC by SEM, mercury-infection, XRDA and DTA test. The results indicated that the content of C-S-H in HPPC was far higher than base concrete. Its porosity reduced significantly, and void structure and void gradation were improved greatly. Cementitious pore accounted for 70% of total pores in concrete. Therefore it had a better frost resistance and anti-permeability.
     The study constructed the test road of HPPC. The test proved that HPPC had a virtue of feasible construction control technology, easy control to work, good pavement smoothness, and few cracks and so on. Later bore specimen test indicateed that the flexural strength, anti-chloride ion penetration performance, shape and quantity of inner air void was superior to contrast road.
     At last by analyzing the comprehensive performance and the cost performance of HPPC, four indexes frost resistance, resistance to hydraulic pressure, mechanical property, and fatigue life were prominently higher than base concrete. Its comprehensive performance was 1.65 times of base concrete, and its cost performance was 1.5 times of base concrete. HPPC not only has a perfect road performance but also has a better economic and social effect.
     Thus it can be seen, the study production play a positive role on improving construction quality of cement concrete pavement in the seasonal frozen region, making a better utilization of local resources, improving design and construction technology of cement concrete pavement and promoting the development of cement pavement in this region.
引文
[1]中国工程院土木水利与建筑学部工程结构安全性与耐久性研究咨询项目组.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社,2004
    [2]中华人民共和国交通部.2007年公路水路交通行业发展统计公报.(http://www.moc.gov.cn/07zhuzhan/tongjixinxi/tongjigongbao/20080418480524.html)
    [3]傅智,李红.《公路水泥混凝土路面施工技术规范(JTG F30-2003)》实施与应用指南[M].北京:人民交通出版社,2003
    [4]吴中伟,廉惠珍著.高性能水泥混凝土[M].北京:中国铁道出版社,1999
    [5]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2004
    [6]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007
    [7]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004
    [8]姚祖康.水泥混凝土路面研究[M].北京:人民交通出版社,1995
    [9]黄立葵.美国路面结构与性能[J].中南公路工程,2005,30(3):157-161
    [10] JTG D40-2002,公路水泥混凝土路面设计规范[S].北京:人民交通出版社,2002
    [11] JTG F30-2003,公路水泥混凝土路面施工技术规范[S].北京:人民交通出版社,2003
    [12] High-Performance Concrete Pavements Come of Age, FHWA-supported new research, field applications, and tech transfer blaze way for durable PCC pavement mixes[J].Road Science,2004
    [13]姚令侃.水泥混凝土路面开裂机理及破坏过程研究[D].成都:西南交通大学,2003
    [14]邓敏,唐明述.混凝土的耐久性与建筑业的可持续发展[J].混凝土,1999,(2):8-12
    [15]曾玉珍.国际高性能混凝土技术发展水平展望[J].国外公路,1999,(1):47-51
    [16]冯乃谦.日本混凝土耐久性问题的历史发展及其对策[J].混凝土,2003,(7):14-18
    [17] Chiara F. Ferraris, Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report [J].Journal of Research of the National Institute of Standards and Technology,1999,104(5)
    [18] F.H.Wittmann. High-performance of Cement-Based Materials [J], AEDIFICATIO VERLAG. IRB VERLAG, 1997
    [19]杨竹娟,段晓农.高性能混凝土的工作性及在我国的研究应用状况[J].海南大学学报自然科学版,2000,2(18):19-22
    [20]孙道胜,黄小明,邓敏等.高性能路面水泥混凝土研究[J].混凝土与水泥制品,2004,(2):20-22
    [21]朱蓓蓉等. SJ-2新型引气剂及其引气混凝土性能[J].混凝土,2001,(4):29-31
    [22]王彦莹.ML型引气剂在滑模摊铺混凝土路面中的应用[J].公路交通科技,1997,(1):16-22
    [23]高英力,周士琼,尹健.超细粉煤灰在高性能化道路混凝土冬期施工中的应用[J].建筑技术,2005,36(1):47-49
    [24]陈建奎,王栋民.高性能混凝土配合比设计新法-全计算法[J].硅酸盐学报,2000,(2):22-24
    [25]王德怀,陈肇元.高性能混凝土的配合比设计[J].混凝土,1996, (3):4-10
    [26]张继先.路面混凝土优化设计方法[J].混凝土,1996,(2):15-18
    [27]李容湘,李岳军.路面混凝土配合比多目标优化实时控制[J].水利学报,1996,(4):23-26
    [28]欧阳伟,高宏新,胡伟.水泥混凝土路面的抗盐冻性能分析[J].青岛理工大学学报,2006,27(4):30-33
    [29]巴恒静,张武满,邓宏卫.评价高性能混凝土耐久性综合指标——抗氯离子渗透性及其研究现状.混凝土,2005,(9):18-20
    [30]陈瑜,周士琼.道路粉煤灰高性能混凝土耐磨性试验研究[J].混凝土,2001,(2):7-9
    [31]盖永丰,戴民,张敬会.矿渣粉在高性能混凝土中的试验研究[J].混凝土,2005,(7):67-70
    [32]余红发,刘俊龙,张云升,孙伟,李美丹.高性能混凝土微观结构及其高耐久性形成机理[J].南京航空航天大学学报,2007,39(2):240-243
    [33]蒲心诚.超高强高性能混凝土[M].重庆:重庆大学出版社,2004
    [34] P.梅泰著.混凝士的结构、性能与材料[M].祝永年等译.上海:同济大学出版杜,1990
    [35] C.Shi and J.Qian (2001). Activated Blended Cement Containing High Volume Coal Fly Ash [J]. Advances in Cement Research,2001,13(4):157-164
    [36] A.M. Neville. Properties of Concrete[M].马国泮等译.北京:中国建筑工业出版社,1990
    [37] H. Uchilkwa, T. Okamura. binary and ternary components blended cements [J]. Mineral admixtures in cement and concrete, 1993
    [38]钱觉时著.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002
    [39]迟培云,粱永峰,于素健.提高混凝土耐久性的技术途径[J].混凝土,2001,(8):12-15
    [40]熊国宣,邓敏,宋碧涛,唐明述.纳米材料在混凝土中应用的思考[J].2002,(5):18-21
    [41] TJG E30—2005,公路工程水泥及水泥混凝土试验规程[S].北京:人民交通出版社,2005
    [42]樊粤明等.用复合添加剂配制高抗渗抗蚀混凝土[J].华南理工大学学报,1999,(7):61-67
    [43]冯乃谦,邢峰著.高性能混凝土技术[M].北京:原子能出版社,2000
    [44]王栋民,金欣,何丹.混凝土化学外加剂的最新发展与动态[J].建筑技术开发,2001,28(4):2-4
    [45]熊大玉,王小虹.混凝土外加剂[M].北京:化学工业出版社,2002
    [46]董健苗,龙世宗,严彩霞.水泥与高效减水剂相容性问题研究[J].广西工学院学报,2001,12(4):43-45
    [47]马保国,谭洪波,许永和等.不同减水剂对水泥水化的作用机理研究[J].混凝土与水泥制品,2007,(5):6-3
    [48]冯乃谦,邢锋,陆酉教.氨基磺酸等高效减水剂的试验与应用[J].混凝土,2002,(9)
    [49]林江,唐华,丁晓春等.C80高性能混凝土配制技术及工程应用[J].建筑材料学报,2000, (3):27-31
    [50]蒋家奋.矿渣微粉在水泥混凝土中应用的概述[J].混凝土与水泥制品,2002,(6):3-6
    [51]于漧 ,包亚芳.硅藻土作高性能混凝土掺合料的改性效果[J].建筑石膏与胶凝材料,2003,(12):11-12
    [52] Ahmad Ardani,Shamshad Hussain, Robert LaForce. Evaluation of Premature PCC Pavement Longitudinal Cracking in Colorado [J], Proceedings of the 2003 Mid-Continent Transportation Research Symposium,2003
    [53] GB/T18736-2002,高强高性能混凝土矿物外加剂[S] .北京:中国标准出版社,2002
    [54]徐浩.沸石粉混凝土技术[J].混凝土,1993,(3):30-38
    [55]唐运交,冯乃谦.沸石岩作混凝土高强剂的活性评价与实验研究[J].辽宁建筑,1993,(3)
    [56]赵河.高性能路面水泥混凝土配合比的试验研究[J].河北工业大学学报,2007,36(5):112-114
    [57]何世钦,王海超.高性能混凝土配合比设计的正交试验研究[J].工业建筑,2003,33(8):8-10
    [58]张明征.高性能混凝土的配制与应用[M].北京:中国计划出版社,1999
    [59]姜福田.混凝土力学性能与测定[M].北京:中国铁道出版社,1989
    [60]孙伟,严捍东.复合胶凝材料组合与混凝土抗压强度定量关系研究[J].东南大学学报(自然科学版),2003,33(4):450-453
    [61]蔡四维.短纤维复合材料理论与应用[M].北京:人民交通出版社,1994
    [62]陈拴发,胡长顺.公路结构物水泥混凝土耐久性研究动态[J].公路,2003,(5):122-127
    [63]资建民,单大力.寒冷地区水泥混凝土路面耐久性退化原因及防治[J].公路,2002,(6):60-62
    [64] Gebler, S.H. and Klieger, P. Effect of fly ash on the durability of air-entrained concrete[J]. ACI,SP-91,1986
    [65]李田,刘西拉.混凝土结构耐久性分析与设计[M].北京:科学出版社,1999
    [66] H.索默.高性能混凝土的耐久性[M].冯乃谦,丁建彤等译.北京:科学出版社,1998
    [67]冯乃谦.高性能混凝土的耐久性与超高耐久性混凝土的开发[J].混凝土,1998,(2)
    [68]张云莲.粉煤灰与混凝土结构的耐久性[J].腐蚀与防护,2002,23(7):305-308
    [69]徐峰,王琳,储健.提高混凝土耐久性的原理与实践[J].混凝土,2001,(9):21-24
    [70]袁春毅,申爱琴,韩继国等.磨细矿渣高性能路面混凝土的耐久性[J].中国公路学报,2007,20(5):24-29
    [71]蔡昊.混凝土抗冻耐久性预测模型[D].北京:清华大学,1998
    [72]牛荻涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2002
    [73]高建明,王边,朱亚菲,周典生,须熙元.掺矿渣微粉混凝土的抗冻性能试验研究[J].混凝土与水泥制品,2002,(5):3-5
    [74] Bruce J.Christensen,Frank S.Ong.自密实混凝土的抗冻融性能研究[J].混凝土,2005,(9):20-24
    [75]李中华,巴恒静,邓宏卫.混凝土抗冻性试验方法及评价参数的研究评述[J].混凝土,2006,(6):9-11
    [76]李一兵,王玲,黄志远.水泥混凝土路面受除冰盐破坏的研究[J].西部探矿工程,2002,(5):160-162
    [77]肖佳,周士琼.粉煤灰对水泥胶砂性能影响的试验研究[J].粉煤灰,2005,(6):22-25
    [78]杨全兵,吴学礼,黄士元.去冰盐对混凝土剥蚀的物理机理[J].上海建材学院学报,1991,4(4):341-346
    [79]朱蓓蓉,杨全兵.除冰盐对混凝土化学侵蚀机理研究[J].低温建筑技术,2000,1:3-6
    [80]杨全兵,吴学礼,黄士元.掺和料对混凝土抗盐冻剥蚀性的影响[J].上海建材学院学报,1993,6(2):99-104
    [81] Sellevold, E.J. and Farstad, T. Frost/salt testing of concrete: Effect of test parameters and concrete moisture history[J]. Nordic Concrete Research, 1991,10:121-138
    [82] HYOMIN LEE,ROBERT D. CODY,ANITA M. CODY,AND PAUL G.SPRY,Effects of Various Deicing Chemicals on Pavement Concrete Deterioration [J] , MID-CONTINENT TRANSPORTATION SYMPOSIUM PROCEEDINGS,2000
    [83] Dunn, S.A., and R.U. Schenk, Alternatives to Sodium Chloride for Highway Deicing, In Transportation Research Record 776, TRB, National Research Council, Washington, D.C., 1980,: 12-15
    [84]樊粤明,文梓芸,李智诚,钟景裕.用复合添加剂配制高抗渗抗蚀混凝土[J].华南理工大学学报(自然科学版),1999,27(7):61-67
    [85]杨钱荣,朱蓓蓉.掺粉煤灰和引气剂混凝土氯离子渗透性能研究[J].低温建筑技术,2005,(5):1-4
    [86]李翠玲.混凝土中氯离子扩散系数快速测定方法研究[M].北京:清华大学,1998
    [87]王律,陆文雄,张月星,乔燕.绿色复合矿物掺合料改善混凝土氯离子渗透性的研究[J].粉煤灰综合利用,200,(4):11-13
    [88]冯乃谦,牛全林,封孝信.矿物质粉体对砂浆及混凝土Cl-渗透性影响[J].中国工程科学,2002,4(2)
    [89]赵铁军.高性能混凝土的渗透性研究[M].北京:清华大学,1997
    [90]吴中伟.高性能混凝土及其矿物细掺料[J].建筑科技,1999
    [91]杨帆,刘宝举,杨元霞.影响道路水泥干缩率的几个因素[J].混凝土与水泥制品,2007,(3):4-3
    [92]朱金铨,覃维祖.高性能混凝土的收缩问题[J].建筑材料学报,2001,(4):30-33
    [93]祝昌暾,陈敏,杨杨等.高强混凝土的收缩和早期徐变特性[J].混凝土与水泥制品,2005,(2):1-4
    [94]安明喆.高性能混凝土自收缩的研究[D].北京:清华大学,1999
    [95]马冬花,尚建丽.高性能混凝土的收缩[J].西安建筑科技大学学报,2003,35(1):82-84
    [96]肖瑞敏,张雄,乐嘉麟.胶凝材料对混凝土干缩影响的研究[J].混凝土与水泥制品,2002, (5):11-13
    [97] Zhengwu Jiang, Zhenping Sun, Peiming Wang.Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes [J].Cement and Concrete Research, 2005,35(8):1539-1545
    [98]陈迅捷,张燕驰,欧阳幼玲.活性掺合料对混凝土抗碳化耐久性的影响[J].混凝土与水泥制品,2002,(3):7-9
    [99]王军强.受氯离子侵蚀高性能混凝土结构耐久性模拟实验[J].建筑结构,2005,(4):25-27
    [100]原通鹏,邓德华,曾志等.矿物掺合料抗氯离子扩散性能的试验研究[J].混凝土,2005,(11):62-70
    [101]施惠,王琼.混凝土中氯离子迁移的影响因素研究[J].建筑材料学报,2004,(7):286-290
    [102]冯乃谦主编.新实用混凝土大全[M].北京:科学出版社:2001
    [103]谢祥明,莫海鸿.大掺量矿渣微粉提高混凝土抗氯离子渗透性的研究[J].水力学报,2005,36:737-740
    [104] Faguang Leng, Naiqian Feng, Xinying Lu. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blaséfurnace slag concrete[J]. Cement and Concrete Research. 2000,(30):989-992
    [105]谢友均,刘宝举,刘伟.矿物掺合料对高性能混凝土抗氯离子渗透能力的影响[J].铁道科学与工程学报,2004,1(2):47-53
    [106]施惠生,施韬,陈宝春.掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J].同济大学学报,2006,34(1):93-96
    [107]王军强,刘文军,陈年和.在混凝土中氯离子迁移和湿度迁移的耦合效应试验研究[J].混凝土与水泥制品,2007,(3):12-3
    [108] SHANNAG M.J., SHAIA Hussein A, Sulfate resistance of high-performance concrete[J], Cement & concrete composites,2003,25(3):363-369
    [109] Criaud A., Cadoret G.,“HPCs and Alkali Silica Reactions. The double role of pozzolanic materials”in High Performance Concrete: from Materials to Structure [J].Y.Malier cd.,1992
    [110]唐明述,邓敏.碱集料反应研究的新进展[J].建筑材料学报,2003,6(1):7
    [111] J.E.Gillott. Review of expansive alkali-aggregate reaction in concrete[J]. Journal of Material in Civil Engineering,1995,7(4):278-281
    [112]郝挺宇.天然沸石抑制碱—集料反应及其机理的研究[D].北京:清华大学土木水利学院,2000
    [113]王增忠.混凝土碱集料反应及耐久性研究[J].混凝土,2001,(8):18-21
    [114]高英力,周士琼,尹健.复合超细粉煤灰高性能道路混凝土的试验研究[J].公路交通科技,2005,22(8):15-19
    [115]刘斯凤,孙伟,林玮,赖建中.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报,2003,31(11):1080-1085
    [116]杨斌,陈拴发,胡长顺.重载及脱空耦合状态下混凝土路面疲劳寿命分析[J].中南公路工程,2005,30(3):175-177
    [117]陈拴发.聚丙烯纤维混凝土弯曲疲劳性能[J].西安公路交通大学学报,2001,21(2):15-17
    [118]王虎,徐勤武.混凝土桥水泥混凝土铺装荷载应力[J].长安大学学报(自然科学版),2005,25(3):11-15
    [119]姚祖康.水泥混凝土路面设计参数研究[M].北京:人民交通出版社,1992
    [120]郑木莲.多孔隙混凝土疲劳性能的研究[J].中国公路学报,2004,17(1):7-11
    [121]俞然刚,陈金平.掺预水化粉煤灰和磨细矿粉的混凝土性能研究[J].混凝土与水泥制品,2007,(1):7-4
    [122]姚祖康.公路设计手册·路基[M].北京:人民交通出版社,2006
    [123] [苏]IO.C.契尔金斯基著.聚合物混凝土[M].张留城,夏巨敏译.北京:中国建筑工业出版社,1987
    [124]巴恒静,杨英姿,赵霄龙.掺合料复合化对高强混凝土强度及显微结构的影响[J].混凝土,2000,(9):7-10
    [125]张雄,吴科如,韩继红.高性能混凝土矿渣复合掺合料特性与作用机理[J].混凝土与水泥制品,1997,(3):15-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700