用户名: 密码: 验证码:
新型结构异质结太阳能电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们利用溶胶-凝胶法,通过烧结制备了纳米晶二氧化钛薄膜。使用聚3己基噻吩(P3HT)和水溶性聚噻吩(PEDOT)作为电子给体,二氧化钛(TiO2)作为电子受体,制作了异质结薄膜太阳能电池器件。我们探讨了激子形成机制,电子-空穴分离过程,电极收集电荷机理,材料的能级匹配。并对光电性能进行了比较,优化了器件厚度。
     为了提高器件的性能,使用二甲苯,氯仿,氯苯三种不同的溶剂溶解P3HT。我们使用AFM对P3HT的表面形貌进行了表征,发现二甲苯和氯仿溶解的P3HT的表面粗糙度很大,没有形成平整的薄膜。我们使用了聚乙二醇(PEG)掺杂TiO2溶胶,烧结后利用扫面电镜(SEM)和原子力显微镜(AFM)观察形貌,发现薄膜表面形成了很多纳米孔。这样大大提高了与导电聚合物的接触面积,有更多的激子产生在界面出分离,提高了器件的短路电流密度和能量转换效率。
     为了提高器件的性能,我们制作了三明治结构的器件,具体为ITO/TiO2/CuPc/P3HT/Au。酞菁铜(CuPc)是一种小分子P型有机材料。在400-500nm及600-700nm波段有两个吸收峰,而P3HT在500-600nm有一个强吸收峰。这样,整个器件的吸收谱拓展到整个可见光范围,大大提高了对光的利用率。CuPc的能级与TiO2和P3HT匹配,既是光敏化层又充当电子给体。当CuPc的厚度为20nm时,器件的性能达到最佳。在AM1.5G标准太阳光照下,开路电压Voc=0.6V,短路电流Isc=2.22mA/cm2,填充因子FF=0.45,能量转化效率PCE=0.66%。
     为了提高器件的性能,我们利用TiO2作为电子传输层,使用C60的衍生物PCBM与P3HT共混形成体异质结,选用CuPc作为空穴传输层,制作了反型的体异质结太阳能电池。光照下有源层产生电子-空穴对在界面处分离,作为N型半导体的纳米TiO2薄膜传导分离的电子至阴极,作为P型半导体的CuPc传导分离的空穴至阳极,减少了激子复合。CuPc作为一种小分子材料,迁移率高,提高光生电流;作为一种金属络合物,可以平整有源层表面的粗糙度,改善有源层与金属电极的接触,减小电池的串联电阻。当CuPc的厚度为10nm时,器件的性能达到最佳。开路电压Voc=0.54V,短路电流Isc=5.86mA/cm2,填充因子FF=0.53,能量转化效率PCE=1.65%。
Our society is based on coal,oil and natural gas,but these fossil fuels will be depleted someday in the future because they are limited.Carbon dioxide is produced in the combusition has affected the consequence of climate,resulting in the global warming effect.Under these circumstances,interest in photovoltaic solar cells is increasing rapidly as an alternative and clean energy source.Photovoltaic solar cells provide clean electrical energy because the solar energy is directly converted into electrical energy without emitting carbon dioxide.The solar energy is not limited,free of charge and distributed uniformly to all human beings. Up to now, the photovoltaic cells based on inorganic materials (mainly silicon) have been proved to convert sunlight to electricity efficiently. But the high cost for manufacture limits them to be widely used. Organic and polymer solar cells, based on organic and polymer materials as active layer, possess the advantage of light weight, plenty of choices for active layer, flexibility, low cost and easily being large-scale etc., which attracts great attention in recent years.
     Under illumination, light is converted to electricity by polymer heterojunction solar cells through five processes sequentially, (i) photons are absorbed by the active layer and exitons form; (ii) excitons diffuse in the active layer; (iii) charge transfer when excitons reach donor/acceptor interface and electron-hole (e-h) geminate pair forms; (iv) e-h geminate pairs dissociate with field assisted and free charge carriers are produced; (v) finally, the free carriers are transported through their respective phases to the electrodes in order to be extracted. The photovoltaic performance of devices is strongly dependent on the light harvesting, energy levels of materials, the morphology of thin films, buffers near electrodes, and so on.
     This thesis is mainly discussing how the above factors such as device structure, morphology of thin films photovoltaic performance of organic/inorganic thin films heterojunction solar cells and inverted bulk-heterojunction solar cells. We used different polymer materials and organic small molecular CuPc materials, and investigated the relation between absorption spectrum of materials and device performance; We doped polyethylene glycol(PEG) of different concentration in TiO2 sol and investigated the relation between morphology of thin films and device performance. We evaporated CuPc as a buffer near gold electrode, and investigated the relation between the thickness of CuPc and device performance. More details are now listed below,
     1. For organic/inorganic thin film heterojunction solar cells, we used sol-gel method to fabricate nano crystalline TiO2 thin films by sintering as electron acceptor and used P3HT, water soluble PEDOT as electron donor. We make a research on exciton creating mechanism, electron-hole dissociation, charge collection, energy level matching of materials and so on. We compared the photovoltaic performance of different materials, and optimized the thin film thickness.We used different solvent ,including to Chlorobenzene, CHCl3, Xylence, to dissolve P3HT, and fabricated the solar cells. It is found that the performance of the device with P3HT dissolved with Chlorobenzene is better than that of two. AFM is used to compare the surface morphology, and the film of P3HT dissolved with Chlorobenzene is smoother than that of two.
     2. We doped polyethylene glycol(PEG) of different concentration in TiO2 sol, after sintering, SEM and AFM are used to observe the surface morphology. The thin film is porous.The contact area between TiO2 thin film and P3HT is bigger than that of without PEG, so there are more exciton can be generated and separated in the interface. The photocurrent and power conversion efficiency was improved .
     3. We fabricated the photovoltaic device of sandwich structure. CuPc is a kind of P type small material, which is applied widely in organic light emitting diodes. a new type of hybrid nanocrystalline solar cells was fabricated. The device structure is indium tin oxide (ITO)/ titanium oxide (TiO2)/ copper phthalocyanine (CuPc) / poly (3-hexylthiophene) (P3HT) /Au. In this architecture, TiO2 was designed to act as the electron acceptor, and P3HT was the electron donor. CuPc was used as a sensitizer to enhance the photon absorption. The results showed that by inserting CuPc layer between P3HT and TiO2 layers, the light absorption, excitons separation and photocurrent under white light were dramatically enhanced. The device has a short current density(JSC) of 1.15 mA/cm2 and power conversion efficiency(PCE) of 0.28% without CuPc layer. However, JSC and PCE turn to be 2.22mA/cm2 and 0.66% respectively with a 20nm thickness CuPc layer under white light illumination with an intensity of 100 mW/cm2.The performance improvement can be attributed to the higher carrier mobility and the stronger photon absorption using CuPc layer.
     4. A new type of inverted polymer solar cells was fabricated. The device structure was indium tin oxide(ITO)/ titanium dioxide (TiO2)/ regioregular poly-(3-hexylthiophene)(RR-P3HT): [6,6]-phenyl C60 butyric acid methyl ester (PCBM)/ copper phthalocyanine (CuPc)/Au. In this architecture, TiO2 was designed as an electron selective layer. CuPc, known as a sort of P type semiconductor material, was inserted between the active layer and top electrode to improve hole collection and transport. Without CuPc,short-circuit current of 4.22 mA/cm2, open-circuit voltage of 0.48V, filling factor is 0.48 and power conversion efficiency of 0.97% were obtained. Using an optimized CuPc layer of 10nm thickness, short-circuit current of 5.86 mA/cm2, open-circuit voltage of 0.54 V, filling factor is 0.53 and power conversion efficiency of 1.65% were obtained.
引文
[1] Source Richard Smalley Energy and Nanotechnology Conference,Rice University, Houston May3,2003.
    [2]罗运俊,何梓年,王长贵编著.太阳能利用技术.北京:化学工业出版社,2005
    [3]王君一,徐任学等编著。农村太阳能实用技术。北京:金盾出版社,1993.
    [4]李申生编.太阳能.北京:人民教育出版社,1988.
    [5] http://baike.baidu.com/view/66258.htm
    [6] http://baike.baidu.com/view/22222.html
    [7]滨川圭弘西野种夫编.光电子学.北京:科学出版社,2002.
    [8] American Society for Testing and Materials (ASTM) Standard G159, West Conshoken, PA, USA. Source: http://rredc.nrel.gov/solar/spectra/am1.5/.
    [9]张正华,李陵岚,叶楚平,杨平华编著,有机太阳电池与塑料太阳电池.北京:化学工业出版社,2006.
    [10]沈辉,曾祖勤。太阳能光伏发电技术.北京:化学工业出版社,2004.
    [11]喜文华.太阳能实用工程技术.兰州:兰州大学出版社,2001.
    [12]孟庆巨,刘海波,孟庆辉.半导体器件物理.北京:科学出版社,2005.
    [13]梁宗存,沈辉,李戬洪.太阳能电池及材料研究.材料导报. 2000,14(8):38~40
    [14] W. Shockley and H. J. Queisser. Detaied balance limit of efficiency of PN junction solar cells. Journal of Applied Physics. 1961, 32:510.
    [15]刘科恩等.光电池及其应用.北京:科学出版社,1991
    [16]薛玉芝,张力,林纪宁.太阳能技术的研究与发展.大连铁道学院,2003,24(4):71~74
    [17]郝春云,杨明辉,杨海涛,高玲.叠层太阳能电池的研究与发展。化工新型材料,2004,32(12):19~22
    [18]剑鸣.玻璃窗式太阳能电池.水利水电快报,2004,2(14):27
    [19] Gregg B A, Excitonic Solar Cells. J. Phys. Chem. B, 2003, 107(20):4688
    [20] L. Zeng, Y. Yi, C. Hong,et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector, Applied Physics Letters 89, 111111(2006).
    [21] X. Wu, J. Zhou, A. Duda,et al. Phase control of CuxTe film and its effects on CdS/CdTe solar cell. Thin Solid Films 515 (2007) 5798–5803.
    [22] Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high-performance dye-sensitized solar cells, J. Am. Chem. Soc., 2008, 130, 10720.
    [23] High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts, Nature Mater., 2008, 8, 597.
    [24] Tetrahydrothiophenium based ionic liquids for high efficiency dye-sensitized solar cells, J. Phys. Chem. C., 2008, 112, 11063.
    [25] An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells, J. Am. Chem. Soc., 2008, 130, 9202.
    [26] Andre′Moliton and Jean-Michel Nunzi. How to model the behaviour of organic photovoltaic cells. Polymer International, 55:583–600 (2006)
    [27] Travis L. Benanti,D. Venkataraman. Organic solar cells: An overview focusing on active layer morphology. Photosynthesis Research (2006) 87: 73–81
    [28] Christoph J. Brabec, N. Serdar Sariciftci, and Jan C. Hummelen.“Plastic Solar Cells.”Adv. Funct. Mater. 2001, 11, No. 1, February.
    [29] Ning Li, Brian E. Lassiter, Richard R. Lunt,et al. Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells. Applied Physics Letters 94, 023307 (2009)
    [30] Youngkyoo Kim, Amy M. Ballantyne, Jenny Nelson.et al. Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells. Organic Electronics 10 (2009) 205–209
    [31]赵争鸣,刘建政.太阳能光伏发电及其应用.北京:科学出版社. 2005.
    [32] An Introduction to Semiconductor Devices(/美)尼曼(Neamen, D. A.)著.影印本.清华大学出版社,2006.3
    [33]刘恩科,朱秉生,罗晋生等.半导体物理学,国防工业出版社,1994
    [34] C. Brabec, V. Dyakonov, J. Parisi, N.S.Sariciftci. Organic Photovoltaics Concepts and Realization. Spring present. 2003
    [35] Jean-Michel Nunzi, Organic photovoltaic materials and devices. C. R. Physique 3 (2002) 523–542.
    [36] Jiangeng Xue, Soichi Uchida, Barry P. Rand, and Stephen R. Forrest Applied.Physics. Letter. 2004, 84(16)3013~3015
    [37] Kudo K, Moriizumi T. Photoelectric p-n junction cells using organic dyes. Japanese Journal of Applied Physics. 1981, 20(7):553
    [38] D. Pysch, A. Mette, S.W. Glunz. A review and comparison of different methods to determine the series resistance of solar cells. Solar Energy Materials & Solar Cells 91 (2007) 1698–1706
    [39] K. Bouzidi, M. Chegaar, A. Bouhemadou. Solar cells parameters evaluation considering the series and shunt resistance. Solar Energy Materials & Solar Cells 91 (2007) 1647–1651
    [40]张正华,李陵岚,叶楚平,杨平华编著,有机太阳电池与塑料太阳电池.北京:化学工业出版社,2006.
    [41]代丽君,张玉军,姜华珺主编。高分子概论.北京:化学工业出版社,2005.
    [42]朱道本,王佛松.有机固体.上海:上海科学技术出版社, 1999
    [43] N. Camaioni, G. Casalbore-Miceli et al. Synthetic Metals. 1997, 90(1): 31-36
    [44] Toshimitsu Tsuzuki, Yasuhiko Shirota, et al. Solar Energy Meterials and Solar Cells. 2000, 61(1): 1-8
    [45] C. M. Martin, V. M. Burlakov, H. E. Assender,et al. A numerical model for explaining the role of the interface morphology in composite solar cells. Journal of Applied Physics 102, 104506 (2007)
    [46] A. Yakimov and S. R. Forrest. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Applied Physics Letters, 2002,80.1667-1669
    [47] Hei Ling Wong, Chris S. K. Mak, and Wai Kin Chan.et al. Efficient photovoltaic cells with wide photosensitization range fabricated from rhenium benzathiazole complexes. Applied Physics Letters 90, 081107 (2007)
    [48] A. Mozer, G. Dennler, N.S. Sariciftci,et al. 11. Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells. Physical Review B 72 (2005), 035217-1.
    [49] U. Zhokhavets, T. Erb, H. Hoppe, G. Gobsch,et al. Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties.
    [50] G. Sliauzys, G. Juska, K. Arlauskas,et al. Recombination of photogenerated and injected charge carriers inπ-conjugated polymer/fullerene blends . Thin Solid Films 511-512 (2006), 224-227, Proceedings of EMRS 2005.
    [51] Chunfu Zhang, S. W. Tong, Changyun Jiang,et al. Efficient multilayer organic solar cells using the optical interference peak. Applied Physics Letters 93, 043307 (2008)
    [52] Tang, C. W., Two-Layer Organic Photovoltaic Cell. Applied Physics Letters 1986, 48, (2), 183-185.
    [53] A. J. Breeze, Z. Schlesinger, and S. A. Carter,et al. Charge transport in TiO2 ?MEH-PPV polymer photovoltaics. Physicsal Review B, 64, 125205.
    [54] Fan Yang, Richard R. Lunt, and Stephen R. Forrest. Simultaneous heterojunction organic solar cells with broad spectral Sensitivity. Applied Physics Letters 92, 053310 (2008)
    [55] Jiguang Dai, Xiaoxia Jiang, Haibo Wang,et al. Organic photovoltaic cells with near infrared absorption spectrum. Applied Physics Letters 91, 253503 (2007)
    [56] Michael D. Irwin, D. Bruce Buchholz, Alexander W. Hains,et al. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS, 2008 vol. 105 ,2783–2787
    [57] Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J.,Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317,(5835), 222-225.
    [58] Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials 2005, 15, (10), 1617-1622.
    [59] Zhan’ao Tan, Chunhe Yang, Erjun Zhou,et al. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer. Applied Physics Letters 91, 023509 (2007)
    [60] Yu Huang-Zhong and Peng Jun-Biao , Self-organization effect in poly(3-hexylthiophene):methanofullerenes solar cells Chinese Physics B, 2008,17.
    [1]代丽君,张玉军,姜华珺主编.高分子概论.北京:化学工业出版社, 2005
    [2]王章忠主编.材料科学基础,北京:机械工业出版社,2004.
    [3]李奇,陈光巨.材料化学.北京,高等教育出版社,2004.
    [4]李言荣,恽正中.材料物理学导论.北京:清华大学出版社,2001
    [5]谢文法.新结构白光有机电致发光器件.长春:吉林大学电子学院,2004
    [6] A. M. Ramos, M. T. Rispens, J. K. J. van Duren, et al., Photoinduced electron transfer and photovoltaic devices of a conjugated polymer with pendent fullerenes, J. Am. Chem. Soc., (2001) 123, 6714
    [7]李善君,纪才圭,高分子光化学原理及应用,复旦大学出版社,1993年1月第1版
    [8] D.O.科恩,R.L.德里斯科著,丁树明,史永基译,有机光化学原理,科学出版社,1989年7月第1版
    [9]张正华,李陵岚,等编著有机太阳能电池与塑料太阳能电池化学工业出版社2006年3月179~180
    [10]李春燕等TiO2的溶胶凝胶过程研究.硅酸盐学报, 1996, 24(3):338~341
    [11]窦雁巍,徐明霞,徐廷献硅酸盐学报2002 Vol. 30 87~89
    [12]朱国辉P3HT-TiO2异质结太阳能电池材料及器件的研究.长春,吉林大学电子学院,2008.
    [13]张源涛ZnO薄膜和MgZnO合金薄膜的生长及其特性研究.长春,吉林大学电子学院,2005.
    [14]臧会东基于TiO2和导电态聚苯胺的有机薄膜太阳能电池的初步研究.长春,吉林大学电子学院,2005.
    [15]尚静纳米氧化物粒子的光催化性质研究.长春,吉林大学环境科学学院,2001.
    [16]钱新明复合纳米材料薄膜的光电化学特性研究.长春,吉林大学化学学院,1999.
    [17] L.E.Brus. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronicstate J.Chem.Phys.80(1984)4403
    [18] L.E.Brus. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites J.Chem.Phys. 79(1983)5566
    [1] http://www.lumtec.com.tw/index.asp?lang=2
    [2] J. Lu, Nicholas J. Pinto, Alan G. MacDiarmid, J. Appl.Phys. 92(2002) 6033–6038.
    [3]张正华,李陵岚,叶楚平,杨平华编著,有机太阳电池与塑料太阳电池.北京:化学工业出版社,2006.
    [4] N.S.Sariciftci, L.Smilowitz, A.J.Heeger, et al.“Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerence”. Science, 258, 1992, 1474-1476.
    [5] CYKwong, WCHChoy, ABDjuriˇsi′c,et al. Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications. Nanotechnology 15 (2004) 1156–1161
    [6] Thomas Kietzke Recent Advances in Organic Solar Cells. Advances in Opto- Electronics, Volume 2007, Article ID 40285, 15 pages.
    [1] http://www.lumtec.com.tw/index.asp?lang=2
    [2] Hanack M,Lang M.Adv Mater,1994,11:819
    [3]何智兵韩高荣吴卫东等.真空热蒸发酞菁铜(CuPc)薄膜的结构及光学、电学性能研究.真空科学与技术学报. 25, 4, (2005).278-282.
    [4]沈永嘉.酞菁的合成与应用.北京:化学工业出版社,2000:4-7
    [5]封继康,李君,孙家钟.酞菁和酞菁铜的三阶非线性光学性质.化学学报,1994,52 :539~544.
    [6] Anto Regis Inigo, Francis P. Xavier and George J. Goldsmith. Copper phthalocyanine as an efficient dopant in development of solar cells. Materials Research Bulletin, 1997. 32: 539~546.
    [7] Srinivas Sista, Yan Yao, and Yang Yang et al. Enhancement in open circuit voltage through a cascade-type energy band structure. Applied Physics Letters 91, 223508 (2007).
    [8] Kim Y, Lee J G, Han K et al. Hole-transporting polyimide for organic electroluminescent display.Thin Solid Films, 2000, 363(1~2):263~267.
    [9] A. S. Komolov, P. J. M?ller. Photo and gas sensitivity of thin Cu-phthalocyanine films studied by spectroscopy of unoccupied electron states. Synthetic Metals, 2001, 123 :359-363.
    [10] Rudiono, Fujio Kaneko ,Manabu Takeuchi. Morphological characteristics of perylene-doped phthalocyanine thin films and their photovoltaic effect. Applied Surface Science, 1999, 142: 598-602.
    [11] Ma Guohong ,Guo Lijun ,Mi Jun et al . Femtosecond nonlinear optical response of metallophthalocyanine films .Solid State Communications, 2001, 118:633~638.
    [12] Chih-Wei Chu, Vishal Shrotriya, Gang Li,et al. Tuning acceptor energy level for efficient charge collection in copper-phthalocyanine-based organic solar cells. Applied Physics Letters 88, 153504 (2006)
    [13] Chunfu Zhang,S. W. Tong, Changyun Jiang,et al. Efficient multilayer organic solar cells using the optical interference peak. Applied Physics Letters 93, 043307 (2008).
    [14] Q.L.Song, M. L. Wang, E. G. Obbard,et al.Degradation of small-molecule organic solar cells, Applied Physics Letters 89,251118(2006).
    [15] Wei-Bing Chen,Hai-Feng Xiang,Zong-Xiang Xu,et al.Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer. Applied Physics Letters 91, 191109 (2007).
    [16] Srinivas Sista, Yan Yao, and Yang Yang,et al. Enhancement in open circuit voltage through a cascade-type energy band structure. Applied Physics Letters 91, 223508 (2007).
    [17] T. J. Savenije, J. M. Warman, and A. Goossens, Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chemical Physics Letters. 287, 148 (1998).
    [18] L. Pettersson, L. Roman, and O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films Journal. Applied. Physics. 86, 487 (1999).
    [19] Yuxiang Liu, Melissa A. Summers, Carine Edder,et al. Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic–Inorganic Hybrid Photovoltaic Cells. Advanced. Materials. 2005, 17, 2960–2964.
    [20] Chiatzun Goh, Shawn R. Scully, and Michael D. McGehee. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. Journal of Applied Physics 101, 114503 (2007).
    [21] Y. Terao, H. Sasabe, and C. Adachi, Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Applied Physics Letters 90, 103515 (2007).
    [22] M. M. Mandoc, L. J. A. Koster and P. W. M. Blom, Optimum charge carrier mobility in organic solar cells. Applied Physics Letters 90, 133504 (2007).
    [23] Gisela L. Schulz, Xiwen Chen, and Steven Holdcroft. High band gap poly(9,9-dihexylfluorene-alt-bithiophene) blended with [6,6]-phenyl C61 butyric acid methyl ester for use in efficient photovoltaic devices. Applied Physics Letters 94, 023302 (2009).
    [1] C C Oey, A B Djuriˇsi′c, H Wang, et al. Polymer–TiO2 solar cells: TiO2 interconnected network for improved cell performance. Nanotechnology 17 (2006) 706–713.
    [2] Yuxiang Liu, Melissa A. Summers, Carine Edder,et al. Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic–Inorganic Hybrid Photovoltaic Cells. Advanced. Materials. 2005, 17, 2960–2964.
    [3] S. Erten, F. Meghdadi, S. Gunes, R,et al. Donor-acceptor heterojunction solar cells based on perylene dimide and perylene bisbenzimidazole. The European Physical Journal Applied Physics 36 (2007), 225
    [4] H. Hoppe, N.S. Sariciftci . Morphology of polymer/fullerene bulk heterojunction solar cells Journal of Materials Chemistry 16 (2006), 45-61
    [5] Chih-Wei Chu,Hoichang Yang,Wei-Jen Hou,et al. Control of the nanoscale crystallinity and phase separation in polymer solar cells. Applied Physics Letters 92, 103306 (2008).
    [6] Afshin Hadipour, Bert de Boer,and Paul W. M. Blom.Solution-processed organic tandem solar cells with embedded optical. Journal of Applied Physics 102, 074506 (2007).
    [7] Chen Tao, Shengping Ruan, Xindong Zhang,et al. Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer. Applied Physics Letters 93,193307(2008).
    [8] Chen Tao, Shengping Ruan, Guohua Xie,et al. Role of tungsten oxide in inverted polymer solar cells. Applied Physics Letters 94,043311(2009).
    [9] http://www.lumtec.com.tw/index.asp?lang=2
    [10] Gilles Dennler, Markus C. Scharber, and Christoph J. Brabec. Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced. Materials. 2009, 21, 1–16.
    [11] Jeffrey Peet, Michelle L. Senatore, Alan J. Heeger et al. The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells. Advanced. Materials. 2009, 21, 1–7.
    [12] Yan Yao, Jianhui Hou, Zheng Xu,et al. Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells. Advanced. Functional.Materials. 2008, 18, 1783–1789
    [13] Y.-H. Kim, S.-H. Lee, J. Noh,et al. Performance and stability of electroluminescent device with self-assembled layers of poly (3,4-ethylenedioxythiophene)–poly(styrenesulfonate) and polyelectrolytes. Thin Solid Films 510, 305 (2006).
    [14] M. P. de Jong, L. J. van Ijzendoorn, and M. J. A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene) /poly(styrenesulfonate) in polymer light-emitting diodesApplied Physics Letters 77, 2255 (2000).
    [15] C. Ionescu-Zanetti, A. Mechler, S. A. Carter, et al. Semiconductive Polymer Blends: Correlating Structure with Transport Properties at the Nanoscale Advanced. Materials.16, 385 (2004).
    [16] Erik Ahlswede,Jonas Hanisch, and Michael Powalla. Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells. Applied Physics Letters 90, 163504 (2007).
    [17] G. Li, C.-W. Chu, V. Shrotriya,et al. Efficient inverted polymer solar cells. Applied Physics Letters 88, 253503 (2006)
    [18] Kazuko Takanezawa, Keisuke Tajima, and Kazuhito Hashimoto. Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer. Applied Physics Letters 93, 063308 (2008).
    [19] Wanli Ma,Cuiying Yang,Xiong Gong,et al.Thermally Stable,Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials.2005,15,1617-1622.
    [20] Christoph J. Brabec. Organic photovoltaics: technology and market. Solar Energy Materials & Solar Cells 83 (2004) 273–292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700