用户名: 密码: 验证码:
有机物改性直接醇类燃料电池电催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接醇类燃料电池(DAFC)具有无污染、燃料来源广、能量转化率高、储存和运输方便等优点,在便携式电源、电动机车和野外电站等领域具有广阔的应用前景,对解决当前世界面临的能源短缺和环境污染两大难题具有重要的现实意义。但是,电极电催化剂的低活性及高价格仍是阻碍DAFC商业化发展的关键问题之一。提高催化剂活性、降低贵金属用量是推动DAFC商业化发展的重要途径。
     本论文主要研究有机化合物(染料、Nafion、脂肪胺、芳胺等)对DAFC电催化剂或载体的改性,通过傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线能量散射谱(EDS)、循环伏安法(CV)、电化学阻抗(EIS)、计时-电流法、Tafel极化曲线等分析测试技术,对电催化剂、电极的形貌、结构、物理化学性质等进行了详细研究。本论文的主要研究工作如下:
     (1)以Nafion-硫堇(Nf-Th)离子对为分散剂和助催化剂,制备了负载于活性炭上的催化剂NfThPt/C。采用电化学方法考察了NfThPt/C催化剂与商业催化剂E-TEK Pt/C、E-TEK PtRu/C对甲醇的电催化氧化性能。结果表明:在相同金属催化剂担载量情况下,甲醇在NfThPt/C/石墨电极上的氧化峰电流密度分别是E-TEK Pt/C/石墨电极、E-TEK PtRu/C/石墨电极上的7.25倍和3.04倍,而且NfThPt/C催化剂具有较好的抗中毒能力和长期循环稳定性。Nf-Th离子对明显提高了催化剂Pt对甲醇的电催化氧化活性。
     (2)将有机染料中性红(NR)引入阳极催化剂体系,采用CV、EIS和极化曲线方法考察了Pt/NR/石墨电极对甲醇的电催化氧化性能。在相当Pt催化剂沉积量下,Pt/NR/石墨电极上的交换电流密度和比活性(SA)分别是Pt/石墨电极上的1.25倍和1.83倍,而且具有更好的长期循环稳定性。
     (3)采用化学方法制备了乙二胺接枝改性碳纳米管( ED/CNTs)以及催化剂PtRu/ED/CNTs和Pt/ED/CNTs。FTIR结果表明,ED已成功地接枝到了CNTs表面。TEM结果表明ED/CNTs载体更有利于PtRu和Pt纳米颗粒的分散和细小化。在金属催化剂担载量相同时,PtRu/ED/CNTs和Pt/ED/CNTs催化剂对乙醇的电催化氧化活性高于PtRu/CNTs和Pt/CNTs催化剂,Pt/ED/CNTs催化剂的催化活性甚至高于PtRu/CNTs。ED/CNTs是乙醇氧化电催化剂的良好载体。
     (4)以导电聚合物聚中性红(PNR)修饰的石墨电极为载体,负载催化剂Pt,并用于酸性介质中乙醇的电催化氧化。Pt/PNR/石墨电极对乙醇的电催化氧化活性优于Pt/石墨电极。当石墨电极在5.0×10?4 M NR + 0.50 M H2SO4溶液中聚合10圈、催化剂Pt沉积量相当时,乙醇在Pt/PNR/石墨电极上电催化氧化的比活性为3478.00 A C-1,是Pt/石墨电极上(1582.74 A C-1)的2.20倍。结果表明,PNR有利于Pt纳米颗粒的固定,PNR与Pt纳米颗粒间的协同效应提高了催化剂Pt对乙醇的电催化氧化活性及长期循环稳定性。
     (5)在5.0×10?2 M邻苯二胺(oPD) + 0.20 M Na2SO4溶液中,在CNTs修饰的玻碳(GC)电极上电化学聚合邻苯二胺(PoPD),然后电化学沉积Pt纳米颗粒,得到Pt/PoPD/CNTs/GC电极,并用于氧的电催化还原研究。结果表明,Pt纳米颗粒在PoPD/CNTs复合膜上分散性更好且在酸性介质中对氧还原表现出更高的电催化活性。氧还原在Pt/PoPD/CNTs/GC电极上的比活性为524.20 A C-1,是Pt/GC电极上的2.12倍。采用线性扫描伏安法(LSV)在旋转圆盘电极上考察了氧还原在Pt/PoPD/CNTs/GC电极上的动力学行为。结果表明,在空气饱和的0.10 M H2SO4溶液中,氧还原在Pt/PoPD/CNTs/GC电极上以四电子还原方式为主。PoPD/CNTs复合膜提高了催化剂Pt电催化氧还原的活性。
     (6)制备了N-羟基邻苯二甲酰亚胺(NHPI)-CNTs复合物,并以其为载体负载催化剂Pt纳米颗粒,用于氧的电催化还原。结果表明氧在Pt/NHPI-CNTs/GC电极上的还原峰电流密度是Pt/GC电极上的1.64倍。动力学研究表明,氧在Pt/NHPI-CNTs/GC电极上的还原主要以四电子方式进行。
Direct alcohol fuel cell (DAFC) possesses the wide application in the portable equipment, electric car and field power etc., due to the free (or low)-pollution, abundant sources, high energy efficiency, the easy storage and transportation of the fuel. However, the low electrochemical activity and high cost of electrocatalysts are still one of the key issues hindering the commercial application of DAFC. Therefore, to improve the electrocatalytic activity and to decrease the loading mass of noble metals are effective routes to the commercial application of DAFC. In this dissertation, organic material (such as dye, Nafion, fatty amine, aromatic amine) modified electrocatalysts or catalyst supports in DAFC have been evaluated. Their micrographs, structure, properties and applications have been investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), cyclic voltammetry (CV), chronoamperometry and polarization method, etc. The main points of this dissertation are summarized as follows:
     (1) Nafion (Nf) - thionine (Th) ion-pair as dispersant and second catalyst was introduced into the preparation of Pt catalyst for methanol electrooxidation and the resulted catalyst supported on carbon (NfThPt/C) was investigated by electrochemical methods. For the same loading mass of catalyst, the peak current density of methanol oxidation on the NfThPt/C/graphite electrode is about 7.25 and 3.04 times as high as that on the E-TEK Pt/C/graphite and E-TEK PtRu/C/graphite electrodes, respectively. Moreover, NfThPt/C catalyst shows excellent anti-poisoning ability and long-term cycle stability. The electrocatalytic properties of Pt for methanol electrooxidation are improved obviously by Nf-Th ion-pair.
     (2) Organic dye neutral red (NR) was introduced in the anodic electrocatalyst system for methanol oxidation and the resulting electrode was investigated by CV, EIS and polarization method. For the same loading mass of Pt catalyst, 1.25 times larger exchange current density, 1.83 times higher specific activity and better long-term cycle stability can be obtained at Pt/NR/graphite electrode, as compared with the electrode without NR.
     (3) As the support of Pt and PtRu catalysts for ethanol electrooxidation, the ethylene diamine (ED)-grafted carbon nanotubes (CNTs) were prepared by chemical synthesis method and characterized by FTIR. The morphology and elemental composition of the PtRu/ED/CNTs and Pt/ED/CNTs catalysts were characterized by TEM and EDS, respectively. TEM results demonstrate that the ED-grafted CNTs are beneficial to loading PtRu and Pt electrocatalysts with well dispersion and small particle size. On the other hand, the electrocatalytic properties of the PtRu/ED/CNTs and Pt/ED/CNTs catalysts were characterized by CV and chronoamperometry. Under the same loading mass of catalyst, the electrocatalytic activities of both PtRu/CNTs/graphite and Pt/CNTs/graphite electrodes are enhanced obviously by the introduction of ED. The electrocatalytic activity of the Pt/ED/CNTs/graphite electrode is even higher than that of the PtRu/CNTs/graphite electrode. These results indicate that the ED/CNTs are the promising catalyst support for ethanol electrooxidation.
     (4) The conductive polymer poly(neutral red) polymerized on the graphite electrode (PNR/graphite) was used as the catalyst support for catalytic oxidation of ethanol in acidic solution and investigated by electrochemical methods. The Pt nanoparticles loaded on the surface of the PNR/graphite electrode exhibit higher electrocatalytic activity for ethanol oxidation in comparison with the Pt supported on the graphite electrode. With the equivalent loading mass of Pt catalyst, the specific activity (SA) at peak a of the Pt/PNR/graphite electrode where PNR was polymerized for 10 cycles in 5.0×10?4 M NR + 0.50 M H2SO4 solution is 3478.00 A C-1 and about 2.20 times as high as that of the Pt/graphite electrode (1582.74 A C-1). The corresponding results imply that the electrochemical performance (high electrocatalytic activity, better long-term cycle stability) of Pt catalyst for ethanol oxidation is improved by the assistance of PNR, which may enhance the immobilization of Pt nanoparticles and reduce the COads poisoning on the Pt surface.
     (5) Poly(ο-phenylenediamine)/carbon nanotubes (PoPD/CNTs) composite film has been prepared and investigated as the support of Pt nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). The results from SEM and CV indicate that Pt nanoparticles have been highly dispersed on the PoPD/CNTs composite film and exhibit improved electrocatalytic activity for ORR in acid medium. The specific electrocatalytic activity (SA) of the Pt/PoPD/CNTs loaded on the glass carbon (GC) rotating disk electrode (Pt/PoPD/CNTs/GC electrode), in which PoPD was polymerized in 5.0×10?2 Mο-phenylenediamine (oPD) + 0.20 M Na2SO4 solution at pH 1, is 524.20 A C-1 and about 2.12 times higher than that of the Pt/GC electrode. The kinetic behavior of ORR on the Pt/PoPD/CNTs/GC electrode was also investigated by linear sweep voltammetry (LSV). The results indicate that a 4e-reduction of O2 is dominant on the Pt/PoPD/CNTs/GC electrode in air-saturated 0.10 M H2SO4. Additionally, the electrocatalytic performance of Pt catalyst for ORR is improved obviously by the PoPD/CNTs composite film.
     (6) N-hydroxyphthalimide-carbon nanotubes (NHPI-CNTs) composite as the catalyst support was introduced and the electrocatalytic properties of the Pt/NHPI-CNTs/GC electrode toward the dioxygen reduction reaction (ORR) have been investigated by CV and LSV. From CV, the peak current density of ORR on the Pt/NHPI-CNTs/GC electrode is about 1.64 times higher than that on the Pt/GC electrode. The kinetic parameters demonstrate that a 4e-reduction of O2 to H2O is dominant on the Pt/NHPI-CNTs/GC electrode during the ORR process.
引文
[1]衣宝廉.燃料电池——原理?技术?应用.第一版.北京:北京化学工业出版社,2000,1-4
    [2]孙艳,苏伟,周理.氢燃料.第一版.北京:化学工业出版社,2005,1-2
    [3]崔爱玉,付颖.燃料电池——新的绿色能源.应用能源技术,2006,(7):14,15,48
    [4]刘雁.燃料电池人类未来的能源终极解决方案.资源与人居环境,2007,(5): 28-31
    [5]王明涌.碳纳米管基直接醇类燃料电池电极研究:[湖南大学硕士学位论文].长沙:湖南大学,2005,3
    [6]毛宗强,谢晓峰,马紫峰,等.燃料电池.第一版.北京:化学工业出版社,2005,28-29
    [7] Jollie D.燃料电池.www.stcsm.gov.cn,2002-09-21
    [8]杨辉,卢文庆.应用电化学.第一版.北京:科学出版社,2001,122-123
    [9] Prater K B. Solid polymer fuel cells for transport and stationary applications. Journal of Power Sources, 1996, 61(1-2): 105-109
    [10] Panik F. Fuel cells for vehicle application in cars-bringing the future closer. Journal of Power Sources, 1998, 71(1-2): 36-38
    [11] Kawatsu S. Advanced PEFC development for fuel cell powered vehicles. Journal of Power Sources, 1998, 71(1-2): 150-155
    [12]刘艺欣.可再生能源利用前景广阔.中国统计,2007,(2):47-48
    [13]富冈恒宪,藤堂安人.东芝公布PDA用甲醇燃料电池技术细节.www.china.nikkerbp.co.jp,2002-02-12
    [14]刘凤君.高效环保的燃料电池发电系统及其应用.第一版.北京:机械工业出版社,2006,41-45
    [15]陈军,陶占良,苟兴龙.化学电源——原理、技术与应用.第一版.北京:化学工业出版社,2006,454
    [16] McNicol B D, Rand D A J, Williams K R. Direct methanol-air fuel cells for road transportation. Journal of Power Sources, 1999, 83(1-2): 15-31
    [17]田立朋,李伟善.直接甲醇燃料电池研究进展.现代化工,1998,15(5):14-17
    [18] Antonucci V. Direct methanol fuel cells for mobile applications: A strategy for the future. Fuel Cells Bulletin, 1999, 2(7): 6-8
    [19] Blum A, Duvdevani T, Philosoph M, et al. Water-neutral microdirect-methanol fuel cell (DMFC) for portable applications. Journal of Power Sources, 2003, 117(1-2): 22-25
    [20]毛宗强,谢晓峰,马紫峰,等.燃料电池.第一版.北京:化学工业出版社,2005,214
    [21]王凤娥.直接甲醇燃料电池的研究现状及技术进展.稀有金属,2002,26(6): 497-501
    [22]张兵,钟起玲,章磊,等.乙醇电氧化的研究进展.江西化工,2003,(2):18-20
    [23] Zhou W, Zhou Z, Song S, et al. Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental, 2003, 46(2): 273-285
    [24] de Souza J P I, Queiroz S L, Bergamaski K, et al. Electro-Oxidation of Ethanol on Pt, Rh, and PtRh Electrodes: A Study Using DEMS and in-situ FTIR Techniques. The Journal of Physical Chemistry B, 2002, 106(38): 9825-9830
    [25] Iwasita T, Pastor E. A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochimica Acta, 1994, 39(4): 531-537
    [26] Antolini E. Catalysts for direct ethanol fuel cells. Journal of Power Sources, 2007, 170(1): 1-12
    [27] Wang H, Jusys Z, Behm R J. Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study. Journal of Power Sources, 2006, 154(2): 351-359
    [28] Fujiwara N, Friedrich K A, Stimming U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry. Journal of Electroanalytical Chemistry, 1999, 472(2): 120-125
    [29] Parsons R, VanderNoot T. The oxidation of small organic molecules: A survey of recent fuel cell related research. Journal of Electroanalytical Chemistry, 1988, 257(1-2): 9-45
    [30] Iwasita T. Electrocatalysis of methanol oxidation. Electrochimica Acta, 2002, 47(22-23): 3663-3674
    [31] Liu W-J, Wu B-L, Cha C-S. Surface diffusion and the spillover of H-adatoms and oxygen-containing surface species on the surface of carbon black and Pt/C porous electrodes. Journal of Electroanalytical Chemistry, 1999, 476(2): 101-108
    [32] Beden B, Bewick A, Kunimatsu K, et al. Infrared study of adsorbed species on electrodes: adsorption of carbon monoxide on Pt, Rh and Au. Journal ofElectroanalytical Chemistry, 1982, 142(1-2): 345-356
    [33] Mihut C, Descorme C, Duprez D, et al. Kinetic and Spectroscopic Characterization of Cluster-Derived Supported Pt-Au Catalysts. Journal of Catalysis, 2002, 212(2): 125-135
    [34] Rauhe Jr B R, McLarnon F R, Cairns E J. Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate. Journal of The Electrochemical Society, 1995, 142(4): 1073-1084
    [35] Frelink T, Visscher W, Cox A P, et al. Ellipsometry and DEMS study of the electrooxidation of methanol at Pt and Ru and Sn-promoted Pt. Electrochimica Acta, 1995, 40(10): 1537-1543
    [36] Iwasita T, Rasch B, Cattaneo E, et al. A sniftirs study of ethanol oxidation on platinum. Electrochimica Acta, 1989, 34(8): 1073-1079
    [37] Delime F, Léger J M, Lamy C. Optimization of platinum dispersion in Pt-PEM electrodes: application to the electrooxidation of ethanol. Journal of Applied Electrochemistry, 1998, 28(1): 27-35
    [38] Souza J P I, Botelho Rabelo F J, de Moraes I R, et al. Performance of a co-electrodeposited Pt-Ru electrode for the electro-oxidation of ethanol studied by in situ FTIR spectroscopy. Journal of Electroanalytical Chemistry, 1997, 420(1-2): 17-20
    [39] Hitmi H, Belgsir E M, Léger J-M, et al. A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium. Electrochimica Acta, 1994, 39(3): 407-415
    [40] Betowska-Brzezinska M, Uczak T, Holze R. Electrocatalytic oxidation of mono- and polyhydric alcohols on gold and platinum. Journal of Applied Electrochemistry, 1997, 27(9): 999-1011
    [41] Lopes M I, Fonseca I, Olivi P, et al. Integrated electromodulated IR reflectance spectroscopy bands: Part 2: Methanol adsorbates at polycrystalline platinum and Pt(111) single-crystal electrodes in acid medium. Journal of Electroanalytical Chemistry, 1993, 346(1-2): 415-432
    [42] Tremiliosi-Filho G, Gonzalez E R, Motheo A J, et al. Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism. Journal of Electroanalytical Chemistry, 1998, 444(1): 31-39
    [43] Hikita S, Yamane K, Nakajima Y. Influence of cell pressure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel cell. Review of Automotive Engineering, 2002, 23(1): 133-135
    [44] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today, 1997, 38(4): 445-457
    [45] Prabhuram J, Manoharan R. Investigation of methanol oxidation on unsupported platimum electrodes in strong alkali and strong acid. Journal of Power Sources, 1998, 74(1): 54-61
    [46] Kabbabi A, Faure R, Durand R, et al. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes. Journal of Electroanalytical Chemistry, 1998, 444(1): 41-53
    [47] Kardash D, Huang J, Korzeniewski C. Surface Electrochemisty of CO and Methanol at 25-75℃Probed in Situ by Infrared Spectroscopy. Langmuir, 2000, 16(4): 2019-2023
    [48] Munk J, Christensen P A, Hamnett A, et al. The electrochemical oxidation of methanol on platinum and platinum+ruthenium particulate electrodes studied by in-situ FTIR spectroscopy and electrochemical mass spectrometry. Journal of Electroanalytical Chemistry, 1996, 401(1-2): 215-222
    [49]陈煜.直接醇类燃料电池阳极催化剂的研究:[南京师范大学硕士学位论文].南京:南京师范大学,2006,20-21
    [50] Attwood P A, McNicol B D, Short R T. Temperature-programmed reduction and cyclic voltammetry of Pt/carbon-fiber paper catalyst for methanol electrooxidation. Journal of Catalysis, 1981, 67(2): 287-295
    [51] Chen W, Zhao J, Lee J Y, et al. Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation. Materials Chemistry and Physics, 2005, 91(1): 124-129
    [52]毛宗强,谢晓峰,马紫峰,等.燃料电池.第一版.北京:化学工业出版社,2005,219
    [53] Radmilovic V, Gasteiger H A, Ross P N. Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation. Journal of Catalysis, 1995, 154(1): 98-106
    [54] He Z, Chen J, Liu D, et al. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond and Related Materials, 2004, 13(10): 1764-1770
    [55] Frelink T, Visscher W, van Veen J A R. The effect of Sn on Pt/C catalysts for the methanol electro-oxidation. Electrochimica Acta, 1994, 39(11-12): 1871-1875
    [56] Ramamoorthy P, Gonzalez R D. Surface characterization of supported Pt-Ru bimetallic clusters using infrared spectroscopy. Journal of Catalysis, 1979, 58(2): 188-197
    [57] Deivaraj T C, Lee J Y. Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications– a comparative study. Journal of Power Sources, 2005, 142(1-2): 43-49
    [58]李金峰,宋焕巧,邱新平.直接甲醇燃料电池阳极催化剂的研究进展.电源技术,2007,31(2):167-170
    [59] Luo J, Maye M M, Kariuki N N, et al. Electrocatalytic oxidation of methanol: carbon-supported gold-platinum nanoparticle catalysts prepared by two-phase protocol. Catalysis Today, 2005, 99(3-4): 291-297
    [60] Zhu Y M, Cabrera C R. Methanol oxidation at the electrochemical codeposited Pt-Os composite electrode. Electrochemical and Solid-State Letters, 2001, 4(4): A45-A48
    [61] Hamnett A, Kennedy B J, Weeks S A. Base metal oxides as promotors for the electrochemical oxidation of methanol. Journal of Electroanalytical Chemistry, 1988, 240(1-2): 349-353
    [62] Shen P K, Tseung A C C. Anodic Oxidation of Methanol on Pt/WO3 in Acidic Media. Journal of The Electrochemical Society, 1994, 141(11): 3082-3090
    [63] Wang Y, Fachini E R, Cruz G, et al. Effect of Surface Composition of Electrochemically Codeposited Platinum/Molybdenum Oxide on Methanol Oxidation. Journal of The Electrochemical Society, 2001, 148(3): C222-C226
    [64] Antolini E. Platinum-based ternary catalysts for low temperature fuel cells: Part I. Preparation methods and structural characteristics. Applied Catalysis B: Environmental, 2007, 74(3-4): 324-336
    [65] Ley K L, Liu R, Pu C, et al. Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys. Journal of The Electrochemical Society, 1997, 144(5): 1543 -1548
    [66] Jusys Z, Schmidt T J, Dubau L, et al. Activity of PtRuMeOx(Me=W, Mo or V) catalysts towards methanol oxidation and their characterization. Journal of Power Sources, 2002, 105(2): 297-304
    [67] AricòA S, Poltarzewski Z, Kim H, et al. Investigation of a carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells. Journal of Power Sources, 1995, 55(2): 159-166
    [68] Schmidt V M, Ianniello R, Pastor E, et al. Electrochemical Reactivity ofEthanol on Porous Pt and PtRu: Oxidation/Reduction Reactions in 1 M HClO4. The Journal of Physical Chemistry B, 1996, 100(45): 17901-17908
    [69] Suffredini H B, Tricoli V, Vatistas N, et al. Electro-oxidation of methanol and ethanol using a Pt-RuO2/C composite prepared by the sol-gel technique and supported on boron-doped diamond. Journal of Power Sources, 2006, 158(1): 124-128
    [70] Jiang L, Sun G, Sun S, et al. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. Electrochimica Acta, 2005, 50(27): 5384-5389
    [71] Zhang D Y, Ma Z F, Wang G X, et al. Electro-Oxidation of Ethanol on Pt-WO3/C Electrocatalyst. Electrochemical and Solid-State Letters, 2006, 9(9): A423-A426
    [72] Song H, Qiu X, Li F, et al. Ethanol electro-oxidation on catalysts with TiO2 coated carbon nanotubes as support. Electrochemistry Communications, 2007, 9(6): 1416-1421
    [73] Zhou W J, Li W Z, Song S Q, et al. Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells. Journal of Power Sources, 2004, 131(1-2): 217-223
    [74] Wang Z B, Yin G P, Zhang J, et al. Co-catalytic effect of Ni in the methanol electro-oxidation on Pt-Ru/C catalyst for direct methanol fuel cell. Electrochimica Acta, 2006, 51(26): 5691-5697
    [75] Salazar-Banda G R, Suffredini H B, Calegaro M L, et al. Sol-gel-modified boron-doped diamond surfaces for methanol and ethanol electro-oxidation in acid medium. Journal of Power Sources, 2006, 162(1): 9-20
    [76] SpinacéE V, Linardi M, Oliveira Neto A. Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt-Sn electrocatalysts. Electrochemistry Communications, 2005, 7(4): 365-369
    [77] Colmati F, Antolini E, Gonzalez E R. Preparation, structural characterization and activity for ethanol oxidation of carbon supported ternary Pt-Sn-Rh catalysts. Journal of Alloys and Compounds, 2008, 456(1-2): 264-270
    [78] Iwasita T, Nart F C. Identification of methanol adsorbates on platinum: An in situ FT-IR investigation. Journal of Electroanalytical Chemistry, 1991, 317(1-2): 291-298
    [79] Beden B, Lamy C, Bewick A, et al. Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species. Journal ofElectroanalytical Chemistry, 1981, 121: 343-347
    [80]彭程,程璇,张颖,等.直接甲醇燃料电池中阳极催化剂的研究进展.电源技术,2003,27(5): 470-474
    [81] Raghuveer V, Viswanathan B. Can La2-xSrxCuO4 be used as anodes for direct methanol fuel cells? Fuel, 2002, 81(17): 2191-2197
    [82] Burstein G T, Barnett C J, Kucernak A R J, et al. Anodic Oxidation of Methanol Using a New Base Electrocatalyst. Journal of The Electrochemical Society, 1996, 143(7): L139-L140
    [83] Tarasevich M R, Karichev Z R, Bogdanovskaya V A, et al. Kinetics of ethanol electrooxidation at RuNi catalysts. Electrochemistry Communications, 2005, 7(2): 141-146
    [84]周卫江,周振华,李文震,等.直接甲醇燃料电池阳极催化剂研究进展.化学通报,2003,66(4):228-234
    [85]毛宗强,谢晓峰,马紫峰,等.燃料电池.第一版.北京:化学工业出版社,2005,105-106
    [86] Kinoshita K. Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes. Journal of The Electrochemical Society, 1990, 137(3): 845-848
    [87]黄庆红,唐亚文,马振旄,等.直接甲醇燃料电池阴极催化剂的研究进展.应用化学,2005,22(12):1277-1281
    [88] Yang H, Coutanceau C, Léger J-M, et al. Methanol tolerant oxygen reduction on carbon-supported Pt-Ni alloy nanoparticles. Journal of Electroanalytical Chemistry, 2005, 576(2): 305-313
    [89] Li W, Zhou W, Li H, et al. Nano-structured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochimica Acta, 2004, 49(7): 1045-1055
    [90] Yang H, Alonso-Vante N, Léger J-M, et al. Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes. The Journal of Physical Chemistry B, 2004, 108(6): 1938-1947
    [91] Antolini E, Passos R R, Ticianelli E A. Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells. Electrochimica Acta, 2002, 48(3): 263-270
    [92] Seo A, Lee J, Han K, et al. Performance and stability of Pt-based ternary alloy catalysts for PEMFC. Electrochimica Acta, 2006, 52(4): 1603-1611
    [93] Shim J, Yoo D-Y, Lee J-S. Characteristics for electrocatalytic properties andhydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochimica Acta, 2000, 45(12): 1943-1951
    [94] Li H Q, Xin Q, Li W Z, et al. An improved palladium-based DMFCs cathode catalyst. Chemical Communications, 2004, (23): 2776-2777
    [95]李文震.直接甲醇燃料电池阴极碳载铂基催化剂的研究:[中科院大连化学物理所博士学位论文].大连:中科院大连化学物理所,2004,16
    [96] Shim J, Lee C-R, Lee H-K, et al. Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell. Journal of Power Sources, 2001, 102(1-2): 172-177
    [97] Xiong L, Manthiram A. Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells. Electrochimica Acta, 2004, 49(24): 4163-4170
    [98] Gustavsson M, Ekstr?m H, Hanarp P, et al. Thin film Pt/TiO2 catalysts for the polymer electrolyte fuel cell. Journal of Power Sources, 2007, 163(2): 671-678
    [99] Kjellin P, Ekstr?m H, Lindbergh G, et al. On the activity and stability of Sr3NiPtO6 and Sr3CuPtO6 as electrocatalysts for the oxygen reduction reaction in a polymer electrolyte fuel cell. Journal of Power Sources, 2007, 168(2): 346-350
    [100] Coutanceau C, El Hourch A, Crouigneau P, et al. Conducting polymer electrodes modified by metal tetrasulfonated phthalocyanines: preparation and electrocatalytic behaviour towards dioxygen reduction in acid medium. Electrochimica Acta, 1995, 40(17): 2739-2748
    [101] Chu D, Jiang R. Novel electrocatalysts for direct methanol fuel cells. Solid State Ionics, 2002, 148(3-4): 591-599
    [102] Jiang J, Kucernak A. Novel electrocatalyst for the oxygen reduction reaction in acidic media using electrochemically activated iron 2,6-bis(imino)-pyridyl complexes. Electrochimica Acta, 2002, 47(12): 1967-1973
    [103] Liu H, Song C, Tang Y, et al. High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochimica Acta, 2007, 52(13): 4532-4538
    [104]黄建书.新型氧还原催化剂的制备及催化性能:[新疆大学硕士学位论文].乌鲁木齐:新疆大学,2007,10
    [105] Tamizhmani G, Dodelet J P, Guay D, et al. Electrocatalytic Activity of Nafion-Impregnated Pyrolyzed Cobalt Phthalocyanine: A Correlative StudyBetween Rotating Disk and Solid Polymer Electrolyte Fuel-Cell Electrodes. Journal of The Electrochemical Society, 1994, 141(1): 41-45
    [106] Faubert G, Lalande G, C?téR, et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochimica Acta, 1996, 41(10): 1689-1701
    [107] Alonso Vante N, Tributsch H. Energy conversion catalysis using semiconducting transition metal cluster compounds. Nature, 1986, 323(6087): 431-432
    [108] Trapp V, Christensen P, Hamnett A. New catalysts for oxygen reduction based on transition-metal sulfides. Journal of the Chemical Society, Faraday Transactions, 1996, 92(21): 4311-4319
    [109] Reeve R W, Christensen P A, Hamnett A, et al. Methanol Tolerant Oxygen Reduction Catalysts Based on Transition Metal Sulfides. Journal of The Electrochemical Society, 1998, 145(10): 3463-3471
    [110] Reeve R W, Christensen P A, Dickinson A J, et al. Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation. Electrochimica Acta, 2000, 45(25-26): 4237-4250
    [111] Solorza-Feria O, Citalán-Cigarroa S, Rivera-Noriega R, et al. Oxygen reduction in acid media at the amorphous Mo-Os-Se carbonyl cluster coated glassy carbon electrodes. Electrochemistry Communications, 1999, 1(12): 585-589
    [112] Pattabi M, Castellanos R H, Sebastian P J, et al. A Novel Electrocatalyst Based on Wx(CO)n for Oxygen Reduction Reaction. Electrochemical and Solid-State Letters, 2000, 3(9): 431-432
    [113] Sebastian P J. Chemical synthesis and characterization of MoxRuySez-(CO)n electrocatalysts. International Journal of Hydrogen Energy, 2000, 25(3): 255-259
    [114] Rodriguez F J, Sebastian P J. MoxSey-(CO)n electrocatalyst prepared by screen-printing and sintering. International Journal of Hydrogen Energy, 2000, 25(3): 243-247
    [115] Rhun V L, Garnier E, Pronier S, et al. Electrocatalysis on nanoscale ruthenium-based material manufactured by carbonyl decomposition. Electrochemistry Communications, 2000, 2(7): 475-479
    [116] CeréS, Vazquez M, de Sánchez S R, et al. Surface redox catalysis and reduction kinetics of oxygen on copper-nickel alloys. Journal of Electroanalytical Chemistry, 2001, 505(1-2): 118-124
    [117] Wei Z, Huang W, Zhang S. Carbon-based air electrodes carrying MnO2 in zinc-air batteries. Journal of Power Sources, 2000, 91(2): 83-85
    [118] Zhang G Q, Zhang X G. MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells. Electrochimica Acta, 2004, 49(6): 873-877
    [119] Zhang G-Q, Zhang X-G, Wang Y-G. A new air electrode based on carbon nanotubes and Ag-MnO2 for metal air electrochemical cells. Carbon, 2004, 42(15): 3097-3102
    [120] Hu F-P, Zhang X-G, Xiao F, et al. Oxygen reduction on Ag-MnO2/SWNT and Ag-MnO2/AB electrodes. Carbon, 2005, 43(14): 2931-2936
    [121] Lima F H B, Calegaro M L, Ticianelli E A. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochimica Acta, 2007, 52(11): 3732-3738
    [122] Manoharan R, Goodenough J B. Oxygen reduction on CrO2 bonded to a proton-exchange membrane. Electrochimica Acta, 1995, 40(3): 303-307
    [123] Ja?in D, Abu-Rabi A, Mentus S, et al. Oxygen reduction reaction on spontaneously and potentiodynamically formed Au/TiO2 composite surfaces. Electrochimica Acta, 2007, 52(13): 4581-4588
    [124] Kim J-H, Ishihara A, Mitsushima S, et al. Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochimica Acta, 2007, 52(7): 2492-2497
    [125] Prakash J, Tryk D A, Yeager E B. Kinetic Investigations of Oxygen Reduction and Evolution Reactions on Lead Ruthenate Catalysts. Journal of The Electrochemical Society, 1999, 146(11): 4145-4151
    [126]唐致远,宋世栋,刘建华.钙钛矿型双功能氧电极催化剂的研究进展.电源技术,2003,27:233-237
    [127] Heller-Ling N, Prestat M, Gautier J-L, et al. Oxygen electroreduction mechanism at thin NixCo3-xO4 spinel films in a double channel electrode flow cell (DCEFC). Electrochimica Acta, 1997, 42(2): 197-202
    [128] Nguyen Cong H, El Abbassi K, Chartier P. Electrically Conductive Polymer/Metal Oxide Composite Electrodes for Oxygen Reduction. Electrochemical and Solid-State Letters, 2000, 3(4): 192-195
    [129] Hayashi M, Uemura H, Shimanoe K, et al. Enhanced Electrocatalytic Activityfor Oxygen Reduction over Carbon-Supported LaMnO3 Prepared by Reverse Micelle Method. Electrochemical and Solid-State Letters, 1998, 1(6): 268-270
    [130] Suresh K, Panchapagesan T S, Patil K C. Synthesis and properties of La1-xSrxFeO3. Solid State Ionics, 1999, 126(3-4): 299-305
    [131] Singh R N, Malviya M, Anindita, et al. Polypyrrole and La1-xSrxMnO3 (0≤x≤0.4) composite electrodes for electroreduction of oxygen in alkaline medium. Electrochimica Acta, 2007, 52(12): 4264-4271
    [132]王树博,王要武,谢晓峰,等.直接甲醇燃料电池阳极催化剂的制备.化工进展,2006,25(6):658-662
    [133] Lizcano-Valbuena W H, de Azevedo D C, Gonzalez E R. Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells. Electrochimica Acta, 2004, 49(8): 1289-1295
    [134]邵庆辉,谢方艳,田植群,等.燃料电池用纳米催化剂的研究.电池,2002,32(3):153-155
    [135] Samant P V, Fernandes J B. Enhanced activity of Pt(HY) and Pt-Ru(HY) zeolite catalysts for electrooxidation of methanol in fuel cells. Journal of Power Sources, 2004, 125(2): 172-177
    [136] Choi J-H, Park K-W, Park I-S, et al. Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts. Electrochimica Acta, 2004, 50(2-3): 787-790
    [137] Park G-G, Yang T-H, Yoon Y-G, et al. Pore size effect of the DMFC catalyst supported on porous materials. International Journal of Hydrogen Energy, 2003, 28(6): 645-650
    [138] Park K-W, Choi J-H, Lee S-A, et al. PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell. Journal of Catalysis, 2004, 224(2): 236-242
    [139] Guo J W, Zhao T S, Prabhuram J, et al. Preparation and the physical/electrochemical properties of a Pt/C nanocatalyst stabilized by citric acid for polymer electrolyte fuel cells. Electrochimica Acta, 2005, 50(10): 1973-1983
    [140] Morimoto Y, Yeager E B. CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn electrodes. Journal of Electroanalytical Chemistry, 1998, 441(1-2): 77-81
    [141] Ren B, Li X Q, She C X, et al. Surface Raman spectroscopy as a versatile technique to study methanol oxidation on rough Pt electrodes. ElectrochimicaActa, 2000, 46(2-3): 193-205
    [142] SpinacéE V, Neto A O, Linardi M. Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles. Journal of Power Sources, 2004, 129(2): 121-126
    [143] Massong H, Tillmann S, Langkau T, et al. On the influence of tin and bismuth UPD on Pt(111) and Pt(332) on the oxidation of CO. Electrochimica Acta, 1998, 44(8-9): 1379-1388
    [144] Yu R, Chen L, Liu Q, et al. Platinum Deposition on Carbon Nanotubes via Chemical Modification. Chemistry of Materials, 1998, 10(3): 718-722
    [145] Yang L X, Allen R G, Scott K, et al. A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation. Journal of Power Sources, 2004, 137(2): 257-263
    [146] Takasu Y, Fujiwara T, Murakami Y, et al. Effect of Structure of Carbon-Supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol. Journal of The Electrochemical Society, 2000, 147(12): 4421-4427
    [147] Takasu Y, Sugimoto W, Murakami Y. Electrocatalytic Oxidation of Methanol and Related Chemical Species on Ultrafine Pt and PtRu Particles Supported on Carbon. Catalysis Surveys from Asia, 2003, 7(1): 21-29
    [148] AricòA S, Baglio V, Modica E, et al. Performance of DMFC anodes with ultra-low Pt loading. Electrochemistry Communications, 2004, 6(2): 164-169
    [149] Takasu Y, Kawaguchi T, Sugimoto W, et al. Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation. Electrochimica Acta, 2003, 48(25-26): 3861-3868
    [150] Tamizhmani G, Dodelet J P, Guay D. Crystallite Size Effects of Carbon-Supported Platinum on Oxygen Reduction in Liquid Acids. Journal of The Electrochemical Society, 1996, 143(1): 18-23
    [151] Petrow H G,Allen R J. US Pat. 4044193, 1977-08-23
    [152] Bǒnnemann H, Brijoux W. Advanced catalysts and nanostructured materials (ed.Moser W). New York: Academic Press, 1996, 165
    [153] Lee S-A, Park K-W, Choi J-H, et al. Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells. Journal of The Electrochemical Society, 2002, 149(10): A1299-A1304
    [154] Wang Y, Ren J, Deng K. Preparation of Tractable Platinum, Rhodium, andRuthenium Nanoclusters with Small Particle Size in Organic Media. Chemistry of Materials, 2000, 12(6): 1622-1627
    [155] Zhou Z, Wang S, Zhou W, et al. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chemical Communications, 2003, (3): 394-395
    [156] Dubau L,Coutanceau C, Garnier E, et al. Electrooxidation of methanol at platinum-ruthenium catalysts prepared from colloidal precursors: Atomic composition and temperature effects. Journal of Applied Electrochemistry, 2003, 33(5): 419-429
    [157]陈胜洲,董新法,钟文健,等.MoOx、WOx对PtRu/C催化剂甲醇电氧化作用的影响.电源技术,2004,28(8):498-500
    [158] Kim J Y, Yang Z G, Chang C C, et al. A Sol-Gel-Based Approach to Synthesize High-Surface-Area Pt-Ru Catalysts as Anodes for DMFCs. Journal of The Electrochemical Society, 2003, 150(11): A1421-A1431
    [159] Tsaprailis H, Birss V I. Sol-Gel Derived Pt-Ir Mixed Catalysts for DMFC Applications. Electrochemical and Solid-State Letters, 2004, 7(10): A348-A352
    [160] Dickinson A J, Carrette L P L, Collins J A, et al. Performance of Methanol Oxidation Catalysts with Varying Pt:Ru Ratio as a Function of Temperature. Journal of Applied Electrochemistry, 2004, 34(10): 975-980
    [161] Deivaraj T C, Chen W, Lee J Y. Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. Journal of Materials Chemistry, 2003, 13(10): 2555-2560
    [162] Boxall D L, Deluga G A, Kenik E A, et al. Rapid Synthesis of a Pt1Ru1/Carbon Nanocomposite Using Microwave Irradiation: A DMFC Anode Catalyst of High Relative Performance. Chemistry of Materials, 2001, 13(3): 891-900
    [163] Zhou J-H, He J-P, Ji Y-J, et al. CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation. Electrochimica Acta, 2007, 52(14): 4691-4695
    [164]徐洪峰,林治银,邱艳玲,等.用于质子交换膜燃料电池的碳载铂电催化剂.催化学报,2003,24(2):143-148
    [165]李莉,武刚,叶青,等.Pt/C催化剂的硅钼酸电化学修饰.物理化学学报,2006,22(4):419-423
    [166] Luo J, Njoki P N, Lin Y, et al. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen.Electrochemistry Communications, 2006, 8(4): 581-587
    [167] Qu L, Dai L, Osawa E. Shape/Size-Controlled Syntheses of Metal Nanoparticles for Site-Selective Modification of Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128(16): 5523-5532
    [168] Raghuveer M S, Agrawal S, Bishop N, et al. Microwave-Assisted Single-Step Functionalization and in Situ Derivatization of Carbon Nanotubes with Gold Nanoparticles. Chemistry of Materials, 2006, 18(6): 1390-1393
    [169] Komarneni S, Li D, Newalkar B, et al. Microwave-Polyol Process for Pt and Ag Nanoparticles. Langmuir, 2002, 18(15): 5959-5962
    [170]黄建书.新型氧还原催化剂的制备及催化性能:[新疆大学硕士学位论文].乌鲁木齐:新疆大学,2007,13
    [171] Denis M C, Lalande G, Guay D, et al. High energy ball-milled Pt and Pt-Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO. Journal of Applied Electrochemistry, 1999, 29(8): 951-960
    [172] Denis M C, Gouérec P, Guay D, et al. Improvement of the high energy ball-milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 2000, 30(11): 1243-1253
    [173] Gouérec P, Denis M C, Guay D, et al. High Energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel Cells and Their Tolerance to CO. Journal of The Electrochemical Society, 2000, 147(11): 3989-3996
    [174] Ticianelli E A, Derouin C R, Srinivasan S. Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells. Journal of Electroanalytical Chemistry, 1988, 251(2): 275-295
    [175] Witham C K, Chun W, Valdez T I, et al. Performance of Direct Methanol Fuel Cells with Sputter-Deposited Anode Catalyst Layers. Electrochemical and Solid-State Letters, 2000, 3(11): 497-500
    [176] Guo J, Sun G, Wang Q, et al. Carbon nanofibers supported Pt-Ru electrocatalysts for direct methanol fuel cells. Carbon, 2006, 44(1): 152-157
    [177] Steigerwalt E S, Deluga G A, Lukehart C M. Pt-Ru/Carbon Fiber Nanocomposites: Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance. The Journal of Physical Chemistry B, 2002, 106(4): 760-766
    [178] Saquing C D, Cheng T-T, Aindow M, et al. Preparation of Platinum/Carbon Aerogel Nanocomposites Using a Supercritical Deposition Method. TheJournal of Physical Chemistry B, 2004, 108(23): 7716-7722
    [179] Calvillo L, Lázaro M J, García-BordejéE, et al. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. Journal of Power Sources, 2007, 169(1): 59-64
    [180] Joo S H, Pak C, You D J, et al. Ordered mesoporous carbons (OMC) as supports of electrocatalysts for direct methanol fuel cells (DMFC): Effect of carbon precursors of OMC on DMFC performances. Electrochimica Acta, 2006, 52(4): 1618-1626
    [181] Liu Y-C, Qiu X-P, Huang Y-Q, et al. Influence of preparation process of MEA with mesocarbon microbeads supported Pt-Ru catalysts on methanol electrooxidation. Journal of Applied Electrochemistry, 2002, 32(11): 1279-1285
    [182] Wang J, Xi J, Bai Y, et al. Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation. Journal of Power Sources, 2007, 164(2): 555-560
    [183] Prabhuram J, Zhao T S, Liang Z X, et al. A simple method for the synthesis of PtRu nanoparticles on the multi-walled carbon nanotube for the anode of a DMFC. Electrochimica Acta, 2007, 52(7): 2649-2656
    [184] Jeng K-T, Chien C-C, Hsu N-Y, et al. Fabrication and impedance studies of DMFC anode incorporated with CNT-supported high-metal-content electrocatalyst. Journal of Power Sources, 2007, 164(1): 33-41
    [185] Choi J-S, Chung W S, Ha H Y, et al. Nano-structured Pt-Cr anode catalyst over carbon support, for direct methanol fuel cell. Journal of Power Sources, 2006, 156(2): 466-471
    [186]邹汉波,董新法,林维明.碳纳米管在电池工业中的潜在应用.电池,2004, 34(2):126-128
    [187]彭怡,古昌红,傅敏.活性炭改性的研究进展.重庆工商大学学报(自然科学版),2007,24(6):577-580
    [188]于凤文,许建炳,霍超,等.活性炭载体的超声波处理对钌/活性炭氨合成催化剂催化性能的影响.催化学报,2005,26(6):485-488
    [189] Moreno-Castilla C, Ferro-García M A, Joly J P, et al. Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments. Langmuir, 1995, 11(11): 4386-4392
    [190] Rodríguez-Reinoso F. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36(3): 159-175
    [191] Lordi V, Yao N, Wei J. Method for Supporting Platinum on Single-WalledCarbon Nanotubes for a Selective Hydrogenation Catalyst. Chemistry of Materials, 2001, 13(3): 733-737
    [192] Vinke P, van der Eijk M, Verbree M, et al. Modification of the surfaces of a gas-activated carbon and a chemically activated carbon with nitric acid, hypochlorite and ammonia. Carbon, 1994, 32(4): 675-686
    [193] Guha A, Lu W, Zawodzinski Jr. T A, et al. Surface-modified carbons as platinum catalyst support for PEM fuel cells. Carbon, 2007, 45(7): 1506-1517
    [194]刘守新,隋淑娟,孙承林.臭氧化对活性炭表面化学结构及Cr6+吸附性质的影响.林产化学与工业,2006,26(1):33-36
    [195]单晓梅,朱书全,张文辉,等.氧化法改性煤基活性炭和椰壳活性炭的研究.中国矿业大学学报,2003,32(6):729-733
    [196]郑超,王榕,荣成,等.活性炭表面改性对钌基氨合成催化剂的影响.工业催化,2005,13(10):31-35
    [197] Maruyama J, Abe I. Enhancement effect of an adsorbed organic acid on oxygen reduction at various types of activated carbon loaded with platinum. Journal of Power Sources, 2005, 148: 1-8
    [198]陈萍,张鸿斌,林国栋,等.催化裂解CH4或CO制碳纳米管结构性能的谱学表征.高等学校化学学报,1998,19(5):765-769
    [199]江奇,赵勇,卢晓英,等.碳纳米管的活化处理及对其电化学容量影响的研究.化学学报,2004,62(8):829-832
    [200]朱红,葛奉娟,康晓红,等.质子交换膜燃料电池用碳纳米管载铂催化剂的研究.电化学,2003,9(4):445-450
    [201] Wang C, Waje M, Wang X, et al. Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes. Nano Letters, 2004, 4(2): 345-348
    [202]陈煜,唐亚文,孔令涌,等.碳纳米管表面修饰程度对碳纳米管载Pt电催化性能的影响.物理化学学报,2006,22(1):119-123
    [203]苑伟康,吴洪,姜忠义,等.碳纳米管的共价修饰.有机化学,2006,26(11):1508-1517
    [204]王正元,贾志杰,张增民,等.用红外光谱研究硝酸处理对多壁碳纳米管表面羧基的影响.炭素技术,1999,103(5):14-16
    [205]曹茂盛,刘海涛,李辰砂,等.碳纳米管表面处理技术的研究.中国表面工程,2002,15(4):32-36
    [206] Liu Z, Lin X, Lee J Y, et al. Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells. Langmuir, 2002, 18(10): 4054-4060
    [207] Chen J, Xu C, Mao Z, et al. Fabrication of Pt deposited on carbon nanotubes and performance of its polymer electrolyte membrane fuel cells. Science in China(A), 2002, 45(1): 82-86
    [208] Hrapovic S, Liu Y, Male K B, et al. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Analytical Chemistry, 2004, 76(4): 1083-1088
    [209]姚彦丽,张岱,夏兴华.碳纳米管负载金属Pt催化剂的制备和机理研究.无机化学学报,2004,20(5):531-535
    [210] Liu J, Rinzler A G, Dai H, et al. Fullerene Pipes. Science, 1998, 280(5367): 1253-1256
    [211] Niyogi S, Hamon M A, Hu H, et al. Chemistry of Single-Walled Carbon Nanotubes. Accounts of Chemical Research, 2002, 35(12): 1105-1113
    [212] Chen J, Hamon M A, Hu H, et al. Solution Properties of Single-Walled Carbon Nanotubes. Science, 1998, 282(5386): 95-98
    [213]李博,廉永福,施祖进,等.单层碳纳米管的修饰.高等学校化学学报,2000,21(11):1633-1635
    [214] Banerjee S, Wong S S. Functionalization of Carbon Nanotubes with a Metal-Containing Molecular Complex. Nano Letters, 2002, 2(1): 49-53
    [215] Banerjee S, Wong S S. Structural Characterization, Optical Properties, and Improved Solubility of Carbon Nanotubes Functionalized with Wilkinson's Catalyst. Journal of the American Chemical Society, 2002, 124(30): 8940-8948
    [216] Hemraj-Benny T, Banerjee S, Wong S S. Interactions of Lanthanide Complexes with Oxidized Single-Walled Carbon Nanotubes. Chemistry of Materials, 2004, 16(10): 1855-1863
    [217] Zhang Y, Wen Y, Liu Y, et al. Functionalization of single-walled carbon nanotubes with Prussian blue. Electrochemistry Communications, 2004, 6(11): 1180-1184
    [218] Bahr J L, Yang J, Kosynkin D V, et al. Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode. Journal of the American Chemical Society, 2001, 123(27): 6536-6542
    [219] Kooi S E, Schlecht U, Burghard M, et al. Electrochemical Modification of Single Carbon Nanotubes. Angewandte Chemie International Edition, 2002, 41(8): 1353-1355
    [220] Hudson J L, Casavant M J, Tour J M. Water-Soluble, Exfoliated, Nonroping Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126(36): 11158-11159
    [221] Dyke C A, Tour J M. Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions. Nano Letters, 2003, 3(9): 1215-1218
    [222] Huang J-E, Li X-H, Xu J-C, et al. Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon, 2003, 41(14): 2731-2736
    [223] Bandow S, Rao A M, Williams K A, et al. Purification of Single-Wall Carbon Nanotubes by Microfiltration. The Journal of Physical Chemistry B, 1997, 101(44): 8839-8842
    [224] Islam M F, Rojas E, Bergey D M, et al. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Nano Letters, 2003, 3(2): 269-273
    [225] Lee C-L, Ju Y-C, Chou P-T, et al. Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications, 2005, 7(4): 453-458
    [226]吴伯荣,田艳红,马志亲,等.乙炔黑吸附聚合法制取聚苯胺的研究.高分子材料科学与工程,1996,12(4):41-44
    [227] Ago H, Kugler Th, Cacialli F, et al. Workfunction of purified and oxidised carbon nanotubes. Synthetic Metals, 1999, 103(1-3): 2494-2495
    [228]邓建国,王建华,龙新平,等.聚苯胺复合材料研究进展.高分子通报,2002,(3):33-37
    [229] Deng J G, Ding X B, Peng Y X. Hybrid composite of polyaniline containing carbon nanotube. Chinese Chemical Letters, 2001, 12(11): 1037-1040
    [230] Gomez-Romero P. Hybrid Organic-Inorganic Materials in Search of Synergic Activity. Advanced Materials, 2001, 13(3): 163-174
    [231] Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents. The Journal of Physical Chemistry, 1973, 77(11): 1401-1410
    [232] Watkins B F, Behling J R, Kariv E, et al. Chiral electrode. Journal of the American Chemical Society, 1975, 97(12): 3549-3550
    [233] Moses P R, Wier L, Murray R W. Chemically modified tin oxide electrode. Analytical Chemistry, 1975, 47(12): 1882-1886
    [234] Dong S, Wang Y. The application of chemically modified electrodes inanalytical chemistry. Electroanalysis, 1989, 1(2): 99-106
    [235]金利通,仝威,徐金瑞,等.化学修饰电极.第一版.上海:华东师范大学出版社,1992,1
    [236] Shepard V R, Armstrong N R. Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes. The Journal of Physical Chemistry, 1979, 83(10): 1268-1276
    [237] Guo D-J, Li H-L. High Dispersion and Electrocatalytic Properties of Platinum on Functional Multi-Walled Carbon Nanotubes. Electroanalysis, 2005, 17(10): 869-872
    [238] Gao G, Guo D, Wang C, et al. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation. Electrochemistry Communications, 2007, 9(7): 1582-1586
    [239] Simic-Glavaski B, Zecevic S, Yeager E. Study of phthalocyanines in aqueous solutions and adsorbed on electrode surfaces. Journal of Electroanalytical Chemistry, 1983, 150(1-2): 469-479
    [240] Chou J, Jayaraman S, Ranasinghe A D, et al. Efficient Electrocatalyst Utilization: Electrochemical Deposition of Pt Nanoparticles Using Nafion Membrane as a Template. The Journal of Physical Chemistry B, 2006, 110(14): 7119-7121
    [241] Choi J-H, Kim Y-M, Lee J-S, et al. A polyaniline supported PtRu nanocomposite anode and a Pd-impregnated nanocomposite Nafion membrane for DMFCs. Solid State Ionics, 2005, 176(39-40): 3031-3034
    [242] Niu L, Li Q, Wei F, et al. Electrocatalytic behavior of Pt-modified polyaniline electrode for methanol oxidation: Effect of Pt deposition modes. Journal of Electroanalytical Chemistry, 2005, 578(2): 331-337
    [243] Santhosh P, Gopalan A, Vasudevan T, et al. Platinum particles dispersed poly(diphenylamine) modified electrode for methanol oxidation. Applied Surface Science, 2006, 252(22): 7964-7969
    [244] Kulesza P J, Matczak M, Wolkiewicz A, et al. Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol. Electrochimica Acta, 1999, 44(12): 2131-2137
    [245] Bettelheim A, Soifer L, Korin E. Use of electropolymerized films of macrocyclic compounds in direct methanol fuel cell components. Journal of Power Sources, 2004, 130(1-2): 158-162
    [246]陈金伟,曾杰,姜春萍,等.磷钼酸修饰的铂电极对二甲醚氧化的电催化作用.催化学报,2007,28(8):725-729
    [247] Rajesh B, Ravindranathan Thampi K, Bonard J-M, et al. Electronically conducting hybrid material as high performance catalyst support for electrocatalytic application. Journal of Power Sources, 2005, 141(1): 35-38
    [248] Hu Z A, Ren L J, Feng X J, et al. Platinum-modified polyaniline/polysulfone composite film electrodes and their electrocatalytic activity for methanol oxidation. Electrochemistry Communications, 2007, 9(1): 97-102
    [249] Cogo L C, Batisti M V, Pereira-da-Silva M A, et al. Layer-by-layer films of chitosan, poly(vinyl sulfonic acid), and platinum for methanol electrooxidation and oxygen electroreduction. Journal of Power Sources, 2006, 158(1): 160-163
    [250] Kim Y-T, Mitani T. Surface thiolation of carbon nanotubes as supports: A promising route for the high dispersion of Pt nanoparticles for electrocatalysts. Journal of Catalysis, 2006, 238(2): 394-401
    [251] Santhosh P, Gopalan A, Lee K P. Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: Preparation and performances for methanol oxidation. Journal of Catalysis, 2006, 238(1): 177-185
    [252] Ren X, Zelenay P, Thomas S, et al. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources, 2000, 86(1-2): 111-116
    [253] Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Materials Chemistry and Physics, 2003, 78(3): 563-573
    [254] Wasmus S, Küver A. Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry, 1999, 461(1-2): 14-31
    [255] Gasteiger H A, Markovic N M, Ross P N. H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2. Rotating Disk Electrode Studies of CO/H2 Mixtures at 62℃. The Journal of Physical Chemistry, 1995, 99(45): 16757-16767
    [256] Chan K-Y, Ding J, Ren J, et al. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. Journal of Materials Chemistry, 2004, 14(4): 505-516
    [257] Rajesh B, Ravindranathan Thampi K, Bonard J-M, et al. Pt particles supportedon conducting polymeric nanocones as electro-catalysts for methanol oxidation. Journal of Power Sources, 2004, 133(2): 155-161
    [258] Rajesh B, Ravindranathan Thampi K, Bonard J-M, et al. Carbon Nanotubes Generated from Template Carbonization of Polyphenyl Acetylene as the Support for Electrooxidation of Methanol. The Journal of Physical Chemistry B, 2003, 107(12): 2701-2708
    [259] Okada T, Suzuki Y, Hirose T, et al. Novel system of electro-catalysts for methanol oxidation based on platinum and organic metal complexes. Electrochimica Acta, 2004, 49(3): 385-395
    [260] Niu L, Li Q, Wei F, et al. Electrochemical impedance and morphological characterization of platinum-modified polyaniline film electrodes and their electrocatalytic activity for methanol oxidation. Journal of Electroanalytical Chemistry, 2003, 544: 121-128
    [261] Golikand A N, Golabi S M, Maragheh M G., et al. Electrocatalytic oxidation of methanol on (Pb) lead modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) film. Journal of Power Sources, 2005, 145(2): 116-123
    [262] Passalacqua E, Lufrano F, Squadrito G, et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochimica Acta, 2001, 46(6): 799-805
    [263] Sarma L S, Lin T D, Tsai Y-W, et al. Carbon-supported Pt-Ru catalysts prepared by the Nafion stabilized alcohol-reduction method for application in direct methanol fuel cells. Journal of Power Sources, 2005, 139(1-2): 44-54
    [264] Eisenberg A, Yeager H L(Eds.). Perfluorinated Ionomer Membranes. Washington, DC: ACS Symposium Series 180, American Chemical Society, 1982, 48
    [265] Liu H, Ying T, Sun K, et al. Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode. Analytica Chimica Acta, 1997, 344(3): 187-199
    [266] Abraham John S, Ramaraj R. Microenvironment effects on the electrochemical and photoelectrochemical properties of thionine loaded Nafion films. Journal of Electroanalytical Chemistry, 2004, 561: 119-126
    [267] Ganesan V, Abraham John S, Ramaraj R. Multielectrochromic properties ofmethylene blue and phenosafranine dyes incorporated into Nafion film. Journal of Electroanalytical Chemistry, 2001, 502(1-2): 167-173
    [268] Shahrokhian S, Ghalkhani M. Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine-nafion ion-pair as an electron mediator. Electrochimica Acta, 2006, 51(13): 2599-2606
    [269] Komura T, Niu G. Y, Yamaguchi T, et al. Redox and ionic-binding switched fluorescence of phenosafranine and thionine included in Nafion films. Electrochimica Acta, 2003, 48(6): 631-639
    [270] Zhuo Y, Yuan R, Chai Y, et al. A reagentless amperometric immunosensor based on gold nanoparticles / thionine / Nafion-membrane-modified gold electrode for determination ofα-1-fetoprotein. Electrochemistry Communications, 2005, 7(4): 355-360
    [271] Zhuo Y, Yuan R, Chai Y, et al. Amperometric enzyme immunosensors based on layer-by-layer assembly of gold nanoparticles and thionine on Nafion modified electrode surface forα-1-fetoprotein determinations. Sensors and Actuators B: Chemical, 2006, 114(2): 631-639
    [272] Charlier J-C. Defects in Carbon Nanotubes. Accounts of Chemical Research, 2002, 35(12): 1063-1069
    [273] Yang R, Ruan C, Dai W, et al. Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly(thionine). Electrochimica Acta, 1998, 44(10): 1585-1596
    [274] Gao Q, Cui X, Yang F, et al. Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosensors and Bioelectronics, 2003, 19(3): 277-282
    [275] Reid G D, Whittaker D J, Day M A, et al. Femtosecond Electron-Transfer Reactions in Mono- and Polynucleotides and in DNA. Journal of the American Chemical Society, 2002, 124(19): 5518-5527
    [276] de-los-Santosálvarez P, Rodríguez-Granda P, Jesús Lobo-Casta?ón M, et al. New scheme for electrochemical detection of DNA based on electrocatalytic oxidation of NADH. Electrochemistry Communications, 2003, 5(3): 267-271
    [277] Krausa M, Vielstich W. Potential oscillations during methanol oxidation at Pt-electrodes Part 1: experimental conditions. Journal of Electroanalytical Chemistry, 1995, 399(1-2): 7-12
    [278] Chen J, Wang M, Liu B, et al. Platinum Catalysts Prepared with Functional Carbon Nanotube Defects and Its Improved Catalytic Performance for Methanol Oxidation. The Journal of Physical Chemistry B, 2006, 110(24): 11775-11779
    [279] Kua J, Goddard W A III. Oxidation of Methanol on 2nd and 3rd Row Group VIII Transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to Direct Methanol Fuel Cells. Journal of the American Chemical Society, 1999, 121(47): 10928-10941
    [280] Janssen M M P, Moolhuysen J. Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells. Electrochimica Acta, 1976, 21(11): 869-878
    [281] Watanabe M, Uchida M, Motoo S. Preparation of highly dispersed Pt-Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry, 1987, 229(1-2): 395-406
    [282] Ishikawa Y, Liao M-S, Cabrera C R. Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M = Ru, Sn): a theoretical study. Surface Science, 2000, 463(1): 66-80
    [283] Shen P, Chen K, Tseung A C C. Co-deposited Pt-WO3 electrodes. Part 1: Methanol oxidation and in situ FTIR studies. Journal of the Chemical Society, Faraday Transactions, 1994, 90(20): 3089-3096
    [284] Ohtani M, Kuwabata S, Yoneyama H. Electrochemical oxidation of reduced nicotinamide coenzymes at Au electrodes modified with phenothiazine derivative monolayers. Journal of Electroanalytical Chemistry, 1997, 422(1-2): 45-54
    [285]邹勇进,孙立贤,徐芬,等.以新亚甲基蓝为电子媒介体的大肠杆菌微生物燃料电池的研究.高等学校化学学报,2007,28(3):510-513
    [286] Wang J. Analytical Electrochemistry. Second Edition. New York: Wiley-VCH, 2000, 14
    [287] Zhang J, Datta R. Sustained Potential Oscillations in Proton Exchange Membrane Fuel Cells with PtRu as Anode Catalyst. Journal of The Electrochemical Society, 2002, 149(11): A1423-A1431
    [288] Oliveira Neto A, Giz M J, Perez J, et al. The Electro-oxidation of Ethanol on Pt-Ru and Pt-Mo Particles Supported on High-Surface-Area Carbon. Journal of The Electrochemical Society, 2002, 149(3): A272-A279
    [289]王卫平,吕功煊.Co/Fe催化剂乙醇裂解和部分氧化制氢研究.分子催化,2002,16(6):433-437
    [290] Zhou W J, Song S Q, Li W Z, et al. Pt-based anode catalysts for direct ethanol fuel cells. Solid State Ionics, 2004, 175(1-4): 797-803
    [291] Vigier F, Coutanceau C, Perrard A, et al. Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry, 2004, 34(4): 439-446
    [292] Qu L, Dai L. Substrate-Enhanced Electroless Deposition of Metal Nanoparticles on Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127(31): 10806-10807
    [293] Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 2003, 253(2): 337-358
    [294] Han K I, Lee J S, Park S O, et al. Studies on the anode catalysts of carbon nanotube for DMFC. Electrochimica Acta, 2004, 50(2-3): 791-794
    [295] Yuen S-M, Ma C C M, Lin Y-Y, et al. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Composites Science and Technology, 2007, 67(11-12): 2564-2573
    [296] Ou Y-Y, Huang M H. High-Density Assembly of Gold Nanoparticles on Multiwalled Carbon Nanotubes Using 1-Pyrenemethylamine as Interlinker. The Journal of Physical Chemistry B, 2006, 110(5): 2031-2036
    [297] Sun X, Li R, Villers D, et al. Composite electrodes made of Pt nanoparticles deposited on carbon nanotubes grown on fuel cell backings. Chemical Physics Letters, 2003, 379(1-2): 99-104
    [298] Jiang K, Eitan A, Schadler L S, et al. Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes. Nano Letters, 2003, 3(3): 275-277
    [299] Czerw R, Terrones M, Charlier J-C, et al. Identification of Electron Donor States in N-Doped Carbon Nanotubes. Nano Letters, 2001, 1(9): 457-460
    [300] Roy S C, Christensen P A, Hamnett A. Direct Methanol Fuel Cell Cathodes with Sulfur and Nitrogen-Based Carbon Functionality. Journal of The Electrochemical Society, 1996, 143(10): 3073-3079
    [301] Roy S C, Harding A W, Russell A E, et al. Spectroelectrochemical Study of the Role Played by Carbon Functionality in Fuel Cell Electrodes. Journal of The Electrochemical Society, 1997, 144(7): 2323-2328
    [302] Jin S H, Park Y-B, Yoon K H. Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite.Composites Science and Technology, 2007, 67(15-16): 3434-3441
    [303] Van Dam H E, Van Bekkum H. Preparation of platinum on activated carbon. Journal of Catalysis, 1991, 131(2): 335-349
    [304] Lamy C, Belgsir E M, Léger J-M. Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC). Journal of Applied Electrochemistry, 2001, 31(7): 799-809
    [305] Lemos S G, Oliveira R T S, Santos M C, et al. Electrocatalysis of methanol, ethanol and formic acid using a Ru/Pt metallic bilayer. Journal of Power Sources, 2007, 163(2): 695-701
    [306] Chen S, Schell M. A comparison of multistability in the electrocatalyzed oxidations of methanol and ethanol in acid and alkaline solutions. Journal of Electroanalytical Chemistry, 1999, 478(1-2): 108-117
    [307] Shin J, Tornquist W J, Korzeniewski C, et al. Elementary steps in the oxidation and dissociative chemisorption of ethanol on smooth and stepped surface planes of platinum electrodes. Surface Science, 1996, 364(2): 122-130
    [308] Camara G A, Iwasita T. Parallel pathways of ethanol oxidation: The effect of ethanol concentration. Journal of Electroanalytical Chemistry, 2005, 578(2): 315-321
    [309] Pacheco Santos V, Del Colle V, de Lima R B, et al. In situ FTIR studies of the catalytic oxidation of ethanol on Pt(111) modified by bi-dimensional osmium nanoislands. Electrochimica Acta, 2007, 52(7): 2376-2385
    [310] Liu Z, Ling X Y, Su X, et al. Preparation and characterization of Pt/C and Pt-Ru/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources, 2005, 149: 1-7
    [311] Liu B, Chen J H, Zhong X X, et al. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation. Journal of Colloid and Interface Science, 2007, 307(1): 139-144
    [312] Wu G, Li L, Li J-H, et al. Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon, 2005, 43(12): 2579-2587
    [313] Li X, Zhong M, Sun C, et al. A novel bilayer film material composed of polyaniline and poly(methylene blue). Materials Letters, 2005, 59(29-30): 3913-3916
    [314] Becerik I, Süzer S, Kadirgan F. Platinum-palladium loaded polypyrrole film electrodes for the electrooxidation ofα-glucose in neutral media. Journal ofElectroanalytical Chemistry, 1999, 476(2): 171-176
    [315] MoravcováS, Bouzek K. Modification and Characterization of a Novel Composite Material Based on a Nafion Membrane and Polypyrrole. Journal of The Electrochemical Society, 2005, 152(10): A2080- A2088
    [316] Biallozor S, Kupniewska A. Properties of electrodes modified with poly(3,4-ethylenedioxythiophene) and Pt particles-Part II. Bulletin of Electrochemistry, 2004, 20(6): 241-246
    [317] Golabi S M, Nozad A. Electrocatalytic oxidation of methanol on electrodes modified by platinum microparticles dispersed into poly(o-phenylenediamine) film. Journal of Electroanalytical Chemistry, 2002, 521(1-2): 161-167
    [318] Jiang C, Lin X. Preparation of three-dimensional composite of poly(N-acetylaniline) nanorods/platinum nanoclusters and electrocatalytic oxidation of methanol. Journal of Power Sources, 2007, 164(1): 49-55
    [319] Inzelt G, Pineri M, Schultze J W, et al. Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta, 2000, 45(15-16): 2403-2421
    [320] Chen S-M, Lin K-C. The electrocatalytic properties of polymerized neutral red film modified electrodes. Journal of Electroanalytical Chemistry, 2001, 511(1-2): 101-114
    [321] Karyakin A A, Ivanova Y N, Karyakina E E. Equilibrium (NAD+/NADH) potential on poly(Neutral Red) modified electrode. Electrochemistry Communications, 2003, 5(8): 677-680
    [322] Benito D, Gabrielli C, García-Jare?o J J, et al. Study by EQCM on the voltammetric electrogeneration of poly(neutral red). The effect of the pH and the nature of cations and anions on the electrochemistry of the films. Electrochimica Acta, 2003, 48(27): 4039-4048
    [323] BroncováG, Shishkanova T V, Mat?jka P, et al. Citrate selectivity of poly(neutral red) electropolymerized films. Analytica Chimica Acta, 2004, 511(2): 197-205
    [324] Chen C, Gao Y. Electrosyntheses of poly(neutral red), a polyaniline derivative. Electrochimica Acta, 2007, 52(9): 3143-3148
    [325] Tang X, Fang C, Yao B, et al. Determination of Nitric Oxide by Glassy Carbon Electrodes Modified with Poly(Neutral Red). Microchemical Journal, 1999, 62(3): 377-385
    [326] Karyakin A A, Bobrova O A, Karyakina E E. Electroreduction of NAD+ toenzymatically active NADH at poly(neutral red) modified electrodes. Journal of Electroanalytical Chemistry, 1995, 399(1-2): 179-184
    [327] Lai E K W, Beattie P D, Holdcroft S. Electrocatalytic reduction of oxygen by platinum microparticles deposited on polyaniline films. Synthetic Metals, 1997, 84(1-3): 87-88
    [328] Lai E K W, Beattie P D, Orfino F P, et al. Electrochemical oxygen reduction at composite films of Nafion@, polyaniline and Pt. Electrochimica Acta, 1999, 44(15): 2559-2569
    [329] Li Y, Lenigk R, Wu X, et al. Investigation of Oxygen- and Hydrogen Peroxide-Reduction on Platinum Particles Dispersed on Poly(o-phenylenediamine) Film Modified Glassy Carbon Electrodes. Electroanalysis, 1998, 10(10): 671-676
    [330]毛宗强,谢晓峰,马紫峰,等.燃料电池.第一版.北京:化学工业出版社,2005,113
    [331] Coutanceau C, Croissant M J, Napporn T, et al. Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochimica Acta, 2000, 46(4): 579-588
    [332] Shao Y, Yin G, Wang J, et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction. Journal of Power Sources, 2006, 161(1): 47-53
    [333] Xu Y, Lin X. Selectively attaching Pt-nano-clusters to the open ends and defect sites on carbon nanotubes for electrochemical catalysis. Electrochimica Acta, 2007, 52(16): 5140-5149
    [334] Selvaraj V, Alagar M, Sathish Kumar K. Synthesis and characterization of metal nanoparticles-decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Applied Catalysis B: Environmental, 2007, 75(1-2): 129-138
    [335] Philip B, Xie J N, Abraham J K, et al. Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polymer Bulletin, 2005, 53(2): 127-138
    [336] Sainz R, Benito A M, Martinez M T, et al. Soluble Self-Aligned Carbon Nanotube/Polyaniline Composites. Advanced Materials, 2005, 17(3): 278-280
    [337] Wu T-M, Lin Y-W, Liao C-S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon, 2005, 43(4): 734-740
    [338] Palys B, Bokun A, Rogalski J. Poly-o-phenylenediamine as redox mediator for laccase. Electrochimica Acta, 2007, 52(24): 7075-7082
    [339] O’Brien K B, Killoran S J, O’Neill R D, et al. Development and characterization in vitro of a catalase-based biosensor for hydrogen peroxide monitoring. Biosensors and Bioelectronics, 2007, 22(12): 2994-3000
    [340] Wang P, Ma Z, Zhao Z, et al. Oxygen reduction on the electrocatalysts based on pyrolyzed non-noble metal/poly-o-phenylenediamine/carbon black composites: New insight into the active sites. Journal of Electroanalytical Chemistry, 2007, 611(1-2): 87-95
    [341] Pournaghi-Azar M H, Habibi B. Electrocatalytic oxidation of methanol on poly(phenylenediamines) film palladized aluminum electrodes, modified by Pt micro-particles: Comparison of permselectivity of the films for methanol. Journal of Electroanalytical Chemistry, 2007, 601(1-2): 53-62
    [342] Zhang X, Wang S, Jia L, et al. An electrochemical sensor for determination of calcium dobesilate based on PoPD/MWNTs composite film modified glassy carbon electrode. Journal of Biochemical and Biophysical Methods, 2008, 70(6): 1203-1209
    [343] Hand R L, Nelson R F. The Anodic Decomposition Pathways of Ortho- and Meta-substituted Anilines. Journal of The Electrochemical Society, 1978, 125(7): 1059-1069
    [344] Wu G, Li L, Li J-H, et al. Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films. Journal of Power Sources, 2006, 155(2): 118-127
    [345] Tang H, Chen J H, Huang Z P, et al. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon, 2004, 42(1): 191-197
    [346] Dong S, Qiu Q. Electrodeposition of platinum particles on glassy carbon modified with cobalt porphyrin and nafion film and their electrocatalytic reduction of dioxygen. Journal of Electroanalytical Chemistry, 1991, 314(1-2): 223-239
    [347] Huang M, Shao Y, Sun X, et al. Alternate Assemblies of Platinum Nanoparticles and Metalloporphyrins as Tunable Electrocatalysts for Dioxygen Reduction. Langmuir, 2005, 21(1): 323-329
    [348] Alonso-Vante N, Cattarin S, Musiani M. Electrocatalysis of O2 reduction at polyaniline+molybdenum-doped ruthenium selenide composite electrodes.Journal of Electroanalytical Chemistry, 2000, 481(2): 200-207
    [349] Kabbabi A, Gloaguen F, Andolfatto F, et al. Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane. Journal of Electroanalytical Chemistry, 1994, 373(1-2): 251-254
    [350] Gamez A, Richard D, Gallezot P, et al. Oxygen redution on well-defined platinum nanoparticles inside recast inomer. Electrochimica Acta, 1996, 41(2): 307-314
    [351] Yu J-S, Kang S, Yoon S B, et al. Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter. Journal of the American Chemical Society, 2002, 124(32): 9382-9383
    [352] Li W, Liang C, Qiu J, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002, 40(5): 791-794
    [353] Shioyama H, Yamada Y, Ueda A, et al. Graphite intercalation compounds as PEMFC electrocatalyst supports. Carbon, 2005, 43(11): 2374-2378
    [354] Li W, Liang C, Zhou W, et al. Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B, 2003, 107(26): 6292-6299
    [355] Zhao L, Gao L. Novel in situ synthesis of MWNTs-hydroxyapatite composites. Carbon, 2004, 42(2): 423-426
    [356] Rajalakshmi N, Ryu H, Shaijumon M M, et al. Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material. Journal of Power Sources, 2005, 140(2): 250-257
    [357] Nabae Y, Yamanaka I, Otsuka K. Electro-catalysis of the Cu/carbon cathode for the reduction of O2 during fuel-cell reactions. Applied Catalysis A: General, 2005, 280(2): 149-155
    [358] Recupero F, Punta C. Free radical functionalization of organic compounds catalyzed by N-Hydroxyphthalimide. Chemical Reviews, 2007, 107(9): 3800-3842
    [359] Yang G, Ma Y, Xu J. Biomimetic Catalytic System Driven by Electron Transfer for Selective Oxygenation of Hydrocarbon. Journal of the American Chemical Society, 2004, 126(34): 10542-10543
    [360] Pan D, Chen J, Tao W, et al. Polyoxometalate-Modified Carbon Nanotubes: New Catalyst Support for Methanol Electro-oxidation. Langmuir, 2006, 22(13): 5872-5876
    [361] Liu C, Bard A J, Wudl F, et al. Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes and Their Possible Application in Supercapacitors. Electrochemical and Solid-State Letters, 1999, 2(11): 577-578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700