用户名: 密码: 验证码:
联二酰肼衍生物和联1,3,4-噁二唑衍生物的合成、自组装与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于分子间弱相互作用构建超分子自组装体系在生命科学和材料科学领域具有非常重要的意义。本论文在前期研究的基础上,设计并合成了四个系列化合物,即双楔形和线形联二酰肼衍生物N’,N’-二[3,4,5-三(烷氧基链)苯甲酰基]草酰肼 FH-Tn(n=3,4,5,6,7,8,10)、N,N’-二[4-对烷氧基苯甲酰基]草酰肼FH-n(n=3,4,5,6,7,8,10,16)和N,N’-二[4-异辛氧基苯甲酰基]草酰肼FH-Z8,线形联和双楔形1,3,4-噁二唑衍生物2,2-二(对烷氧基苯基)-联(1,3,4-噁二唑)BOXD-n(n=1,3,4,5,6,7,8,10,16)和2,2-二(3,4,5-三(烷氧基链)苯基)-联(1,3,4-噁二唑)BOXD-Tn(n=3,4,5,6,7,8,10,14)。系统研究了两类体系在溶液中和本体状态下的组装行为,探讨了分子结构因素(分子的几何形状、分子尾端烷基链长度、分子间相互作用等)对体系的液晶行为、有机凝胶行为的影响,从分子层面揭示了分子有序聚集的驱动力。获得了基于分子间四重氢键的超分子体系和具有较强荧光量子效率的基于联1,3,4-噁二唑衍生物的超分子体系。论文的主要结果如下:
     1.在低浓度的氯仿溶液中(<255μM),双楔形联二酰肼衍生物FH-T7以单分散状态存在,酰胺基团形成分子内氢键,随浓度增加,发生六元环分子内氢键向五元环分子内氢键的构象转变。高浓度氯仿溶液和本体状态下,FH-Tn分子基于分子间四重氢键形成超分子链。测得FH-T7基于NH-1和NH-2的键合常数分别为447.5和217.2 M~1。与之相对,具有支化烷基链的线形联二酰肼衍生物FH-Z8在高浓度氯仿溶液中,形成基于联二酰肼基团的分子间四重氢键作用和π-π 作用协同的超分子聚集体。FH-Z8基于NH-1和NH-2的键合常数分别为2.2×10~3M~1和1.8×10~3 M~1。
     2.FH-Tn(n=6,7,8,10)呈双向柱状液晶相,在液晶态,分子间形成分子间氢键并进一步堆砌成柱状液晶态。FH-Tn在乙醇中可以形成有机凝胶。其凝胶能力、形貌、分子排列模式和分子间氢键强度等受尾端烷基链的影响很大,FH-T6和FH-T7在乙醇中表现出非常强的凝胶能力,临界浓度分别为2.1×10~-3mol L~-1和2.3×10~-3 mol L~-1。在FH-Tn(n=5,6,7)的凝胶中观察到了具有非均一螺距的左旋和右旋纳米带。FH-Z8具有凝胶1,2二氯乙烷的能力,其形成凝胶的临界浓度为0.14 wt%。以上研究结果表明:联二酰肼基团是形成超分子聚集体的有效的开放型分子间四重氢键构筑基元。
     3.对BOXD-3和BOXD-T3的分子模拟和BOXD-1的单晶结构分析表明:该类联1,3,4-噁二唑衍生物具有全共轭结构。STM研究表明BOXD-7和BOXD-16在HOPG上形成完美的2D结构,面对面的和肩对肩的电子给体-受体作用是其形成超分子有序结构的主要驱动力。线形BOXD-n呈现丰富的液晶相如向列相、具有较大相变焓和大角度倾斜的近晶C相(倾斜角约50°)和高有序近晶相。在基片没有经过任何取向的情况下,在BOXD-5的Sm X相中观测到大面积单畴区域。双楔形BOXD-Tn分子随尾端烷基链的长度的不同,呈现六方柱状和长方柱状液晶相。BOXD-T14呈现高有序室温六方柱状相。结合单晶分析结果和STM研究结果,确认分子间基于1,3,4-噁二唑环与苯环间的电荷给体-受体作用是该系列化合物呈现具有较大相变焓和大角度倾斜的近晶C相的微观成因。
     4.BOXD-n和BOXD-Tn在非极性溶剂和固体下都表现出非常强的荧光发射(在环己烷中Φ_F>90%,BOXD-6固体粉末Φ_F=57%)。BOXD-Tn在溶液中的荧光发射峰表现出溶液极性依赖性(溶液极性增加,荧光发射峰红移,并伴随荧光量子效率的降低)。BOXD-Tn在稀溶液中(1×10~-3 mol/L)为单分散状态并表现分子内电荷转移的特征。BOXD-Tn在不同溶剂体系中可以形成纳米粒子、纤维、螺旋等多种形貌的聚集。通过在BOXD-Tn的DMSO溶液中加入水的办法获得了高荧光量子效率的BOXD-Tn纳米粒子(Φ_F≈60%)。BOXD-T4和BOxD-T5可在DMSO中形成具有高荧光发射的凝胶,其干凝胶的荧光量子效率分别可达100%和72%。这是目前报道的在固体下表现出的最高的荧光量子效率。BOXD-T8在DMSO中可以自组装形成具有蓝色荧光发射的纳米粒子并逐渐发展为纳米螺旋纤维(据我们所知,这是第一例观察到非手性π共轭分子自组装形成纳米粒子,并由纳米粒子发展形成螺旋纤维);BOXD-T8在乙醇中可以自组装形成纳米纤维,并进一步形成具有荧光增强性的有机凝胶。
Self-assembly of molecules through noncovalent interactions into various superstructures opens new possibilities of constructing novel materials in biology and materials fields. We have designed and synthesized four series twin-tapered and linear-shaped bi-dihydrazide derivatives Oxalyl acid N’, N’-di(3, 4, 5-trialkoxybenzoyl)-hydrazide FH-Tn (n = 3, 4, 5, 6, 7, 8, 10), Oxalyl acid N’, N’-di(4-alkoxybenzoyl)-hydrazide FH-n (n = 3, 4, 5, 6, 7, 8, 10, 16), Oxalyl acid N’, N’-di(4-(2-ethylhexyloxy)benzoyl)-hydrazide FH-Z8 and linear-shaped and twin-tapered bi-1,3,4-oxadiazole derivatives 2, 2-Bis(4-alkoxyphenyl)-bi-1, 3, 4-oxadiazole BOXD-n (n = 1, 3, 4, 5, 6, 7, 10, 16) and 2, 2-Bis(3, 4, 5-trialkoxyphenyl)-bi-1, 3, 4-oxadiazole BOXD-Tn (n = 3, 4, 5, 6, 7, 8, 10, 14). The self-assembly behaviors of the FH-Tn, FH-Z8 and BOXD-Tn and BOXD-n either in solutions or in bulk were systematically investigated, and the effect of molecular structures (molecular geometry, length of the terminal chains and intermolecular interactions, etc.) on their liquid crystalline behaviors and gellation behaviors was discussed to understand the driving force for their self-assembly on molecular level. It was confirmed that bi-dihydrazide unit block can be used to construct supramolecules through self-complementary quadruple hydrogen-bonding. Electron DA interaction was demonstrated to be the driving force for the self assembly of bi-1,3,4-oxadiazole derivatives, which exhibited high. The obtained results were outlined as follows:
     Twin-tapered bi-dihydrazide derivatives FH-Tn were involved in intramolecular hydrogen bonding between amide groups in monomer, and there existed conformational transitions, e.g. from 6-membered rings to 5-membered rings intramolecular H-bonding upon concentrating at lower concentrations (< 255 M). Results from 1H NMR diluting experiments, FTIR spectroscopy and mass spectroscopy revealed that intermolecular H-bonds are the main driving force for the formation of supramolecular chains of FH-Tn either in chloroform at higher concentrations or in bulk. Enantiotropic columnar phases were observed in FH-Tn (n = 6, 7, 8, 10) and room temperature column hexagonal phases were obtained by air-drying the chloroform solutions of FH-T6, and FH-T7. In addition, FH-Tn (n = 3, 4, 5, 6, 7, 8, 10) are effective gelators in ethanol. The gelling ability in ethanol, the morphologies, packing structures and intermolecular H-bonding strength were significantly influenced by the length of the alkoxy chains. FH-T6 and FH-T7 showed strong gelation ability in ethanol with critical gelation concentrations of 2.1×10-3 mol L-1 and 2.3×10-3 mol L-1 respectively. Both left- and right-handed helical ribbons with non-uniform helical pitch were observed in FH-Tn (n = 5, 6, 7) gels. Linear shaped bi-dihydrazide derivative FH-Z8 with branched terminal alkyl chains self-assemblies to supramolecules through quadruple hydrogen bonds between bi-dihydrazide units and - interactions in chloroform at higher concentrations. The association constants (K) in chloroform were 2.2×103 M-1 and 1.8×103 M-1 based on NH1 and NH2 in FH-Z8, respectively, which are relatively larger than that of the twin-tapered FH-T7. FH-Z8 could gel dichloroethane with the critical gelation concentrations (CGC) of 0.14 wt%, and spontaneously crystallization from its gel upon storage at room temperature. These results suggested that bi-dihydrazide units could be used as self-complementary quadruple hydrogen-bonding units to assemble new supramolecules.
     Fully conjugated conformations were demonstrated either by computer simulation of BOXD-n and BOXD-Tn or in single-crystal state of BOXD-1. Well-defined 3D DA architectures with strong face-to-face and edge-to-edge donor-acceptor interactions were observed in the sing-crystal structure of BOXD-1. Nematic phase, SmC phase with large tilted angle ( 50°) and relatively large transition enthalpic values and a highly ordered SmX phase were demonstrated in BOXD-n (n = 5, 6, 7, 8, 10, 16) through tailing the terminal chains and relatively large scale monodomains were prepared in the SmX phase of BOXD-5 even without any surface treatment. Strong blue fluorescent emissions were observed in BOXD-6 either in cyclohexane ( F 92 %) or in solid state ( F 57 %). The strong donor-acceptor interaction between alkyoxyphenylene ring and 1,3,4-oxadiazole ring was thought to be the driving force for the molecules to self-assemble into large angle tilted layered structure. The columnar mesophases for BOXD-Tn (n = 5, 6, 7, 8, 10) were observed even at low temperature (-20 ) during cooling. A room temperature Colho phase was obtained for BOXD-T14. All the compounds have been demonstrated to exhibit good fluorescence properties either in cyclohexane solution or in bulk. BOXD-Tn showed monomeric feature and intramolecular charge transition at concentrations lower than 1×10-5 mol/L. Extremely strong luminescent gels and nanoparticles based on BOXD-Tn were prepared by tailing the length of the terminal chains. The xerogel of BOXD-T4 shows very strong fluorescence in the blue spectral region ( max = 423 nm) with an efficiency F up to 100 %. To the best of our knowledge, this is the strongest fluorescence quantum yield reported in solid states.BOXD-T8 molecules self-assembled to nanoparticles and further to helical nanofibers with blue fluorescence emission in DMSO, while nanoribbons which resulted in emission-enhanced gel of ethanol. The strong fluorescent emissions of BOXD-T8 in isolated state in apolar solvents were attributed to coplanar conformation of the rigid backbone and the strong fluorescent emissions of BOXD-T8 in the aggregation states were attributed to the coplanar conformation of the rigid backbone and J-aggregation. To the best of our knowledge, this is the first observation of evolution of nanoparticles to helical fibers of an achiral linear -conjugated molecule.
引文
[1] Lehn J M. Toward Self-organization and complex Matter [J]. Science, 2002,295: 2400.
    [2] Lehn J M. Supramolecular chemistry [M]. VCH press: New York, 1995,Lawrence.
    [3] Steiner T. The hydrogen bond in the solid state [J]. Angew. Chem. Int. Ed.,2002,41:48.
    [4] Weinstein S, Leiserowitz L, Hil-Av E. Chiral secondary amides. 2. Molecularpacking and chiral recognition [J]. J. Am. Chem. Soc, 1980, 102: 2768.
    [5] Zimmerman S C, Zeng F, Reichert DEC, Kolotuchin S V. Self-assemblingdendrimers [J]. Science, 1996, 271: 1095.
    [6] Boucher E, Simard M, Wuest J D J. Use of hydrogen-bonds to controlmolecular aggregation-behavior of dipyridones and pyridine-pyrimidonesdesigned to form cyclic triplexes [J]. J. Org. Chem., 1995, 60: 1408.
    [7] Yang J, Fan E, Geib S J, Hamilton A D. Hydrogen-bonding control ofmolecular self-assembly: formation of a 2 + 2 complex in solution and in thesolid state [J]. J. Am. Chem. Soc, 1993, 115: 5314.
    [8] Whitesides G M, Simanek E E, Mathias J P, Seto C T, Chin D N, Mammen M,Gordon D M. Noncovalent Synthesis: Using Physical-Organic Chemistry ToMake Aggregates [J]. Acc. Chem. Res., 1995, 28: 37.
    [9] Vreekamp R H, van Duynhoven J P M, Hubert M, Verboom W, Reinhoudt D N.Molecular boxes based on calyx [4] arene double rosettes [J]. Angew. Chem.,Int. Ed. Engl, 1996, 35: 1215.
    [10] Mascal M, Hext N M, Warmuth R, Moore M H, Turkenburg J. P.Programming a hydrogen-bonding code for the specific generation of asupermacrocycle [J]. Angew. Chem., Int. Ed., 1996, 35: 2204.
    [11] Beijer F H, Kooijman H, Spek A L, Sijbesma R P, Meijer E W. Self-Complementarity Achieved through Quadruple Hydrogen Bonding [J].Angew. Chem., 1998, 110, 79-82; Angew. Chem., Int. Ed., 1998, 37: 75.
    [12] Beijer F H, Sijbesma R P, Kooijman H, Spek A L, Meijer E W. StrongDimerization of Ureidopyrimidones via Quadruple Hydrogen Bonding [J]. J.Am. Chem. Soc, 1998, 120: 6761.
    [13] Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Ky Hirschberg J H,Lange R F M, Lowe J K L, Meijer E W. Reversible Polymers Formed fromSelf-Complementary Monomers Using Quadruple Hydrogen Bonding [J].Science, 1997, 278: 1601.
    [14] Sijbesma R P, Meijer E W. Quadruple hydrogen bonded systems [J]. Chem.Commun., 2003, 5.
    [15] Zhao X, Wang X Z, Jiang X K, Chen Y Q, Li Z T, Chen G J.Hydrazide-Based Quadruply Hydrogen-Bonded Heterodimers. Structure,Assembling Selectivity, and Supramolecular Substitution [J]. J. Am. Chem.Soc, 2003, 125: 15128.
    [16] Zimmermann S C, Corbin P S. Heteroaromatic Modules for Self-AssemblyUsing Multiple Hydrogen Bonds [M]. Struct. Bonding (Berlin), 2000, 63-94.
    [17] Schmuck C, Wienand W. Self-Complementary Quadruple Hydrogen-BondingMotifs as a Functional Principle: From Dimeric Supramolecules toSupramolecular Polymers [J]. Angew. Chem., Int. Ed., 2001, 40: 4363.
    [18] Brunsveld L, Folmer B J B, Meijer E W, Sijbesma R P. SupramolecularPolymers [J]. Chem. Rev., 2001, 101: 4071.
    [19] Oliver G, Shinkai S. Gelators for organic liquids based on self-assembly: anew facet of supramolecular and combinatorial chemistry [J]. Current Opinionin Colloid & Interface Science, 2002, 7: 148.
    [20] Abdallah D J, Weiss R G. Organogels and low molecular mass organicgelators [J]. Adv. Mater., 2000, 12: 1237.
    [21] Terech P, Weiss R G Low molecular mass gelators of organic liquids and theproperties of their gels [J]. Chem. Rev., 1997, 97: 3133.
    [22] Sangeetha N M, Maitra U. Supramolecular gels: Functions and uses [J].Chem. Soc. Rev., 2005, 34: 821.
    [23] Dastidar P. Supramolecular gelling agents: can they be designed? [J]. Chem.Soc. Rev., 2008, 37: 2699.
    [24] Oliver G, Shinkai S, Sugar-integrated gelators of organic solvents [J]. Chem.Eur. J., 2001,20:4328.
    [25] Oliver G, Shinkai S, Phase separation in the mixture of schizophyllan andpoly(ethylene oxide) in aqueous solution driven by a specific interactionbetween the glucose side chain and poly(ethylene oxide) [J]. CarbohydrateResearch, 2001,331:307.
    [26] John G, Jung J H, Masuda M. Unsaturation effect on gelation behavior of arylglycolipids [J]. Langmuir, 2004, 20: 2060.
    [27] Luo X Z, Li C, Liang Y Q. Self-assembled organogels formed by monoalkylderivatives of oxamide [J]. Chem.Commun., 2000, 2091.
    [28] Hashimoto M, Ujiie S, Mori A. Low molecular weight gelators withhexagonal order in their liquid-crystal phases and gel states:5-cyano-2-(3,4,5-trialkoxybenzoylamino)tropones [J]. Adv.Mater., 2003, 10:797.
    [29] Van Esch J, Feyter S D, Kellogg R M, Schryver F D, Feringa B L.Self-assembly of bisurea compounds in organic solvents and on solidsubstrates [J]. Chem. Eur. J., 1997, 3: 1238.
    [30] Van Esch J, Schoonbeek F, de Loos M, Kooijman, H, Spek A L, Kellogg RM, Feringa B L. Cyclic bis-urea compounds as gelators for organic solvents [J].Chem. Eur. J., 1999, 5: 937.
    [31] Schoonbeek F S, van Esch J H, Hulst R, Kellogg R M, Feringa B L. Geminalbis-ureas as gelators for organic solvents: Gelation properties and structuralstudies in solution and in the gel state [J] Chem. Eur. J., 2000, 6: 633.
    [32] Schoonbeek F S, van Esch J, Wegewijs B, Rep D B A, de Haas M P,Klapwijk T M, Kellogg R M, Feringa B L. Efficient intermolecular chargetransport in self-assembled fibers of mono- and bithiophene bisureacompounds [J]. Angew. Chem., Int. Ed., 1999, 38: 1393.
    [33] Estroff L A, Hamilton A D. Effective gelation of water using a series ofbis-urea dicarboxylic acids [J]. Angew. Chem., Int. Ed. 2000, 39: 3447.
    [34] Wurthner F, Hanke B, Lysetska M, Lambright G, Harms G S. Gelation of ahighly fluorescent urea-functionalized perylene bisimide dye [J]. Org. Lett.,2005, 7: 967.
    [35] Zhou Y, Yi T, Li T, Zhou Z, Li F, Huang W, Huang C. Morphology andWettability tunable two-dimensional superstructure assembled by hydrogenbonds and hydrophobic interactions [J]. Chem. Mater. 2006, 18: 2974.
    [36] Brunsveld L, Zhang H, Glasbeek M, Vekemans J A J M, Meijer E W.Hierarchical Growth of Chiral Self-Assembled Structures in Protic Media [J].J. Am. Chem. Soc, 2000, 122: 6175.
    [37] Van Gorp J J, Vekemans J A J M, Meijer E W. C3-SymmetricalSupramolecular Architectures: Fibers and Organic Gels from DiscoticTrisamides and Trisureas [J]. J. Am. Chem. Soc, 2002, 124: 14759.
    [38] Engelkamp H, Middelbeek S, Nolte R J M. Self-Assembly of Disk-ShapedMolecules to Coiled-Coil Aggregates with Tunable Helicity [J]. Science, 1999,284: 785.
    [39] George S J, Ajayaghosh A, Jonkheijin P, Schenning A P H J, Meijer E W.Coiled-Coil Gel Nanostructures of Oligo(p-phenylenevinylene)s:Gelation-Induced Helix Transition in a Higher-Order SupramolecularSelf-Assembly of a Rigidπ-Conjugated System [J]. Angew. Chem., Int. Ed.,2004, 43: 3422.
    [40] Lee S J, Lee S S, Kim J S, Lee J Y, Jung J H. Mirror Image Nanostructures ofNew Chromogenic Azobenzene Gels by Introduction of Alanine Moiety [J].Chem. Mater., 2005, 17: 6517.
    [41] Sagawa T, Fukugawa S, Yamada T, Ihara H. Self-Assembled FibrillarNetworks through Highly Oriented Aggregates of Porphyrin and PyreneSubstituted by Dialkyl 1-Glutamine in Organic Media [J]. Langmuir, 2002, 18:7223.
    [42] Palui G, Simon F X, Schmutz M, Mesini P J, Banerjee A. Organogelatorsfrom self-assembling peptide based dendrimers: Structural and morphologicalfeatures [J]. Tetrahedron, 2008, 64: 175.
    [43] Xue P C, Lu R, Li D M, Jin M, Tan C H, Bao C Y, Wang Z M, Zhao Y YNovel CuS Nanofibers Using Organogel as a Template: Controlled byBinding Sites [J]. Langmuir, 2004, 20: 11234.
    [44] Snip E, Koumoto K, Shinkai S. Gel formation properties of a uracil-appendedcholesterol gelator and cooperative effects of the complementary nucleobases[J].Tetrahedron, 2002, 58: 8863.
    [45] Jung J H, Shinkai S, Shimizu T. Nanometer-Level Sol-Gel Transcription ofCholesterol Assemblies into Monodisperse Inner Helical Hollows of the Silica[J]. Chem. Mater., 2003, 15: 2141.
    [46] Xue P C, Lu R, Li D M, Jin M, Bao C Y, Zhao Y Y, Wang Z M.Rearrangement of the Aggregation of the Gelator during Sol-GelTranscription of a Dimeric Cholesterol-Based Viologen Derivative intoFibrous Silica [J]. Chem. Mater., 2004, 16: 3702.
    [47] Kawano S, Fujita N, Shinkai S. A Coordination Gelator That Shows aReversible Chromatic Change and Sol-Gel Phase-Transition Behavior uponOxidative/Reductive Stimuli [J]. J. Am. Chem. Soc, 2004, 126: 8592.
    [48] Hanabusa K, Yamada M, Kimura M, Shirai H. Prominent gelation and chiralaggregation of alkylamides derived from trans-1,2-diaminocyclohexane [J].Angew.Chem, Int. Ed., 1996, 35: 1949.
    [49] Cai W, Wang G T, Du P, Wang R X, Jiang X K, Li Z T. FoldamerOrganogels: A Circular Dichroism Study of Glucose-Mediated DynamicHelicity Induction and Amplification [J]. J. Am. Chem. Soc, 130: 13450.
    [50] van Esch J, Feyter S D, Kellogg R M, Schryver F D, Feringa B L.Self-Assembly of Bisurea Compounds in Organic Solvents and on SolidSubstrates [J]. Chem.Eur. J., 1997, 3: 1238.
    [51] C Bao, R Lu, M Jin, P Xue, C Tan, T Xu, G Liu and Y Zhao, Helical stackingtuned by alkoxy side chains inπ-conjugated triphenylbenzene discoticderivatives [J]. Chem. Eur. J., 2006, 12: 3287.
    [52] De Gennes P G, Prost J. The physics of liquid crystals [M]. OxfordUniversity Press, 1993.
    [53] Kato T, Frechet J M J. A new approach to mesophase stabilization throughhydrogen bonding molecular interactions in binary mixtures. [J]. J. Am. Chem.Soc, 1989, 111:8533.
    [54] Kato T. Self-assembly of phase-segregated liquid crystal structures [J].Science, 2002, 295: 2414.
    [55] Bradfield A E, Jones B, Ray J N. J. Chem. Soc, 1929, 2660.
    [56]晏安,超分子液晶[M].北京:科学出版社,2000.
    [57] Kato T, Miaoshita N, Kanie K. Hydrogen-bonded liquid crystalline materials:supramolecular polymeric assembly and the induction of dynamic function [J].Macromol. Rapid. Commun., 2001, 22: 797.
    [58] Kajitani T, Kohmoto S, Yamamoto M, Kishikawa K. Generation of StableCalamitic Liquid-Crystal Phases with Lateral Intermolecular HydrogenBonding [J]. Chem. Mater., 2004, 16: 2329.
    [59] Kishikawa K, Nakahara S, Nishikawa Y, Kohmoto S, Yamamoto M. AFerroelectrically Switchable Columnar Liquid Crystal Phase with AchiralMolecules: Superstructures and Properties of Liquid Crystalline Ureas [J]. J.Am. Chem. Soc, 2005, 127, 2565.
    [60] Gearba R I, Lehmann M, Levin J, Ivanov D A, Koch M H J, Barbera J,Debije M G, Piris J, Geerts Y H. Tailoring Discotic Mesophases: ColumnarOrder Enforced with Hydrogen Bonds [J]. Adv. Mater., 2003, 15:1614.
    [61] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, CTalianiC, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R.Electroluminescence in Conjugated Polymers [J]. Nature, 1999, 397: 121.
    [62] Braun D. Semiconducting Polymer LEDs [J]. Mater.Today, 2002, 5: 32.
    [63] Ma Y G, Che C M, Chao H Y, Zhou X M, Chan W H, Shen J C. HighLuminescence Gold(I)and Copper(I)Complexes with a Triplet Excited Statefor Use in Light-Emitting Diodes [J]. Adv.Mater., 1999, 11: 852.
    [64] Burroughes J H, Bradley D D C, Brown A R, Marks R N, MacKay K, FriendR H, Burn P L, Homes A B. Light-emitting diodes based on conjugatedpolymers [J]. Nature, 1990, 347: 539.
    [65] Miura A, Chen Z J, Uji-i H, De Feyter S, Zdanowska M, Jonkheijm P, Schenning A, Meijer E W, Wurthner F, De Schryver F C. Bias-dependent visualization of electron donor(D)and electron acceptor(A)moieties in a chiral DAD triad molecule [J]. J. Am. Chem. Soc, 2003, 125: 14968.
    [66] Wurthner F, Chen Z J, Hoeben F J M, Osswald P, You C C, Jonkheijm P, von Herrikhuyzen J, Schenning A, van der Schoot P, Meijer E W, Beckers E H A, Meskers S C J, Janssen RAJ. Supramolecular p-n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes [J]. J. Am. Chem. Soc, 2004, 126: 10611.
    [67] Jonkheijm P, Hoeben F J M, Kleppinger R, van Herrikhuyzen J, Schenning A, Meijer E W. Transfer of pi-conjugated columnar stacks from solution to surfaces [J]. J. Am. Chem. Soc, 2003, 125: 15941.
    [68] Hoeben F J M, Herz L M, C Daniel, Jonkheijm P, Schenning A, Silva C, Meskers S C J, Beljonne D, Phillips R T, Friend R H, Meijer E W. Efficient energy transfer in mixed columnar stacks of hydrogen-bonded oligo(p-phenylene vinylene)s in solution [J]. Angew. Chem. Int. Ed., 2004, 43: 1976.
    [69] Jonkheijm P, Stutzmann N, Chen Z J, de Leeuw D M, Meijer E W, Schenning A, Wurthner F. Control of ambipolar thin film architectures by co-self-assembling oligo(p-phenylenevinylene)s and perylene bisimides [J]. J. Am. Chem. Soc, 2006, 128: 9535.
    [70] van Herrikhuyzen J, Janssen RAJ, Meijer E W, Meskers S C J, Schenning A. Fractal-like self-assembly of oligo(p-phenylene vinylene)capped gold nanoparticles [J]. J. Am. Chem. Soc, 2006, 128, 686.
    [71] Wolffs M, Hoeben F J M, Beckers E H A, Schenning A, Meijer E W. Sequential energy and electron transfer in aggregates of tetrakis[oligo(p-phenylene vinylene)]porphyrins and C-60 in water J. Am. Chem. Soc, 2005, 127: 13484.
    [72] Dudek S P, Pouderoijen M, Abbel R, Schenning A, Meijer E W Synthesis andenergy-transfer properties of hydrogen-bonded oligofiuorenes [J]. J. Am.Chem. Soc, 2005, 127: 11763.
    [73] Messmore B W, Hulvat J F, Sone E D, Stupp S I. Synthesis, self-assembly,and characterization of supramolecular polymers from electroactive dendronrodcoil molecules [J]. J. Am. Chem. Soc, 2004, 126: 14452.
    [74] Hulvat J F, Sofos M, Tajima K, Stupp S I. Self-assembly and luminescence ofoligo(p-phenylene vinylene)amphiphiles [J]. J. Am. Chem. Soc, 2005, 127:366.
    [75] Tajima K, Li L S, Stupp S I. Nanostructured oligo(p-phenylenevinylene)/silicate hybrid films:One-step fabrication and energy transfer studies[J]. J. Am. Chem. Soc, 2006, 128: 5488.
    [76] Palmer L C, Velichko Y S, de la Cruz M O, Stupp S I. Supramolecularself-assembly codes for functional structures [J]. Philos. Trans. R. Soc.A-Math. Phys. Eng. Sci., 2007, 365: 1417.
    [77] Kelley R F, Goldsmith R H, Wasielewski M R. Ultrafast energy transferwithin cyclic self-assembled chlorophyll tetramers [J]. J. Am. Chem. Soc,2007, 129: 6384.
    [78] Wasielewski M R. Energy, charge, and spin transport in molecules andself-assembled nanostructures inspired by photosynthesis [J]. J. Org. Chem.,2006,71:5051.
    [79] Sinks L E, Rybtchinski B, Iimura M, Jones B A, Goshe A J, Zuo X B, Tiede DM, Li X Y, Wasielewski M R. Self-assembly of photofunctional cylindricalnanostructures based on perylene-3,4:9,10-bis(dicarboximide) [J]. Chem.Mater., 2005, 17: 6295.
    [80] Fuller M J, Sinks L E, Rybtehinski B, Giaimo J M, Li X Y, Wasielewski M R.Ultrafast photoinduced charge separation resulting from self-assembly of agreen perylene-based dye intoπ-stacked arrays [J]. J. Phy. Chem. A, 2005, 109:970.
    [81] Nelson J C, Saven J G, Moore J S, Wolynes P G Solvophobically drivenfolding of nonbiological oligomers [J]. Science, 1997, 277: 1793.
    [82] Gin M S, Yokozawa T, Prince R B, Moore J S. Helical bias insolvophobically folded oligo(phenylene ethynylene)s [J]. J. Am. Chem. Soc,1999,121:2643.
    [83] McQuade D T, Pullen A E, Swager T M. Conjugated Polymer-BasedChemical Sensors [J]. Chem. Rev., 2000, 100: 2537.
    [84] Huang C H, Li F Y, Huang W. Introduction to Organic Light-EmittingMaterials and Devices [M]. Eds.; Fudan University Press: Shanghai, 2005.
    [85] Luo J D, Xie Z L, Lam J WY, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X,Liu Y, ZhuD, Tang B Z. Aggregation-inducedemissionofl-methyl-1, 2, 3, 4,5 PentaPhenylsilole [J]. Chem. Commum., 2001, 1740.
    [86] Tang B Z, Zhan X, Yu G, Lee P P S, Liu Y, Zhu D. Efficient blue emission fromsiloles [J]. J. Mater. Chem., 2001, 11: 2974.
    [87] Sonoda Y K, Goto M D, Tsuzuki S, Tamaoki N. Fluorescence spectroscopicproperties and crystal structure of a series of donor - acceptordiphenylpolyenes [J]. J. Phys. Chem. A, 2006, 110: 13379.
    [88] An B K, Kwon S K, Jung S D, Park S Y. Enhanced emission and itsswitching in fluorescent organic nanoparticles [J]. J. Am. Chem. Soc, 2002,124:14410.
    [89] An B K, Kwon S K, Park S Y Photopatterned Arrays of Fluorescent OrganicNanoparticles [J]. Angew. Chem. Int. Ed., 2007, 46: 1978.
    [90] Nam H H, Boury B, Park S Y Anisotropic Polysilsesquioxanes withFluorescent Organic Bridges: Transcription of Strong n-n Interactions ofOrganic Bridges to the Long-Range Ordering of Silsesquioxanes [J]. Chem.Mater., 2006, 18:5716.
    [91] An B K, Lee D S, Park S Y Strongly fluorescent organogel systemcomprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbenederivative [J]. J. Am. Chem. Soc, 2004, 126: 10232.
    [92] Tong X, Zhao Y, An B K, Park S Y Fluorescent liquid-crystal gels withelectrically switchable photoluminescence [J]. Adv. Funct. Mater., 2006, 16:1799.
    [93] Li Y, Li F, Zhang H, Xie Z, Xie W, Xu H, Li B, Shen F, Ye L, Hanif M, Ma D, Ma Y. Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission [J]. Chem. Commun., 2007, 231.
    [94] Ryu S Y, Kim S, Seo J, Kim Y, Kwon O, Jang D, Park S. Strong fluorescence emission induced by supramolecular assembly and gelation: luminescent organogel from nonemissive oxadiazole-based benzene-1,3,5-tricarboxamide gelator [J]. Chem. Commun., 2004, 70.
    [95] Hoeben F J M, Jonkheijm P, Meijer E W, Scheming A P H J. About Supramolecular Assemblies ofπ-Conjugated Systems [J]. Chem. Rev., 2005, 105: 1491.
    [96] Lin Y Y; Gundlach D J, Nelson S F, Jackson T N. Pentacene-based organic thin-film transistors [J]. IEEE Trans. Electron Devices, 1997, 44: 1325.
    [97] Sundar V C, Zaumseil J, Podzorov V, Menard E, Willett R L, Someya T, Gershenson M E, Rogers J A. Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals [J]. Science, 2004, 303: 1644.
    [98] Meng H, Sun F, Goldfinger M B, Jaycox G D, Li A, Marshall W J, Blackman G S. High-Performance, Stable Organic Thin-Film Field-Effect Transistors Based on Bis-5'-alkylthiophen-2'-yl-2,6-anthracene Semiconductors [J]. J. Am. Chem. Soc, 2005, 127: 2406.
    [99] Mello J A, Newman C R, Gerlach C P, Kelley T W, Muyres D V, Fritz S E, Toney M F, Frisbie C D. p-Channel Organic Semiconductors Based on Hybrid Acene-Thiophene Molecules for Thin-Film Transistor Applications [J]. J. Am. Chem. Soc, 2005, 127: 3997.
    [100] O'Neill M, Kelly S M. Liquid Crystals for Charge Transport, Luminescence, and Photonics [J]. Adv. Mater., 2003, 15: 1135.
    [101]杨国波,田文晶.有机电致发光领域中的液晶材料[J].液晶与显示,2003.18:251.
    [102] Amundson K R, Katz H E, Lovinger A J. Phase behavior ofα,ω-dihexyl-a-quaterthiophene and ordering on a textured substrate [J]. ThinSolid Films, 2003,426: 140.
    [103] Van Breemen A J J M, Herwig P T, Chlon C H T, Sweelssen J, Schoo H F M,Setayesh S, Hardeman W M, Martin C A, de Leeuw D M, Valeton J J P,Bastiaansen C W M, Broer D J, Popa-Merticaru A R, Meskers S C J. LargeArea Liquid Crystal Monodomain Field-Effect Transistors [J]. J. Am. Chem.Soc, 2006, 128: 2336.
    [104] Magin E H, Borsenberger P M. Electron transport in N, N'- bis(2-phenethyl)-perylene-3 ,4 :9 ,10-bis(dicarboximide) [J ]. J. Appl. Phys., 1993, 73: 787.
    [105] Tokuhisa H, Era M, Tsutsui T, et al. Electron drift mobility of oxadiazolederivatives doped in polycarbonate [J]. Appl. Phys. Lett., 1995, 66: 3433.
    [106] Tokuhisa H, Era M, Tsutsui T, et al. Novel liquid crystalline oxadiazole withhigh electron mobility [J]. Adv. Mater., 1998, 10: 404.
    [107]张志明,李国文,马於光,等.含噻吩环噫二唑衍生物的合成及电化学性能研究[J].高等学校化学学报,2000,2l:1719.
    [108] Schultz B, Bruma M, Brehmer L. Aromatic Poly(l, 3, 4-Oxadiazoe)s asAdvanced materials [J]. Adv. Mater., 1997, 9: 601.
    [109] Thelakkat M, Schmidt H W. Low molecular weight and polymericheterocyclics as electron transport/hole-blocking materials in organiclight-emitting diodes [J]. Polym. Adv. Technol, 1998, 9: 429.
    [110] Tokuhisa H, Era M, Tsutsui T, et al. Novel liquid crystalline oxadiazole withhigh electron mobility [J]. Adv. Mater., 1998, 10: 404.
    [111] Zhang Y D, Jespersen K G, Kempe M, Kornfield J A, Barlow S, Kippelen B,Marder S R. Columnar Discotic Liquid-Crystalline Oxadiazoles asElectron-Transport Materials [J]. Langmuir, 2003, 19: 6534.
    [112] Lai C K, Ke Y C, Su J C, Lu C S, Li W R. Heterocyclic 1,3,4-oxadiazole ascolumnar core [J]. Liq. Cryst, 2002, 29: 915.
    [113] Wen C R, Wang Y J, Wang H C, Sheu H S, Lee G H, Lai C K. ColumnarMetallomesogens Derived from 1,3,4-Oxadiazoles and X-ray Crystal Structureof Dichlorobis [2,5-bis(3,4,5-trimethoxyphenyl)-1,3,4-oxadiazole]palladium(II) [J]. Chem. Mater., 2005, 17: 1646.
    [114] Pang D, Wang H, Li M. Smectic A liquid crystals from dihydrazide derivativeswith lateral intermolecular hydrogen bonding [J]. Tetrahedron, 2005, 61: 6108.
    [115] Bai B, Li M, Pang D, Wu Y, Zhang H.Synthesis, supramolecular structure andliquid crystalline behaviour of hydrazide-modified 4-methoxyazobenzenederivatives [J]. Liq. Cryst, 2005, 32: 755.
    [116] Bai B, Pang D, Li M. Phase behaviour of supramolecules containingmethoxyazobenzene mesogenic liquid crystal groups [J]. Chem. J. ChineseUniversiries, 2005, 26: 1957.
    [117] Wang H, Shao R, Zhu C, Bai B, Gong C, Zhang P, Li F, Li M, Clark N A.Symmetric liquid crystal dimers containing hydrazide groups: hydrogenbonding, parity-dependent mesomorphic properties, and substitution effect [J].Liq. Cryst., 2008, 35: 967.
    [118] Wang H, Zhang F, Bai B, Zhang P, Shi J, Yu D, Zhao Y, Wang Y, Li M.Synthesis, liquid crystalline properties, and fluorescence of polycatenar 1, 3,4-oxadiazole derivatives [J]. Liq. Cryst., 2008, 35: 905.
    [119] Wang H, Bai B, Pang D, Zou Z, Xuan L, Li F, Zhang P, Liu L, Long B, Li M.Synthesis and liquid crystalline properties of hydrazide derivatives: hydrogenbonding, molecular dipole, and smectic structures [J]. Liq. Cryst., 2008, 35:333.
    [120] Xin H, Wang H, Bai B, Pang D, Li M, A family of low molecular weightorganogelators based on mesomorphic dihydrazide derivatives [J]. J. Mol. Liq.,2008, 139: 143.
    [121] Wang H, Bai B, Zhang P, Long B, Tian W, Li M. Observation of intercalatedsmectic phases in symmetric liquid crystal dimmers containing hydrazidegroup [J]. Liq. Cryst., 2006, 33: 445.
    [122] Wang H, Pang D, Xin H, Li M, Zhang P, Tian W Low molecular weightorganogel from mesomorphic N-(4-hexyloxybenzoyl)- N'-(4'-nitrobenzoyl)hydrazine [J]. Liq. Cryst., 2006, 33: 439.
    [123] Hamuro Y, Geib S J, Hamilto A D. Oligoanthranilamides. Non-PeptideSubunits That Show Formation of Specific Secondary Structure [J]. J. Am.Chem. Soc, 1996, 118:7529.
    [124] Hamuro Y, Geib S J, Hamilto A D. Novel Folding Patterns in a Family ofOligoanthranilamides: Non-Peptide Oligomers That Form Extended HelicalSecondary Structures [J]. J. Am. Chem. Soc, 1997, 119: 10587.
    [125] Steiner T. The Hydrogen Bond in the Solid State [J]. Angew. Chem., Int. Ed.,2002,41:48.
    [126] Martin R B. Comparisons of Indefinite Self-Association Models [J]. Chem.Rev., 1996, 96: 3043.
    [127] Skrovanek D J, Howe S E, Painter P C, Coleman M M. Hydrogen bonding inpolymers: infrared temperature studies of an amorphous polyamide [J].Macromolecules, 1985, 18: 1676.
    [128] Harris P I, Chapman D. The conformational analysis of peptides using fouriertransform IR spectroscopy [J]. Biopolymers (Pept. Sci.), 1995, 37: 251.
    [129] Snyder R G, Strauss H L, Elliger C A. Carbon-hydrogen stretching modes andthe structure of n-alkyl chains. 1. Long, disordered chains [J]. J. Phys. Chem.,1982, 86: 5145.
    [130] MacPhail R A, Strauss H L, Snyder R G, Elliger C A. Carbon-hydrogenstretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains[J]. J. Phys. Chem., 1984, 88: 334.
    [131] Venkataraman N V, Vasudevan S. Conformation of Methylene Chains in anIntercalated Surfactant Bilayer [J]. J. Phys. Chem. B, 2001, 105: 1805.
    [132] Abdallah D J, Weiss R G n-Alkanes Gel n-Alkanes (and Many Other OrganicLiquids) [J]. Langmuir, 2000, 16: 352.
    [133] Park J W, Bak C S, Labes M M. Effects of molecular complexing on theproperties of binary nematic liquid crystal mixtures[J]. J. Am. Chem. Soc,1975, 97: 4398.
    [134] Deschenaux R, Schweissguth M, Levelut A M. Electron-transfer inducedmesomorphism in the ferrocene-ferrocenium redox system: firstferrocenium-containing thermotropic liquid crystal [J]. Chem. Commun., 1996,1275.
    [135] Pisula W, Kastler M, Wasserfallen D, Robertson J W F, Nolde F, Kohl C,Mullen K. Pronounced supramolecular order in discotic donor-acceptormixtures [J]. Adv. Mater., 2006, 45: 819.
    [136] Praefcke K, Singer D. in Handbook of Liquid Crystals [M]. eds. Demus D,Goodby J, Gray G W, Spiess H W, Vill V. Wiley-VCH, Weinheim, 1998, vol.2B, p. 944.
    [137] Kranig W, Boeffel C, Spiess H W, Karthaus O, Ringsdorf H, Wustefeld R.Deuterium NMR studies of phase behavior and molecular motions of dopeddiscotic liquid-crystalline systems [J]. Liq. Cryst, 1990, 8: 375.
    [138] Tsukruk V V, Wendorff J H, Karthaus O, Ringsdorf H. Packing of columns in Langmuir-Blodgett films of discotic mixtures with charge-transfer interactions [J]. Langmuir, 1993, 9: 614.
    [139] N. Boden, R. J. Bushby, Z. B. Lu and O. R. Lozman, CPI induction of liquidcrystal behaviour in triphenylenes with a mixture of hydrophobic andhydrophilic side chains [J]. Liq. Cryst., 2001, 28: 657.
    [140] Arikainen E O, Boden N, Bushby R J, Lozman O R, Vinter J G, Wood A.Complimentary Polytopic Interactions [J]. Angew. Chem., Int. Ed., 2000, 39:2333.
    [141] Park L Y, Hamilton D G, McGehee E A, McMenimen K A. ComplementaryC3-Symmetric Donor-Acceptor Components: Cocrystal Structure and Controlof Mesophase Stability [J]. J. Am. Chem. Soc, 2003, 125: 10586.
    [142] Wegewijs B R, Siebbeles L D A, Boden N, Bushby R J, Movaghar B, LozmanO R, Liu Q, Pecchia A, Mason L A. Charge-carrier mobilities in binarymixtures of discotic triphenylene derivatives as a function of temperature [J].Phys. Rev. B, 2002, 65: 245112.
    [143] Pecchia A, Lozman O R, Movaghar B, Boden N, Bushby R J, Donovan K J,Kreouzis T. Photoconductive transients and one-dimensional charge carrierdynamics in discotic liquid crystals [J]. Phys. Rev. B, 2002, 65: 104204.
    [144] Kreouzis T, Scott K, Donovan K J, Boden N, Bushby R J, Lozman O R, Liu Q.Enhanced electronic transport properties in complementary binary discoticliquid crystal systems [J]. Chem. Phys., 2000, 262: 489.
    [145] Janietz D. Covalently linked donor-acceptor mesogens based on disc-shapedpenta-alkynes [J]. Chem. Commun, 1996, 713.
    [146] Goldmann D, Mahlstedt S, Janietz D, Busch P, Schmidt C, Stracke A,Wendorff J H. Mesomorphic donor-acceptor twin molecules with covalentlylinked sheet-like pentaalkyne and nitrofluorenone sub-units [J]. Liq. Cryst,1998,24:881.
    [147] Schulz B, Orgzall I, Freydank A, XüC. Self-organization of substituted1,3,4-oxadiazoles in the solid state and at surfaces [J]. Adv. Colloid InterfaceSci., 2005, 116: 143.
    [148] Fujii S, Akiba U, Fujihira M. Novel self-assembled monolayers of disulfideswith bicyclo[2.2.2]octane moieties on Au(lll) [J]. Chem. Commun., 2001,1688.
    [149] Yoshimoto S, Tsutsumi E, Honda Y, Murata Y, Murata M, Komatsu K, Ito O,Itaya K. Controlled Molecular Orientation in an Adlayer of a SupramolecularAssembly Consisting of an Open-Cage C60 Derivative and ZnⅡOctaethylporphyrin on Au(Ⅲ) [J]. Angew. Chem., Int. Ed., 2004, 43: 3044.
    [150] Pan G B, Liu J M, Zhang H M, Wan L J, Zheng Q Y, Bai C L. Configurationsof a Calix[8]arene and a C60/Calix[8]arene Complex on a Au(Ⅲ) Surface [J].Angew. Chem., Int. Ed., 2003, 42: 2747
    [151] Feyter S De, De Schryver F C. Self-Assembly at the Liquid/SolidInterface: STM Reveals [J]. J. Phys. Chem. B, 2005, 109: 4290.
    [152] Rohde D, Yan C J, Yan H J, Wan L J. From a Lamellar to HexagonalSelf-Assembly of Bis (4, 4'-(m, m'-di(dodecyloxy)phenyl)-2, 2'-difluoro-l, 3,2-dioxaborin) Molecules: A trans-to-cis-Isomerization-Induced StructuralTransition Studied with STM [J]. Angew. Chem., Int. Ed., 2006, 45: 3996, andreferences therein.
    [153] Fisher A J, Blochl P E. Adsorption and scanning-tunneling-microscopeimaging of benzene on graphite and M0S2 [J]. Phys. Rev. Lett., 1993, 70:3263.
    [154] Mu Z, Yang X, Wang Z, Zhang X, Zhao J, Bo Z. Influence of Substituents onTwo-Dimensional Ordering of Oligo(phenylene-ethynylene)s-A ScanningTunneling Microscopy Study [J]. Langmuir, 2004, 20: 8892.
    [155] Ye K Q, Wang J, Sun H, Liu Y, Mu Z C, Li F, Jiang S M, Zhang J Y, Zhang HX, Wang Y, Che C M. Supramolecular Structures and Assembly andLuminescent Properties of Quinacridone Derivatives [J]. J. Phys. Chem. B,2005, 109: 8008.
    [156] Kawamura Y, Sasabe H, Adachi C. Simple Accurate System for MeasuringAbsolute Photoluminescence Quantum Efficiency in Organic Solid-State ThinFilms [J]. Jpn. J. Appl. Phys., Part 1, 2004, 43: 7729.
    [157] Metivier R, Amengual R, Leray I, Michelet V, Genet J P. Novel Fluorophores:Efficient Synthesis and Photophysical Properties [J]. Org. Lett. 2004, 6: 739.
    [158] An B K, Jung S D, Park S Y. Enhanced Emission and Its Switching inFluorescent Organic Nanoparticles [J]. J. Am. Chem. Soc, 2002, 124: 14410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700