用户名: 密码: 验证码:
人工金属水解酶模拟物的构建及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶是自然界进化的产物,是有着高底物特异性和强大催化能力的蛋白质,它能在温和条件下高效立体专一性地催化某些化学反应。化学和生物学家特别关注用人工方法来模拟酶的高选择性和高活性。各种简单或复杂的化学模型被广泛地应用于天然酶的模拟。通过仿酶研究大大促进了对天然酶的结构、性质和功能之间的关系的了解,为探索酶催化反应机理,设计并合成结构简单、高效、稳定的理想催化剂奠定了基础。
     在生物体众多的天然金属酶中,金属水解酶是一大类。它们能催化底物的加水分解。因此,借助化学的理论和实验手段,设计合成高效的水解金属酶模型,不仅有助于深化对天然酶作用机制的认识,而且,对人工酶、功能材料与器件的设计合成等都具有十分重要的意义。
     我们基于对天然水解酶结构与功能和酶底物识别的理解,从小分子模型化合物出发,通过修饰构建了一系列金属水解酶模型体系。在此基础上,利用超分子化学的方法和原理构建了基于金纳米胶束的超分子人工水解酶(纳米酶),并分别对上述体系的催化能力和动力学进行了详细的研究。
     1.具有底物识别的三角配体金属水解酶的构建及动力学研究
     基于底物识别与催化基团的协同性,设计合成了以Ce~(3+)为催化中心的水解酶模型,Ce~(3+)与四种三角架配体形成复合物。分别研究了这些复合物催化RNA替代物2-羟基丙基硝基苯基磷酸酯(HPNP)和二(对硝基苯基)磷酸酯(BNPP)的水解动力学。其中Ce~(3+)-L4复合物在25°C pH值为7.0缓冲溶液中对HPNP的水解催化能力比其自发裂解反应提高了10~5倍以上(kcat/kuncat = 4.1×10~5)。实验结果表明,这些单核Ce~(3+)复合物对磷酸二酯键表现出不同程度的识别能力和选择性。通过引入不同位置的辅助羟基(邻、间、对位)获得了这些三角架配体与底物(HPNP或BNPP)可能的催化模式。催化机理分析为更好地理解“识别是酶反应中进行假分子内反应的必要条件”提供了基础。
     2.具有可翻转两亲性空腔的金属水解酶模型的构建及动力学研究
     基于胆酸分子简单的两亲结构和作为构筑基元对溶剂的良好响应,设计合成了具有可翻转两亲性空腔金属水解酶模型。利用季戊四醇胆酸三聚体(含三唑)三取代衍生物作为主体,通过Zn~(2+)离子与三唑配位的方式在胆酸衍生物分子上引入金属离子催化位点。研究发现此模型能够在水/二甲基亚砜混合溶液中包合疏水底物分子对硝基苯酚乙酸酯(PNPA)并催化其裂解。在25°C对PNPA水解催化能力比其自发裂解反应提高了超过了103倍(kcat/kuncat)。改变水和DMSO的体积比获得不同的PNPA水解速率常数kobs,该研究清楚地表明该分子两亲性空腔只有在一定溶剂比例时才能结合疏水中性底物PNPA,并表现出催化活性。改变Zn~(2+)与胆酸衍生物比例对PNPA水解所得表观速率常数kobs表明该金属复合物中金属与配体配位比例是1:1。该研究是利用Zn~(2+)离子与三唑配位形成复合物,并根据胆酸分子的两亲性来调节酶模型对底物结合能力的重要尝试。
     3.金纳米晶胶束超分子人工纳米水解酶的构建及其动力学研究
     为了研究酶催化微环境对底物结合催化的影响以及模拟天然金属酶的催化作用,我们利用十二烷基修饰的金纳米晶为骨架,将金属(Cu2+、Zn~(2+))催化中心通过自组装法安装到金纳米晶表面,构建了金纳米晶胶束水解酶模型。水溶性的金纳米晶胶束水解酶模型表现出高效的类核酸酶活性,对于RNA的模拟物HPNP具有较好的催化活性,其催化水解速率是在相同条件下HPNP的自发水解速率的10~5倍,从而发展了一种新的制备高效磷酸酯水解酶的方法。纳米酶对磷酸酯动力学实验证明金纳米胶束形成的微环境以及催化中心的协同作用是其水解能力增加的主要原因。
Construction and Kinetic Studies of Metallohydrolase Mimics
     Enzymes are the natural products by evolution, they have high substrate specificity and catalytic ability, under mild conditions in high-performance to stereospecific catalyze certain chemical reactions. Because of their high selectivity, high activity and the advantages under mild reaction conditions, a variety of simple or complex chemical systems are widely used in the simulation of natural enzymes, to understand the mechanism of the natural enzymes. It is essential for the design and synthesis of simple structure with high activity and high selectivity under mild reaction conditions to mimic the enzyme structure, and investigate the relationship between the structure and the function, and explore the mechanism of enzyme-catalyzed reaction.
     In vivo metal hydrolases are a large class. Therefore, using of theoretical and experimental chemical methods, design and synthesis of reasonable hydrolytic metalloenzyme models can not only help us to deepen the understanding of natural enzyme mechanism, but also play an very important role on design other artificial enzymes, functional materials and devices.
     Based on the understanding of the identification of the natural structure and function of enzymes, we constructed a series of metal-modified enzyme model system. And based on the experiment above-mentioned and in view of using supramolecular chemistry methods and principles, we designed a gold nanoparticle-based supramolecular micelles artificial hydrolase (nano-enzyme), and a detailed study of the kinetics of the above system were carried out respectively.
     1. Construction and Kinetic Studies of Metallohydrolase Model Composed of Tripodal Mono-Binuclear Cerium (III) Complexes
     It is necessary for the construction of an effective enzyme model to correctly incorporate and position the functional groups. Inspired by substrate binding, four tripodal ligands, the Ce(III) complexes of N,N’,N”-tris[(2-benzylamino)ethyl]amine (L1), N,N’,N”-tris[(2-hydroxybenzylamino)ethyl]amine (L2), N,N’,N”-tris[(3-hydroxybenzylamino)ethyl]amine (L3), N,N’,N”-tris[(4-hydroxybenzylamino)ethyl]amine (L4) were prepared. The hydrolytic kinetics of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP) and bis(p-nitrophenyl)phosphate (BNPP) catalyzed by these complexes were studied in buffer solution respectively. Ce-L4 displays the excellent catalytic efficiency in the complexes for hydrolysis of HPNP with an increase of 4×10~5 fold (kcat/kuncat) for the spontaneous cleavage of HPNP in the buffer at 25°C pH 7.0. The catalysis result suggests these mono nuclear cerium(III) complexes express different recognizability and selectivity to the P-O bond of different phosphate diester. The cerium ion complexes of L3 and L4 served as structural models for the binding mode of coordinated water as well as substrates in the active site of hydrolytic enzyme. By introducing different position of the additional hydroxy (L3 and L4), the possibly catalytic mechanism of tripodal ligand and hydrophilic or hydrophobic substrates (HPNP or BNPP) were achieved.
     2. Construction and Kinetic Studies of Invertible Molecular Pockets for Metallohydrolase Model
     Based on the amphiphilic structure of cholate acid molecules and taking advantage of its good response to the solvent, we design metal hydrolase model with reversible amphiphilic cavity. We use cholate acid trimer (including triazole) pentaerythritol derivatives as the host and introduce Zn~(2+) ions to the triazole ligand to act as catalytic center. We found that the compounds could recognize hydrophobic substrate molecules (PNPA) in the water/DMSO mixed solution, and catalyze its cleavage. At 25°C pH 7.0 the catalytic capacity of above complexes for PNPA is 103-fold (kcat/kuncat) larger than the background rate of PNPA spontaneous cleavage. By changing the ratio of the water and DMSO, the apparent rate constant kobs clearly showed that the amphiphilic molecules can regulate the polarity of the cavity. In addition, the experimental results revealed that the binding ratio of ligand and Zn~(2+) was 1:1 by regulating the concentration of Zn~(2+).
     3. Construction and Kinetic Studies of An Artificial Supramolecular Nanozyme Based on Au NC Micelles
     For mimicking catalytic action of natural hydrolytic metalloenzymes containg two or more metal center in their active sites and the synergistic effect of two metal ions and the microenvironment of enzyme catalysis, water-soluble gold nanocrystal micelles (Au NC micelles) with inserted catalytic Cu (II) center that act as excellent nanoenzyme models for imitating ribonuclease were constructed by supramolecular self-assembly. The dodecane-1-thiol-based Au nanocrystal (NC) was first constructed, subsequently a cationic surfactant hexadecyltrimethylammonium bromide (CTAB) and a catalytic ligand (N1,N1-bis(2-aminoethyl)-N2-dodecylethane-1,2-diamine) Cu(II) (Cu(II)L) was installed on the surface of Au nanocrystal (NC) via hydrophobic interaction. The catalytic capability of designed Au NC micelles was estimated by the cleavage of typical RNA analogue, 2-hydroxypropyl p-nitrophenyl phosphate (HPNP). The study of the catalytic behavior of Au NC micelle catalysis showed that the Au NC micelles exhibited dramatic ribonuclease-like activity, and a high rate acceleration of kcat/kuncat = 1.1×10~5 for the cleavage of HPNP in comparison to the spontaneous cleavage of HPNP (kuncat) was observed. The catalytic capability for HPNP cleavage by these functionalized Au NC micelles can be considerable compared to that of covalent gold nanoparticles reported previously as nanozymes under comparable conditions. A detailed investigation of enzymatic kinetics was carried out and a possible mechanism was suggested.
引文
[1] Breslow R, Artificial Enzymes, Wiley Weinheim, 2005.
    [2] Murakami Y, Kikuchi J I, Hisaeda Y, Hayashida O, Artificial Enzymes. Chem. Rev. 1996, 96, 721-758.
    [3] Motherwell W B, Bingham M J Six Y, Recent Progress in the Design and Synthesis of Artificial Enzymes. Tetrahedron 2001, 57, 4663-4686.
    [4] Pauling L, Molecular Architecture and Biological Reaction. Chem. Eng. New. 1946, 24, 1375-1377.
    [5] Jencks W P, Catalysis in Chemistry, Enzymology, McGraw-Hill, New York, 1969.
    [6] Tee O S, The Stabilization of Transition States by Cyclodextrins and Other Catalysts. Adv. Phys. Org. Chem. 1994, 29, 1-85.
    [7] Menger F M, Analysis of Ground-State and Transition-State Effects in Enzyme Catalysis. Biochemistry. 1992, 31, 5368-5373.
    [8] Lehn J M, Supramolecular Chemistry-Scope And Perspectives Molecules, Molecules, Supermolecules, And Molecular Devices (Nobel lecture). Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
    [9] Davies R R, Distefano M D, A Semisynthetic Metalloenzyme Based on a Protein Cavity That Catalyzes the Enantioselective Hydrolysis of Ester and Amide Substrates. J. Am. Chem. Soc. 1997, 119 (48), 11643-11652.
    [10] Mao S Z, Dong Z Y, Liu J Q, Li X Q, Liu X M, Luo G M, Shen J C, Semisynthetic Tellurosubtilisin with Glutathione Peroxidase Activity. J. Am. Chem. Soc. 2005, 127 (33), 11588-11589.
    [11] Hayashi T, Hisaeda Y, New Functionalization of Myoglobin by Chemical Modification of Heme-Propionates Acc. Chem. Res. 2002, 35(1), 35-43.
    [12] Nixon A E, Ostermeier M, Benkovic S J, Hybrid enzyme: manipulating enzyme design. Trends Biotech. 1998, 16, 258-264.
    [13] Moffitt M C, Neilan B A, The Expansion of Mechanistic and Organismic Diversity Associated with Non-Ribosomal Peptides. FEMS Microbiol Lett. 2000, 191(2), 159-167.
    [14] Cahoon E B, Lindqvist Y, Schneider G, Shanklin J, Redesign of Soluble Fatty Acid Desaturases from Plants for Altered Substrate Specificity and Double Bond Position. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 4872-4877.
    [15] Hopfner K P, Kopetzki E, Kre?e G B, Bode W, Huber R, Engh R A, New Enzyme Lineages by Subdomain Shuffling. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 9813-9818.
    [16] Corey M J, Corey E, On the Failure of de novo-Designed Peptides as Biocatalysts. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 11428-11434.
    [17] Schneider W P, Nichols B P, Yanofsky C, Procedure for Production of Hybrid Genesand Proteins and Its Use in Assessing Significance of Amino Acid Differences in Homologous Tryptophan Synthetase Polypeptides. Proc. Natl. Acad. Sci. USA. 1981, 78, 2169-2173.
    [18] Mas M T, Chen C Y, Hitzeman R A, Raggs A D, Active Human-Yeast Chimeric Phosphoglycerate Kinases Engineered by Domain Interchange. Science. 1986, 233, 788-790.
    [19] Nixon A?E, Warren M?S, Benkovic S?J, Assembly of An Active Enzyme by the Linkage of Two Protein?Modules. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 1069-1073.
    [20] Back K, Chappell J, Identifying Functional Domains within Terpene Cyclases Using A Domain-Swapping Strategy. Proc. Natl. Acad. Sci. U. S. A. 1996 93, 6841-6845.
    [21] Ren X J(任晓君), Construction of Artificial Enzymes with GPX Activity on the Basis of Molecular Recognition. PhD Thesis, Jilin University, 2002, 107-109.
    [22] Ema T, Tanida D, Matsukawa T, Sakai T, Biomimetic Trifunctional Organocatalyst Showing A Great Acceleration for the Transesterification between Vinyl Ester and Alcohol. Chem. Commun., 2008, 957–959.
    [23] Menger F M, Ladika M, Origin of Rate Accelerations in An Enzyme Model: the p-Nitrophenyl Ester Syndrome. J. Am. Chem. Soc. 1987, 109(10), 3145-3146.
    [24] Menger F M, Whitesell L G, A Protease Mimic with Turnover Capabilities. J. Am.Chem. Soc. 1985, 107, 707-708.
    [25] Breslow R, Czarniecki M F, Emert J, Hamaguchi H, Improved Acylation Rates within Cyclodextrin Complexes from Flexible Capping of the Cyclodextrin and from Sdjustment of the Substrate Geometry. J. Am. Chem. Soc. 1980, 102(2), 762-770.
    [26] D’Souza V T, Bender M L, Miniature Organic Models of Enzymes. Acc. Chem. Res. 1987, 20, 146-152.
    [27] Suh J H, Model Studies of Metalloenzymes Involving Metal Ions as Lewis Acid Catalysts. Acc. Chem. Res. 1992, 25(7), 273-279.
    [28] Kimura E, Kitamura H, Koike T, Shiro M, Facile and Selective Electrostatic Stabilization of Uracil N(1)-Anion by A Proximate Protonated Amine: A Chemical Implication for why Uracil N(1) is Chosen for Glycosylation Site. J. Am. Chem. Soc.1997, 119, 10909-10919.
    [29] Kelly-Rowley A M, Lynch V M, Anslyn E V, Molecular Recognition of Enolates of Active Methylene Compounds in Acetonitrile. The Interplay between Complementarity and Basicity and the Use of Hydrogen Bonding to Lower Guest pKas. J. Am. Chem. Soc. 1995, 117(12), 3438-3447.
    [30] Font D, Sayalero S, Bastero A, Jimeno C, Perics M A, Toward an Artificial Aldolase. Org. Lett. 2008, 10(2), 337-340.
    [31] Breslow R, Canary J W, Varney M, Waddell S T, Yang D, Artificial Transaminases Linking Pyridoxamine to Binding Cavities: Controlling the Geometry. J. Am. Chem. Soc. 1990, 112(13), 5212-5219.
    [32] Anslyn E V, Breslow R, Geometric Evidence on the Ribonuclease Model Mechanism. J. Am. Chem. Soc. 1989, 111(15), 5972-5973.
    [33] Dong Z Y, Li X Q, Liang K, Mao S Z, Huang X, Yang B, Xu JY, Liu JQ, Luo G M, Shen J C, Telluroxides Exhibit Hydrolysis Capacity. J. Org. Chem. 2007, 72 (2), 606-609.
    [34] Aoki S, Sakurama K, Ohshima R, Matsuo N, Yamada Y, Takasawa R, Tanuma S, Takeda K, Kimura E, Design and Synthesis of A Caged Zn2+ Probe, 8-Benzenesulfonyloxy-5-N,N-dimethylaminosulfonylquinolin-2-ylmethyl-pena-nt 1,4,7,10-Tetraazacyclododecane, and Its Hydrolytic Uncaging upon Complexation with Zn2+. Inorg. Chem. 2008, 47(7), 2747-2754.
    [35] Aoki S, Iwaida K, Hanamoto N, Shiro M, Kimura E, Guanidine Is a Zn2+-Binding Ligand at Neutral pH in Aqueous Solution. J. Am. Chem. Soc. 2002, 124(19), 5256-5257.
    [36] Lin H K, Liu Q, Lin H, Study on Kinetics and Mechanism of Mononuclear Rare Earth Metal Complexes in Promoting the Hydrolysis of p-Nitrophenyl Phosphate (NPP). Journal of Molecular Catalysis A: Chemical. 2006, 259, 11-16.
    [37] Liu Q, Lin H K, Studies on the Synthesis and Potentiometric Properties of Three Novel Tripodal Ligands and Their Complexes. Transition Metal Chemistry 2006, 31, 325-332.
    [38] Breslin D T, Schuster G B, Anthraquinone Photonucleases: Mechanisms for GG-Selective and Nonselective Cleavage of Double-Stranded DNA. J. Am. Chem. Soc. 1996, 118(10), 2311-2319.
    [39] Nakatani K, Shirai J, Sando S, Saito I, Guanine Specific DNA Cleavage by Photoirradiation of Dibenzoyldiazomethane?Oligonucleotide Conjugates. J. Am. Chem. Soc. 1997, 119(33), 7626-7635.
    [40] Breslow R, Biomimetic Control of Chemical Selectivity. Acc. Chem. Res. 1980, 13(6), 170-177.
    [41] Mller P, Fruit C, Enantioselective Catalytic Aziridinations and Asymmetric Nitrene Insertions into C-H Bonds. Chem. Rev. 2003, 103(8), 2905-2920.
    [42] Li Q S, Schwaneberg U, Fischer P, Schmid R D, Directed Evolution of the Fatty-Acid Hydroxylase P450 BM-3 into an Indole-Hydroxylating Catalyst. Chem. Eur. J. 2000, 6, 1531-1535.
    [43] Joo H, Lin Z, Arnold F H, Laboratory Evolution of Peroxide-Mediated Cytochrome P450 Hydroxylation. Nature. 1999, 399, 670-673.
    [44] Breslow R, Zhang X J, Huang Y, Selective Catalytic Hydroxylation of a Steroid by an Artificial Cytochrome P-450 Enzyme. J. Am. Chem. Soc. 1997, 119(19), 4535-4536.
    [45] Rawlings J, Cleland W W, Hengge A C, Metal-Catalyzed Phosphodiester Cleavage: Secondary 18O Isotope Effects as an Indicator of Mechanism. J. Am. Chem. Soc. 2006, 128(51), 17120-17125.
    [46] Fitzsimons M P, Barton J K, Design of a Synthetic Nuclease: DNA Hydrolysis by aZinc-Binding Peptide Tethered to a Rhodium Intercalator J. Am. Chem. Soc. 1997, 119(14), 3379-3380.
    [47] Chen W, Kitamura Y, Zhou J-M, Sumaoka J, Komiyama M, Site-Selective DNA Hydrolysis by Combining Ce(IV)/EDTA with Monophosphate-Bearing Oligonucleotides and Enzymatic Ligation of the Scission Fragments J. Am. Chem. Soc. 2004, 126(33), 10285-10291.
    [48] Miyajima Y, Ishizuka T, Yamamoto Y, Sumaoka J, Komiyama M, Origin of High Fidelity in Target-Sequence Recognition by PNA#Ce(IV)/EDTA Combinations as Site-Selective DNA Cutters. J. Am. Chem. Soc. 2009, 131(7), 2657-2662.
    [49] Pollack S J, Jacobs J W, Schultz P G, Selective Chemical Catalysis by an Antibody. Science. 1986, 234, 1570-1573.
    [50] Li T, Janda K D, Ashley J A, Lerner R A, Antibody Aatalyzed Cationic Cyclization. Science. 1994, 264, 1289-1293.
    [51] Stevenson J D, Thomas N R, Catalytic Antibodies and Other Biomimetic Catalysts. Nat. Prod. Rep. 2000, 17, 535-577.
    [52] Xu Y, Yamamoto N, Janda K D, Catalytic Antibodies: Hapten Design Strategies and Screening Methods. Bioorg. Med. Chem. 2004, 12, 5247-5268.
    [53] Weiner D P, Wiemann T, Wolfe M M, Wentworth P, Janda K D, A Pentacoordinate Oxorhenium(V) Metallochelate Elicits Antibody Catalysts for Phosphodiester Cleavage. J. Am. Chem. Soc. 1997, 119(17), 4088-4089
    [54] Wallace M B , Iverson B L, The Influence of Hapten Size and Hydrophobicity on the Catalytic Activity of Elicited Polyclonal Antibodies. J. Am. Chem. Soc. 1996, 118, 251-252.
    [55] Zhang K, Zang T Z, Yang W, Sun Y, Mu Y, Liu J Q, Shen J C, Luo G M, Single-Chain Antibody Displays Glutathione S-Transferase Activity. J. Biol. Chem. 2006, 281, 12516-12520.
    [56]高翔,抗体酶的研究进展.《生命的化学》,1994, 14(1), 6-9.
    [57]罗贵民.催化抗体研究新进展.《生物化学与生物物理进展》,2000, 27(4), 354-359.
    [58] Hasserodt J, Janda K D, Lerner R A, Formation of Bridge-Methylated Decalins by Antibody-Catalyzed Tandem Cationic Cyclization. J. Am. Chem. Soc. 1997, 119, 5993-5998.
    [59] Liu D R, Schultz P G, Generating New Molecular Function: A Lesson From Nature. Angew. Chem. Int. Ed. Engl. 1999, 38, 37-54.
    [60] Pederson H, Holder S, Sutherlin D P, Schwitter U, King D S, Schultz P G, A Method for Directed Evolution and Functional Cloning of Enzymes. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 10523-10528.
    [61] Raines R T, Ribonuclease A. Chem. Rev. 1998, 98(3), 1045-1066.
    [62] Karplus P A, Pearson M A, Hausinger R P, 70 Years of Crystalline Urease: What Have We Learned? Acc. Chem. Res. 1997, 30(8), 330-337.
    [63] Tyndall J D A, Nall T, Fairlie D P, Proteases Universally Recognize Beta Strands InTheir Active Sites. Chem. Rev. 2005, 105(3), 973-1000.
    [64] Bode W, Fernandez-Catalan C, Tschesche H, Grams F, Nagase H, Maskos K, Structural Properties of Matrix MetalloProteinases. Cell. Mol. Life Sci. 1999, 55, 639-652.
    [65] Livieri M, Mancin F, Saielli G, Chin J, Tonellato U, Mimicking Enzymes: Cooperation between Organic Functional Groups and Metal Ions in the Cleavage of Phosphate Diesters. Chem. Eur. J. 2007, 13, 2246-2256.
    [66] Feng G Q, Natale D, Prabaharan R, Mareque-Rivas J C, Williams N H, Efficient Phosphodiester Binding and Cleavage by a ZnII Complex Combining Hydrogen-Bonding Interactions and Double Lewis Acid Activation. Angew. Chem. Int. Ed. 2006, 45, 7056-7059.
    [67] Scarso A, Zaupa G, Houillon F B, Prins L J, Scrimin P, Tripodal, Cooperative, and Allosteric Transphosphorylation Metallocatalysts. J. Org. Chem. 2007, 72 (2), 376–385.
    [68] Molenveld P, Engbersen J F J, Reinhoudt D N, Dinuclear Metallo-Phosphodiesterase Models: Application of Calix[4]arenes as Molecular Scaffolds. Chem. Soc. Rev. 2000, 29, 75-86.
    [69] Molenveld P, Engbersen J F J, Reinhoudt D N, Specific RNA Dinucleotide Cleavage by a Synthetic Calix[4]arene-Based Trinuclear Metallo(II)-phosphodiesterase. Angew. Chem. Int. Ed. 1999, 38, 3189-3192.
    [70] Molenveld P, S. Kapsabelis, Engbersen J F J, Reinhoudt D N, Highly Efficient Phosphate Diester Transesterification by a Calix[4]arene-Based Dinuclear Zinc(II) Catalyst. J. Am. Chem. Soc. 1997, 119, 2948-2949.
    [71] Cacciapaglia R, Casnati A, Mandolini L, Reinhoudt D N, Salvio R, Sartori A, Ungaro R, Catalysis of Diribonucleoside Monophosphate Cleavage by Water Soluble Copper(II) Complexes of Calix[4]arene Based Nitrogen Ligands J. Am. Chem. Soc. 2006, 128, 12322-12330.
    [72] Chand D K, Schneider H-J, Aguila J A, Escarti F, Garc?a-Espana E, Luis S V, Copper complexes of polyaza[n]cyclophanes and their interaction with DNA and RNA. Inorganica Chimica Acta. 2000, 316, 71-78.
    [73] Benniston A C, Gunning P, Peacock R D, Synthesis and Binding Properties of Hybrid Cyclophane?Azamacrocyclic Receptors. J. Org. Chem. 2005, 70(1), 115-123.
    [74] Tabushi I, Kimura Y, Yamamura K, Specific Catalysis of Ester Hydrolysis by a New Water-Soluble Heterocyclophane. J. Am. Chem. Soc. 1978, 100(4), 1304-1306.
    [75] Diederich F, Schuermann G, Chao I, Designed Water-Soluble Macrocyclic Esterases: from Nonproductive to Productive Binding. J. Org. Chem. 1988, 53(12), 2744-2757.
    [76] Aguilar J A, Descalzo A B, Díaz P, Fusi V, García-Espa?a E, Luis S V, Micheloni M, Ramírez J A, Romani P, Soriano C, New molecular catalysts for ATP cleavage. Criteria of size complementarity. J. Chem. Soc. Perkin Trans. 2000, 2,1187-1192.
    [77] Lara K O, Godoy-Alcántar C, Eliseev A V, Yatsimirsky A K. Ester Cleavage byS,S-(+)-Tetrandrine Derivative Bearing Thiol Groups. Arkivoc. 2005, (vi), 293-306.
    [78] Ngola S M, Dougherty D A, Evidence for the Importance of Polarizability in Biomimetic Catalysis Involving Cyclophane Receptors. J. Org. Chem. 1996, 61(13), 4355-4360.
    [79] Furstner A, Stelzer F, Rumbo A, Krause H, Total Synthesis of the Turrianes and Evaluation of Their DNA-Cleaving Properties. Chem. Eur. J. 2002, 8, 1856- 1871.
    [80] Breslow R, Zhang B L, Cleavage of Phosphate Esters by a Cyclodextrin Dimer Catalyst That Binds the Substrates Together with La3+ and Hydrogen Peroxide. J. Am. Chem. Soc. 1994, 116, 7893-7894.
    [81] Breslow R, Zhang B L, Very Fast Ester Hydrolysis by a Cyclodextrin Dimer with a Catalytic Linking Group. J. Am. Chem. Soc. 1992, 114(14), 5882-5883.
    [82] Zhang B L, Breslow R, Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997, 119(7), 1676-1681.
    [83] Breslow R, Overman L E, "Artificial enzyme" Combining a Metal Catalytic Group and a Hydrophobic Binding Cavity. J. Am. Chem. Soc. 1970, 92(4), 1075-1077.
    [84] Akkaya E U, Czarnik A W, Synthesis and Reactivity of Cobalt(III) Complexes Bearing Primary and Secondary-Side Cyclodextrin Binding Sites. A Tale of two CD's. J. Am. Chem. Soc. 1988, 110(25), 8553-8554.
    [85] Akkaya E U, Czarnik A W, Synthesis and Transacylating Activity of Isomeric Co(III)-Cyclodextrin Artificial Metalloenzymes. Journal of Physical Organic Chemistry. 1992, 5(8), 540-548.
    [86] Rosenthal M I, Czarnik A W, Rapid Transacylations of Activated Ester Substrates Bound to the Primary Side fl-Cyclodextrin-Cyclen Conjugate and Its M2+ Complexes. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry. 1991, 10, 119-126.
    [87] Zhou Y H, Zhao M, Mao, Z W Ji L N, Ester Hydrolysis by a Cyclodextrin Dimer Catalyst with a Metallophenanthroline Linking Group. Chem. Eur. J. 2008, 14, 7193-7201.
    [88] Suh J, Synthetic Artificial Peptidases and Nucleases Using Macromolecular Catalytic Systems. Acc. Chem. Res. 2003, 36, 562-570.
    [89] Klotz I M, Stryker V H, Macromolecule-Small Molecule Interactions. A Aynthetic Macromolecule with High Esterolytic Activity. J. Am. Chem. Soc. 1968, 90(10), 2717-2719.
    [90] Klotz I M, Royer G P, Sloniewsky A R, Macromolecule-Small Molecule Interactions. Strong Binding and Cooperativity in A Model Synthetic Polymer. Biochemistry. 1969, 8(12), 4752-4756.
    [91] Johnson R S, Walder J A, I Klotz I M, Catalysis of the Hydrolysis of a Nitrophenyl Ester by o-Hydroxybenzaldehyde in the Presence of a Poly(ethylenimine) Derivative. J. Am. Chem. Soc. 1978, 100(16), 5159-5163.
    [92] Spetnagel W J, Klotz I M, Catalysis of Decarboxylation of Oxalacetic Acid by Modified Poly(ethylenimines). J. Am. Chem. Soc. 1976, 98(25), 8199-8204.
    [93] Hierl M A, Gamson E P, Klotz I M, Nucleophilic Catalysis by Polyethylenimines with Covalently Attached 4-Dialkylaminopyridine. J. Am. Chem. Soc. 1979, 101(20), 6020-6022.
    [94] Klotz I M, In Enzyme Mechanisms. M. I., Williams, Eds. Royal Society of Chemistry: London, 1987, Chapter 2.
    [95] Yoo C E, Chae P S, Kim J E, Jeong E J, Suh J, Degradation of Myoglobin by Polymeric Artificial Metalloproteases Containing Catalytic Modules with Various Catalytic Group Densities: Site Selectivity in Peptide Bond Cleavage. J. Am. Chem. Soc. 2003, 125, 14580-14589.
    [96] Jang B B, Lee K P, Min D H, Suh J, Immobile Artificial Metalloproteinase Containing Both Catalytic and Binding Groups. J. Am. Chem. Soc. 1998, 120,12008-12016.
    [97] Moon S J, Jeon J W, Kim H, Suh M P, Suh J, Artificial Trinuclear Metallopeptidase Synthesized by Cross-Linkage of a Molecular Bowl with a Polystyrene Derivative. J. Am. Chem. Soc. 2000, 122, 7742-7749.
    [98] Yoo S H, Lee B J, Kim H, Suh J, Artificial Metalloprotease with Active Site Comprising Aldehyde Group and Cu(II)Cyclen Complex. J. Am. Chem. Soc. 2005, 127, 9593-9602.
    [99] Martin M, Manea F, Fiammengo R, Prins L J, Pasquato L, Scrimin P, Metallodendrimers as Transphosphorylation Catalysts. J. Am. Chem. Soc. 2007, 129(22), 6982-6983.
    [100] Beach J V, Shea K J, Designed Catalysts. A Synthetic Network Polymer That Catalyzes the Dehydrofluorination of 4-Fluoro-4- (p-nitrophenyl) butan-2-one. J. Am. Chem. Soc. 1994, 116, 379-380.
    [101] Matsui J, Nicholls I A, Karube I, Mosbach K, Carbon-Carbon Bond Formation Using Substrate Selective Catalytic Polymers Prepared by Molecular Imprinting: an Artificial Class II Aldolase. J. Org. Chem. 1996, 61, 5414-5417.
    [102] Robinson D K, Mosbach K, Molecular Imprinting of a Transition State Analogue Leads to a Polymer Exhibiting Esterolytic Activity. J. Chem. Soc. Chem. Commun. 1989, 969-970.
    [103] Ohkubo K, Urata Y, Hirota S, Honda Y, Sagawara T, Homogeneous and Heterogneous Esterolytic Catalysis of Imidazole-Containing Polymers Prepared by Molecular Imprinting of a Transition State Analogue. J. Mol. Catal. 1994, 87, 21-24.
    [104] Toorisaka E, Yoshida M, Veza K, Goto M, Furusaki S, Artificial Biocatalyst Prepared by the Surface Molecular Imprinting Technique. Chem. Lett. 1999, 387-388.
    [105] Wulff G, Gross T, Schonfeld R, Enzyme Models Based on Molecularly Imprinting Polymers with Strong Esterase Activity. Angew. Chem. Int. Ed. Engl. 1997, 36, 1962-1964.
    [106] Strikovsky A G, Kasper D, Grun M, Green B S, Hradril J, Wulff G, CatalyticMolecularly Imprinted Polymers Using Conventional Bulk Polymerization or Suspension Polymerization: Selective Hydrolysis of Diphenyl Carbonate and Diphenyl Carbamate. J. Am. Chem. Soc. 2000, 122, 6295-6296.
    [107] Sellergren B, Shea K J, Imprinted Polymers Exhibiting Enantio-Selective Esterase Activity I. Tetrahedron: Asym. 1994, 5, 1403-1406.
    [108] Sellergren B, Karmalkar R N, Shea K J, Imprinted Polymers Exhibiting Enantioselective Esterase Activity II. J. Org. Chem. 2000, 65, 4009-4027.
    [109] Liu X C, Mosbach K, Studies towards a Tailor-Made Catalyst for the Diels-Alder Reaction Using the Technique of Molecular Imprinting. Macromol.Chem. Rapid Commun. 1997, 18, 609-615.
    [110] Liu X C, Mosbach K, Catalysis of Benzisoxazole Isomerization by Molecularly Imprinted Polymers. Macromol. Rapid Commun. 1998, 19, 671-674.
    [111] Santora B P, Larsen A O, Gagne M R, Molecularly Imprinted Ti-Lewis Acid Catalysts: Application to the Diels-Alder Reaction. Organometallics. 1998, 17, 3138-3140.
    [112] Polborn K, Severin K J, Molecular Imprinting with an Organometallic Transition State Analogue. Chem. Commun. 1999, 24, 2481-2482.
    [113] Wulff G, Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chem. Rev. 2002, 102(1), 1-28.
    [114] Alexander C, Davidson L, Hayes W, Imprinted Polymers: Artificial Molecular Recognition Materials with Applications in Synthesis and Catalysis. Tetrahedron. 2003, 59, 2025-2057.
    [115] Severin K, Imprinted polymers with transition metal catalysts. Curr. Opin. Chem. Biol. 2000, 4, 710-714.
    [116] Gamez P, Dunjic B, Pinel C, Lemaire M,“Molecular Imprinting Effect”in the Synthesis of Immobilized Rhodium Complex Catalyst (IRC cat). Tetrahedron Lett. 1995, 36, 8779-8782.
    [117] Locatelli F, Gamez P, Lemaire M, Molecular imprinting of polymerised catalytic complexes in asymmetric catalysis. J. Mol. Catal. A. Chem.1998, 135, 89-98.
    [118] Polborn K, Severin K, Molecular imprinting with an organometallic transition state analogue. J. Chem. Soc. Chem. Commun.1999, 2481-2482.
    [119] Liu J Q, Wulff G, Functional Mimicry of the Active Site of Carboxypeptidase A by a Molecular Imprinting Strategy: Cooperativity of an Amidinium and a Copper Ion in a Transition-State Imprinted Cavity Giving Rise to High Catalytic Activity. J. Am. Chem. Soc. 2004, 126(24), 7452-7453.
    [120] Liu J Q, Wulff G, Molecularly Imprinted Polymers with Strong Carboxypeptidase A-Like Activity: Combination of an Amidinium Function with a Zinc-Ion Binding Site in Transition-State Imprinted Cavities. Angew. Chem. Int. Ed. 2004, 43, 1287-1290.
    [121] Liu J Q, Wulff G, Functional Mimicry of Carboxypeptidase A by a Combination of Transition State Stabilization and a Defined Orientation of Catalytic Moieties in Molecularly Imprinted Polymers. J. Am. Chem. Soc. 2008, 130(25), 8044-8054.
    [122] Jiang W D, Xue B, Lin Q, Li J Z, Fu H Y, Zeng X C, Chen H, Cleavage of Phosphate Diesters Mediated by Zn(II) Complex in Gemini Surfactant Micelles. J. Colloid. Interface. Sci. 2007, 311, 530-536.
    [123] Tonellato U, Metallomicelles Made of Ni(II) and Zn(II) Complexes of 2-Pyridinealdoxime-Based Ligands as Catalyst of the Cleavage of Carboxylic Acid Esters. Langmuir. 2000, 16(1), 227-233.
    [124] Hampl F, Liska F, Mancin F, Tecilla P, Tonellato U, Metallomicelles Made of Ni(II) Complexes of Lipophilic 2-Pyridineketoximes as Powerful Catalysts of the Cleavage of Carboxylic Acid Esters. Langmuir, 1999, 15(2), 405-412
    [125] Polyzos A, Hughes A B, Christie J R, Catalysis of Aryl Ester Hydrolysis in the Presence of Metallomicelles Containing a Copper(II) Diethylenetriamine Derivative. Langmuir. 2007, 23, 1872-1879.
    [126] Bertoncin F, Kinetic Amplification of the Enantioselective Cleavage of -Amino Acid Esters by Metallomicelles. Langmuir, 1998, 14(5), 975-978.
    [127] Menger F M, Gan L H, Johnson E, Durst D H, Phosphate Ester Hydrolysis Catalyzed by Metallomicelles. J. Am. Chem. Soc. 1987, 109, 2800-2803.
    [128] Zaupa G, Prins L J, Scrimin P, Origin of the dendritic effect in multivalent enzyme-like catalysts. J. Am. Chem. Soc. 2008, 130, 5699-5709.
    [129] Manea F, Bindoli C, Polizzi S, Lay L, Scrimin P, Expeditious Synthesis of Water-Soluble, Monolayer-Protected Gold Nanoparticles of Controlled Size and Monolayer Composition. Langmuir. 2008, 24, 4120-4124.
    [130] Pengo P,Baltzer L, Pasquato L, Scrimin P, Substrate Modulation of the Activity of an Artificial Nanoesterase Made of Peptide-Functionalized Gold Nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 400-404.
    [131] Pasquato L, Rancan F, Scrimin P, Mancin F, Frigeri C, N-methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester. Chem.Commun. 2000, 2253-2254.
    [132] Manea F, Houillon F B, Pasquato L, Scrimin P, Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angew. Chem. Int. Ed. 2004, 43, 6165-6169.
    [133] Bonomi R, Selvestrel F, Lombardo V, Sissi C, Polizzi S, Mancin F, Tonellato U, Scrimin P, Phosphate Diester and DNA Hydrolysis by a Multivalent, Nanoparticle-Based Catalyst. J. Am. Chem. Soc. 2008, 130(47), 15744-15745.
    [134] Hendry P, Sargeson A M, Reactivity of Coordinated Phosphate Esters: Pentaamminecobalt(III) Complexes. Inorg. Chem. 1990, 29, 92-97.
    [135] Benkovic J S, Dunikoski L K, Unusual rate enhancement in metal ion catalysis of phosphate transfer. J. Am. Chem. Soc. 1971, 93, 1526-1527.
    [136] Murakami Y, Sunamoto, Solubilization of NaX salts in chloroform by bifunctional receptors. Solvolysis of Organic Phosphates. IV. 3-Pyridyl and 8-Quinoly Phosphates as Effected by the Presence of Metal Ions. J. Bull. Chem. Soc. Japan 1971, 44,1827-1934.
    [137] Fife T H, Pujari M P, Divalent metal ion catalysis in the hydrolysis of phosphomonoesters. Hydrolysis of 2-(1,10-phenanthrolyl) phosphate J. Am. Chem. Soc. 1988, 110, 7790-7797.
    [138] Hendry P, Sargeson A M, Base Hydrolysis of Coordinated Trimethyl Phosphate. Aust. J. Chem. 1986, 39, 1177-1186.
    [139] Linkletter B, Chin J, Rapid Hydrolysis of RNA with a Cu(II) Complex. Angew. Chem. Intl. Ed. Engl. 1995, 34, 472-474.
    [140] Kirby A, Advances in Phys. Org. Chem. Eds. Gold, V. et al. Toronto: Academic Press, 17, 183-278.
    [141] Williams N H, Chin J, Metal-ion Catalysed Phosphate Diester Transesterification: Quantifying Double Lewis-acid Activation. J. Chem. Soc. Chem. Commun. 1996, 131-132.
    [142] Wahnon D, Lebuis A, Hydrolysis of a Phosphate Diester Doubly Coordinated to a Dinuclear Cobalt(III) Complex: A Novel Mechanism. Angew. Chem. Intl. Ed. Engl. 1995, 34, 2412-2414.
    [143] Young M J, Chin J, Dinuclear Copper(II) Complex That Hydrolyzes RNA. J. Am. Chem. Soc. 1995, 117, 10577-10578.
    [144] Vance D, Czarnik A, Functional Group Convergency in A Binuclear Dephosphorylation Reagent. J. Am. Chem. Soc. 1993, 113, 12165-12166.
    [145] Tsubouchi A, Bruice T, Remarkable (.apprx.1013) Rate Enhancement in Phosphonate Ester Hydrolysis Catalyzed by Two Metal Ions. J. Am. Chem. Soc. 1994, 116, 11614-11615.
    [146] Seo J S, PhD thesis, McGill University, 1997.
    [1] Chin J, Artificial Dinuclear Phosphoesterases. Current Opinion in Chemical Biology 1997, 1, 514-521.
    [2] Sigel R K O, Pyle A M, Alternative Roles for Metal Ions in Enzyme Catalysis and the Implications for Ribozyme Chemistry. Chem. Rev. 2007, 107, 97-113.
    [3] Iranzo O, Kovalevsky A Y, Morrow J R, Richard J P, Physical and Kinetic Analysis of the Cooperative Role of Metal Ions in Catalysis of Phosphodiester Cleavage by a Dinuclear Zn(II) Complex. J. Am. Chem. Soc. 2003, 125(7), 1988-1993.
    [4] Feng G, Natale D, Prabaharan R, Mareque-Rivas J C, Williams N H, Efficient Phosphodiester Binding and Cleavage by a ZnII Complex Combining Hydrogen-Bonding Interactions and Double Lewis Acid Activation. Angew. Chem. Int. Ed. Engl. 2006, 45(42), 7056-7059.
    [5] Feng G Q, Mareque-Rivas J C, Williams N H, Comparing A Mononuclear Zn(II) Complex with Hydrogen Bond Donors with A Dinuclear Zn(II) Complex for Catalysing Phosphate Ester Cleavage. Chem. Commun. 2006, 1845-1847.
    [6] Livieri M, Mancin F, Tonellato U, Saielli G, Tonellato U, Mimicking Enzymes: Cooperation between Organic Functional Groups and Metal Ions in the Cleavage of Phosphate Diesters. Chem. Eur. J. 2007, 13, 2246-2256.
    [7] Breslow R, Huang D L, Anslyn E, On the Mechanism of Action of Ribonucleases: Dinucleotide Cleavage Catalyzed by Imidazole and Zn2+ Proc. Natl. Acad. Sci. U. S. A. 1986, 89, 1746-1750.
    [8] Selmeczi K, Giorgi M, Speier G, Farkas E, Réglier M, Mono-versus Binuclear Copper(II) Complexes in Phosphodiester Hydrolysis. Eur. J. Inorg. Chem. 2006, 1022-1031.
    [9] Xiang Q X, Yu X Q, Su X Y, Yan Q S, Wang T, You J S, Xie R G, Phosphodiester Hydrolysis by Metal Ion Macrocyclic Dioxotetraamine Complexes Bearing Alcohol Pendant in Comicellar Solution. Journal of Molecular Catalysis A: Chemical. 2002, 187, 195-200.
    [10] Hegg E L, Burstyn J N, Toward the Development of Metal-based Synthetic Nucleases and Peptidases: A Rationale and Progress Report in Applying the Principles of Coordination Chemistry. Coord. Chem. Rev. 1998, 173, 133-165.
    [11] Berg D J, Rettig S J, Orvig C, Heptadentate Ligands’for the Lanthanides. The First Structurally Characterized Example of a Lanthanide Heptadentate Ligand Complex:{Tris(3-aza-4-methyl-6-oxohept-4-en-1-yl)amine}ytterbium(Ⅲ). J. Am. Chem. Soc. 1991, 113, 2528-2532
    [12] Tobey S L, Jones B D, Anslyn E V, C3v Symmetric Receptors Show High Selectivity and High Affinity for Phosphate J. Am. Chem. Soc. 2003, 125, 4026-4027.
    [13] Tobey S L, Anslyn E V, Energetics of Phosphate Binding to Ammonium and Guanidinium Containing Metallo-Receptors in Water. J. Am. Chem. Soc. 2003, 125, 14807-14815.
    [14] Wright A T, Anslyn E V, McDevitt J T, A Differential Array of Metalated Synthetic Receptors for the Analysis of Tripeptide Mixtures. J. Am. Chem. Soc. 2005, 127, 17405-17411.
    [15] Manimala J C, Wiskur S L, Ellington A D, Anslyn E V, Tuning the Specificity of a Synthetic Receptor Using a Selected Nucleic Acid Receptor. J. Am. Chem. Soc. 2004, 126, 16515-16519.
    [16] Reddy C V, Kingston J V, Verkade J G, (t-Bu)2PNdP(i-BuNCH2CH2)3N: New Efficient Ligand for Palladium-Catalyzed C-N Couplings of Aryl and Heteroaryl Bromides and Chlorides and for Vinyl Bromides at Room Temperature. J. Org. Chem., 2008, 73(8), 3047-3062.
    [17] Chiu Y H, Canary J W, Stability and Acidity Constants for Ternary Ligand-Zinc-Hydroxo Complexes of Tetradentate Tripodal Ligands. Inorg. Chem. 2003, 42(17), 5107-5116.
    [18] Ibrahim M M, Shimomura N, Ichikawa K, Shiro M, Phosphoester hydrolysis using structural phosphatase models of tren based zinc(II) complexes and X-ray crystal structures of [Zn(tren)(H2O)](ClO4)2 and [Zn(tren)(BNPP)]ClO4. Inorg. Chim. Acta. 2001, 313,125-136.
    [19] MacBeth C E, Hammes B S, Young Jr V G, Borovik A S, Hydrogen-Bonding Cavities about Metal Ions: Synthesis, Structure, and Physical Properties for a Series of Monomeric M-OH Complexes Derived from Water. Inorg. Chem. 2001, 40, 4733-4741.
    [20] Liu S, Celmini L, Rettig S J, Thompson R C, Orvig C, Synthesis and Characterization of Lanthanide [Ln(L)2 Complexes of N4O3 Amine Phenol Ligands with Phenolate Oxygen Bridges: Evidence for Very Weak Magnetic Exchange between Lanthanide Ions. J. Am. Chem. Soc. 1992, 114, 6081-6087.
    [21] R. A. Moss, W. Jiang, Lanthanide-Mediated Cleavages of Micellar Phosphodiesters. Langmuir. 2000, 16(1), 49-51.
    [22] Tecilla P, Tonellato U, Veronese A, Acceleration of p-Nitrophenyl Ester Cleavage by Zn(II)-Organized Molecular Receptors. J. Org. Chem. 1997, 62, 7621-7628.
    [23] Tobey S L, Anslyn E V, Studies into the Thermodynamic Origin of Negative Cooperativity in Ion-Pairing Molecular Recognition. J. Am. Chem. Soc. 2003, 125, 10963-10970.
    [24] Cacciapaglia R, Casnati A, Mandolini L, Reinhoudt D N, Salvio R, Sartori A, Ungaro R, Di- and Trinuclear Zn2+ Complexes of Calix[4]arene Based Ligands as Catalysts of Acyl and Phosphoryl Transfer Reactions. J. Org. Chem. 2005, 70, 624-630.
    [1] Gellman S H, Introduction: Molecular Recognition. Chem. Rev. 1997, 97, 1231-1232.
    [2] Zhao Y, Zhong Z, Ryu E H, Preferential Solvation within Hydrophilic Nanocavities and Its Effect on the Folding of Cholate Foldamers. J. Am. Chem. Soc. 2007, 129, 218-225.
    [3] Lehn J M, Supramolecular Chemistry: Concepts and Perspectives, VHC, New York, 1995.
    [4] Lehn J M, Supramolecular Chemistry-Scope And Perspectives Molecules, Molecules, Supermolecules, And Molecular Devices (Nobel lecture). J. Inclusion Phenom. Macrocyclic Chem. 1988, 6, 351-396.
    [5] Mukhopadhyay S, Maitra U, Chemistry and biology of bile acids. Curr. Sci. 2004, 87, 1666-1683.
    [6] Ryu E H, Zhao Y, Environmentally Responsive Molecular Baskets: Unimolecular Mimics of Both Micelles and Reversed Micelles. Org. Lett. 2004, 6, 3187-3189.
    [7] Zhao Y, Ryu E H, Solvent-Tunable Binding of Hydrophilic and Hydrophobic Guests by Amphiphilic Molecular Baskets. J. Org. Chem. 2005, 70, 7585-7591.
    [8] Zhong Z, Yan J, Zhao Y, Cholic Acid-Derived Facial Amphiphiles with Different Ionic Characteristics. Langmuir. 2005, 21, 6235-6239.
    [9] Ryu E H, Yan J, Zhong Z, Zhao Y, Solvent-Induced Amphiphilic Molecular Baskets: Unimolecular Reversed Micelles with Different Size, Shape, and Flexibility. J. Org. Chem. 2006, 71, 7205-7213.
    [10] Ryu E-H, Zhao Y, An Amphiphilic Molecular Basket Sensitive to Both Solvent Changes and UV Irradiation. J. Org. Chem. 2006, 71(25), 9491-9494.
    [11] Janout V, Di Giorgio C, Regen S L, Molecular Umbrella-Assisted Transport of a Hydrophilic Peptide Across a Phospholipid Membrane. J. Am. Chem. Soc. 2000, 122, 2671-2672.
    [12] Janout V, Jing B, Regen S L, Molecular Umbrella-Assisted Transport of Thiolated AMP and ATP Across Phospholipid Bilayers. Bioconjugate Chem. 2002, 13, 351-356.
    [13] Janout V, Jing B, Regen S L, Molecular Umbrella-Assisted Transport of an Oligonucleotide across Cholesterol-Rich Phospholipid Bilayers. J. Am. Chem. Soc. 2005, 127, 15862-15870.
    [14] Janout V, Zhang L H, Staina I V, Di Giorgio C, Regen S L, Molecular Umbrella-Assisted Transport of Glutathione Across a Phospholipid Membrane. J. Am. Chem. Soc. 2001, 123, 5401-5406.
    [15] Yoshii M, Yamamura M, Satake A, Kobuke Y, Supramolecular ion channels from a transmembrane bischolic acid derivative showing two discrete conductances. Org. Biomol. Chem. 2004, 2, 2619-2623.
    [16] Goto C, Yamamura M, Satake A, Kobuke Y, Artificial Ion Channels Showing Rectified Current Behavior. J. Am. Chem. Soc. 2001, 123, 12152-12159.
    [17] Kobuke Y, Nagatani T, Transmembrane Ion Channels Constructed of Cholic Acid Derivatives. J. Org. Chem. 2001, 66, 5094-5101.
    [18] N. Yoshino, Satake A, Kobuke Y, An Artificial Ion Channel Formed by a Macrocyclic Resorcin[4]arene with Amphiphilic Cholic Acid Ether Groups. Angew. Chem. Int. Ed. 2001, 40, 457-459.
    [19] Kobuke Y, Nagatani T, A Supramolecular Ion Channel Based on Amphiphilic Cholic Acid Derivatives. Chem. Lett. 2000, 298-299.
    [20] Bhattacharya S, Maitra U, Mukhopadhyay S, Srivastava A, ADVANCES IN MOLECULAR HYDROGELS. ed. Weiss RG, Terech P, Mol. Gels. Materials with Self-Assembled Fibrillar Networks. Springer. 2006, 613-647.
    [21] Mukhopadhyay S, Maitra U, Ira I, Krishnamoorthy G, Schmidt J, Talmon Y, Structure and Dynamics of a Molecular Hydrogel Derived from a Tripodal Cholamide. J. Am. Chem. Soc. 2004, 126, 15905-15914.
    [22] Zhao Y, Zhong Z, Detection of Hg2+ in Aqueous Solutions with a Foldamer-Based Fluorescent Sensor Modulated by Surfactant Micelles. Org. Lett. 2006, 8, 4715-4717.
    [23] Zhou Y, Ryu E H, Zhao Y, Woo L K, Solvent-Responsive Metalloporphyrins: Binding and Catalysis. Organomet. 2007, 26, 358-364.
    [24] Ryu E H, Cho H, Zhao Y, Catalyzing Methanolysis of Alkyl Halides in the Interior of an Amphiphilic Molecular Basket. Org. Lett. 2007, 9, 5147-5150.
    [25] Overberger C G, Yuen P S, Esterolytic Catalyses by Triazoles. J. Am. Chem. Soc. 1970, 92(6), 1667-1671.
    [26] Fox J. P, Jencks W P, General Acid and General Base Catalysis of the Methoxyaminolysis of 1-Acetyl-1,2,4-Triazole. J. Am. Chem. Soc. 1974, 96(5), 1436-1449.
    [27] Colasson B, Save M, Milko P, Roithov J, Schrder D, Reinaud O, A Ditopic Calix[6]arene Ligand with N-Methylimidazole and 1,2,3-Triazole Substituents: Synthesis and Coordination with Zn(II) Cations. Org. Lett., 2007, 9(24), 4987-4990.
    [28] Suijkerbuijk B M J M, Aerts B N H, Dijkstra H P, Lutz M, Spek A L, van Koten G, Klein Gebbink R J M,“Click”1,2,3-triazoles as tunable ligands for late transition metal complexes. Dalton Trans.2007, 1273-1276.
    [29] Li Y, Huffman J C, Flood A H, Can terdentate 2,6-bis(1,2,3-triazol-4-yl)pyridines form stable coordination compounds? Chem. Commun. 2007, 2692-2694.
    [30] Mindt T L, Struthers H, Brans L, Anguelov T, Scheinsberg C, Maes V, Tourwe D, Schibli R,“Click to Chelate”: Synthesis and Installation of Metal Chelates into Biomolecules in a Single Step. J. Am. Chem. Soc. 2006, 128, 15096-15097.
    [31] Chan T R, Hilgraf R, Sharpless K B, Fokin V V, Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett. 2004, 17, 2853-2855.
    [32] Liu D, Gao W Z, Dai Q, Zhang X M, Triazole-Based Monophosphines for Suzuki?Miyaura Coupling and Amination Reactions of Aryl Chlorides. Org.Lett. 2005, 22, 4907-4910.
    [33] Dai Q, Gao W Z, Liu D, Kapes L M, Zhang X M, Triazole-Based Monophosphine Ligands for Palladium-Catalyzed Cross-Coupling Reactions of Aryl Chlorides. J. Org. Chem. 2006, 10, 3928-3934.
    [34] Bastero A, Font D, Pericas M A, Synthesis of 3,4-Disubstituted Piperidines by Carbonyl Ene and Prins Cyclizations: Switching between Kinetic and Thermodynamic Control with Br?nsted and Lewis Acid Catalysts. J. Org. Chem. 2007, 7, 2460-2468.
    [35] J. R. Morrow, L. A. Buttrey, K. A. Berback, Transesterification of a phosphate diester by divalent and trivalent metal ions. Inorg. Chem. 1992, 31, 16-20.
    [1] Murakami Y, Kikuchi J I, Hisaeda Y, Hayashida O, Artificial Enzymes. Chem. Rev. 1996, 96, 721-758.
    [2] Breslow R, Artificial Enzymes, Wiley Weinheim, 2005.
    [3] Wallimann P, Mattei S, Seiler P, Diederich F, New Cyclophanes as Initiator Cores for the Construction of Dendritic Receptors: Host-guest Complexation in Aqueous Solutions and Structures of Solid-state Inclusion Compounds. Helv. Chim. Acta. 1997, 80, 2368-2390.
    [4] Yamada Y, Aoki S, Efficient Cycloreversion of cis, syn-Thymine Photodimer by a Zn2+-1,4,7,10-Tetraazacyclododecane Complex Bearing a Lumiflavin and Tryptophan by Chemical Reduction and Photoreduction of a Lumiflavin Unit. J. Biol. Ionrg. Chem. 2006, 11, 1007-1023.
    [5] Koiket T, Kimura E, Roles of Zinc(Ⅱ) Ion in Phosphatases. A Model Study with Zinc(Ⅱ)-Macrocyclic Polyamine Complexes. J. Am. Chem. Soc. 1991, 113, 8935-8941.
    [6] Li S A, Xia J, Yang D X, Xu Y, Li D F, Wu M F, Tang W X, Carboxyester Hydrolysis Catalyzed by a Novel Dicopper(Ⅱ) Complex with an Alcohol-Pendant Macrocycle. Inorg. Chem. 2002, 41, 1807-1815.
    [7] Hegg E L, Deal K A, Kiessling L L, Burstyn J N, Hydrolysis of Double-Stranded and Single-Stranded RNA in Hairpin Structures by the Copper(Ⅱ) Macrocycle Cu([9]aneN3)Cl2. Inorg. Chem. 1997, 36, 1715-1718.
    [8] Bazzicalupi C, Bencini A, Berni E, Bianchi A, Fedi V, Fusi V, Giorgi C, Paoletti P, Valtancoli B, Carboxy and Diphosphate Ester Hydrolysis by a Dizinc Complex with a New Alcohol-Pendant Macrocycle. Inorg. Chem. 1999, 38, 4115-4122.
    [9] Bazzicalupi C, Bencini A, Berni E, Bianchi A, Fornasari P, Giorgi C, Paoletti P, Valtancoli B, Zn(Ⅱ) Coordination to Polyamine Macrocycles Containing Dipyridine Units. New Insights into the Activity of Dinuclear Zn(II) Complexes in Phosphate Ester Hydrolysis. Inorg. Chem. 2004, 43, 6255-6265.
    [10] Liu J Q, Wulff G, Functional Mimicry of the Active Site of Carboxypeptidase A by a Molecular Imprinting Strategy: Cooperativity of an Amidinium and a Copper Ion in a Transition-State Imprinted Cavity Giving Rise to High Catalytic Activity. J. Am. Chem. Soc. 2004, 126, 7452-7453.
    [11] Liu J Q, Wulff G, Molecularly Imprinted Polymers with Strong Carboxypeptidase A-Like Activity: Combination of an Amidinium Function with a Zinc-Ion Binding Site in Transition-State Imprinted Cavities. Angew. Chem. Int. Ed. 2004, 43, 1287-1290.
    [12] Emgenbroich M, Wulff G, A New Enzyme Model For Enantioselective Esterases Based On Molecularly Imprinted Polymers. Chem. Eur. J. 2003, 9, 4106-4117.
    [13] Zhang X, Xu H P, Dong Z Y, Wang Y P, Liu J Q, Shen J C, Highly Efficient Dendrimer-Based Mimic of Glutathione Peroxidase. J. Am. Chem. Soc. 2004, 126, 10556-10557.
    [14] Martin M, Manea F, Fiammengo R, Prins L J, Pasquato L, Scrimin P, Metallodendrimers as Transphosphorylation Catalysts. J. Am. Chem. Soc. 2007, 129, 6982-6983.
    [15] Hugot M, Bensel N, Vogel M, Reymond M T, Stadler B, Reymond J L, Baumann U, A Structural Basis for the Activity of Retro-Diels–Alder Catalytic Antibodies: Evidence for a Catalytic Aromatic Residue. Proc. Natl. Acad. Sci. USA 2002, 99, 9674-9678.
    [16] Gigant B, Tsumuraya T, Fujii I, Knossow M, Diverse Structural Solutions to Catalysis in a Family of Antibodies. Structure 1999, 7, 1385-1394.
    [17] Kawamura-Konishi Y, Sasaki R, Sugiyama M, Hashimoto H, Kamo T, Hosomi N, Yamazaki M, Tashiro H, Suzuki H, Key Residue Responsible for Catalytic Activities in the Antibodies Elicited Against N-methyl Mesoporphyrin. J. Mol. Catal. B-Enzym. 2003, 24, 99-109.
    [18] Lnznaster M, Neves A, Brtoluzzi A J, Aires V V E, Szpoganicz B, Terenzi H, Severino P C, Fuller J M, Drew S C, Gahan L R, Hanson G R, Riley M J, Schenk G, A New Heterobinuclear FeIIICuII Complex with a Single Terminal FeIII–O(phenolate) Bond. Relevance to Purple Acid Phosphatases and Nucleases. J. Biol. Inorg. Chem. 2005, 10, 319-332.
    [19] Neves A, Lanznaster M, Bortoluzzi A J, Peralta R A, Casellato A, Castellano E E, Herrald P, Riley M J, Schenk G, An Unprecedented FeIII(μ-OH)ZnII Complex that Mimics the Structural and Functional Properties of Purple Acid Phosphatases. J. Am. Chem. Soc. 2007, 129, 7486-7487.
    [20] Miti? N, Smith S J, Neves A, Guddat L W, Gahan L R, Schenk G, The Catalytic Mechanisms of Binuclear Metallohydrolases. Chem. Rev. 2006, 106:3338-3363.
    [21] Jang B B, Lee K P, Min D H, Suh J, Immobile Artificial Metalloproteinase Containing Both Catalytic and Binding Groups. J. Am. Chem. Soc. 1998, 120, 12008-12016.
    [22] Moon S J, Jeon J W, Kim H, Suh M P, Suh J, Artificial Trinuclear Metallopeptidase Synthesized by Cross-Linkage of a Molecular Bowl with a Polystyrene Derivative. J. Am. Chem. Soc. 2000, 122, 7742-7749.
    [23] Suh J, Acc. Chem. Res. Synthetic Artificial Peptidases and Nucleases Using Macromolecular Catalytic Systems. 2003, 36:562-570.
    [24] Yoo C E, Chae P S, Kim J E, Jeong E J, Suh J, Degradation of Myoglobin by Polymeric Artificial Metalloproteases Containing Catalytic Modules with Various Catalytic Group Densities: Site Selectivity in Peptide Bond Cleavage. J. Am. Chem. Soc. 2003, 125, 14580-14589.
    [25] Yoo S H, Lee B J, Kim H, Suh J, Artificial Metalloprotease with Active Site Comprising Aldehyde Group and Cu(II)Cyclen Complex. J. Am. Chem. Soc. 2005, 127, 9593-9602.
    [26] Breslow R, Very Fast Ester Hydrolysis by A Cyclodextrin Dimer with A Catalytic Linking Group. J. Am. Chem. Soc. 1992, 114, 5882-5883.
    [27] Breslow R, Zhang B, Cleavage of Phosphate Esters by a Cyclodextrin Dimer Catalyst That Binds the Substrates Together with La3+ and Hydrogen Peroxide. J. Am. Chem. Soc. 1994, 116, 7893-7894
    [28] Mackay L G, Wylie R S, Sanders J K M, Catalytic Acyl Transfer by a Cyclic Porphyrin Trimer: Efficient Turnover without Product Inhibition. J. Am. Chem. Soc. 1994, 116, 3141-3142.
    [29] Pengo P, Polizzi S, Pasquato L, Scrimin P, Carboxylate-Imidazole Cooperativity in Dipeptide-Functionalized Gold Nanoparticles with Esterase-like Activity. J. Am. Chem. Soc. 2005, 127, 1616-1617.
    [30] Manea F, Houillon F B, Pasquato L, Scrimin P, Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts,Angew. Chem. Int. Ed. 2004, 43, 6165-6169.
    [31] Pasquato L, Rancan F, Scrimin P, Mancin F, Frigeri C, N-Methylimidazole-functionalized Gold Nanoparticles as Catalysts for Cleavage of a Carboxylic Scid ester. Chem. Commun. 2000, 20, 2253-2254.
    [32] Pengo P, Baltzer L, Pasquato L, Scrimin P, Substrate Modulation of the Activity of an Artificial Nanoesterase Made of Peptide-Functionalized Gold Nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 400-404.
    [33] Breslow R, Huang D L, Anslyn E, On the Mechanism of Action of Ribonucleases: Dinucleotide Cleavage Catalyzed by Imidazole and Zn2+. Proc. Natl. Acad. Sci. USA 1989, 86, 1746-1750.
    [34] Breslow R, Huang D L, Effects of Metal Ions, Including Mg2+ and Lanthanides, On the Cleavage of Ribonucleotides and RNA Model Compounds. Proc. Natl. Acad. Sci. USA 1991, 88, 4080-4083.
    [35] Chapman Jr W H, Breslow R, Selective Hydrolysis of Phosphate Esters, Nitrophenyl Phosphates and UpU, by Dimeric Zinc Complexes Depends on the Spacer Length. J. Am. Chem. Soc. 1995, 117, 5462-5469.
    [36] Morrow J R, Buttrey L A, Shelton V M, Berback K A, Efficient Catalytic Cleavage of RNA by Lanthanide(III) Macrocyclic Complexes: Toward Synthetic Nucleases For In Vivo Applications. J. Am. Chem. Soc. 1992, 114, 1903-1905.
    [37] Iranzo O, Kovalevsky A Y, Morrow J R, Richard J P, Physical and Kinetic Analysis of the Cooperative Role of Metal Ions in Catalysis of Phosphodiester Cleavage by a Dinuclear Zn(II) Complex. J. Am. Chem. Soc. 2003, 125, 1988-1993.
    [38] Rossi P, Tecilla P, Baltzer L, Scrimin P, De novo Metallonucleases Based onHelix-Loop-Helix Motifs. Chem. Eur. J. 2004, 10, 4163-4170.
    [39] Mancin F, Scrimin P, Tecilla P, Tonellato U, Artificial Metallonucleases. Chem. Commun. 2005, 20, 2540-2548.
    [40] Molenveld P, Engbersen J F J, Kooijman H, Spek A L, Reinhoudt D N, Efficient Catalytic Phosphate Diester Cleavage by the Synergetic Action of Two Cu(II) Centers in a Dinuclear Cis-Diaqua Cu(II) Calix[4]arene Enzyme Model. J. Am. Chem. Soc. 1998, 120, 6726-6737.
    [41] Molenveld P, Stikvoort W M G, Kooijman H, Spek A L, Engbersen J FJ, Reinhoudt D N, Dinuclear and Trinuclear Zn(II) Calix[4]arene Complexes as Models for Hydrolytic Metallo-Enzymes. Synthesis and Catalytic Activity in Phosphate Diester Transesterification. J. Org. Chem. 1999, 64, 3896-3906.
    [42] Molenveld P, Engbersen J F J, Reinhoudt D N, Dinuclear Bisimidazolyl-Cu(II) Calix[4]arenes as Metalloenzyme Models. Synthesis and Bifunctional Catalysis in Phosphate Diester Transesterification. J. Org. Chem. 1999, 64, 6337-6341.
    [43] Molenveld P, Kapsabelis S, Engbersen J F J, Reinhoudt D N, Highly Efficient Phosphate Diester Transesterification by a Calix[4]arene-Based Dinuclear Zinc(II) Catalyst. J.Am. Chem. Soc. 1997, 119, 2948-2949.
    [44] Takebayashi S, Shinkai S, Ikeda M, Takeuchi M, Metal Ion Induced Allosteric Transition in the Catalytic Activity of An Artificial Phosphodiesterase. Org. Biomol. Chem. 2008, 6, 493-499.
    [45] Williams N H, Takasaki B, Wall M, Chin J, Structure and Nuclease Activity of Simple Dinuclear Metal Complexes: Quantitative Dissection of the Role of Metal Ions. Acc. Chem. Res. 1999, 32, 485-493.
    [46] Takebayashi S, Ikeda M, Takeuchi M, Shinkai S, Metal Ion Induced Allosteric Transition in the Catalytic Activity of An Artificial Phosphodiesterase. Chem. Commun. 2004, 19, 420-421.
    [47] Neverov A A, Lu Z L, Maxwell C I, Mohamed M F, White C J, Tsang J S W, Brown R S, Combination of a Dinuclear Zn2+ Complex and a Medium Effect Exerts a 1012-Fold Rate Enhancement of Cleavage of an RNA and DNA Model System. J. Am. Chem. Soc. 2006, 128, 16398-16405.
    [48] Fan H Y, Yang K, Boye D M, Sigmon T, Malloy K J, Xu H F, López G P, Brinker C J, Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays. Science, 2004, 304, 568-571.
    [49] Fan H Y, Chen Z, Brinker C J, Clawson J, Alam T, Synthesis of Organo-Silane Functionalized Nanocrystal Micelles and Their Self-Assembly. J. Am. Chem. Soc. 2005, 127, 13746-13747.
    [50] Fan H Y, Nanocrystal-micelle: Synthesis, Self-assembly and Application. Chem. Commun. 2008, 1383–1394.
    [51] Polyzos A, Hughes A B, Christie J R, Catalysis of Aryl Ester Hydrolysis in the Presence of Metallomicelles Containing a Copper(II) Diethylenetriamine Derivative. Langmuir. 2007, 23, 1872-1879.
    [52] Brown D M, Usher D A, Hydrolysis of Hydroxyalkyl Phosphate Esters:Effect of Changing Ester Group. J.Chem.Soc. 1965, 65, 6558-6564.
    [53] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R, Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 1994, 801-802.
    [54] Brust M, Fink J, Bethell D, Schiffrin D J, Kiely C, Synthesis and Reactions of Functionalized Gold Nanoparticle, J. Chem. Soc. Chem. Commun. 1995, 1655-1656.
    [55] Hendry P, Sargeson A M, Metal Ion Promoted Reactions of Phosphate Derivatives, Prog. Inorg. Chem. 1990, 38, 201-250.
    [56] Jiang W D, Xue B, Lin Q, Li J Z, Fu H Y, Zeng X C, Chen H, Cleavage of Phosphate Diesters Mediated by Zn(II) Complex in Gemini Surfactant Micelles J. Colloid. Interface. Sci. 2007, 311, 530-536.
    [57] Cacciapaglia R, Casnati A, Mandolini L, Reinhoudt D N, Salvio R, Sartori A, Ungaro R, Di- and Trinuclear Zn2+ Complexes of Calix[4]arene Based Ligands as Catalysts of Acyl and Phosphoryl Transfer Reactions. J. Org. Chem. 2005, 70, 624-630.
    [58] Gunnlaugsson, T, Davies R J H, Nieuwenhuyzen M, Stevenson C S, Viguier R, Mulready S, Rapid Hydrolytic Cleavage of the mRNA Model Compound HPNP by Glycine Based Macrocyclic Lanthanide Ribonuclease Mimics. Chem. Commun. 2002, 2136-2137.
    [59] Worm K, Chu F Y, Matsumoto K, Best M D, Lynch V, Anslyn E, Preorganized Bis-Zinc Phosphodiester Cleavage Catalysts Possessing Natural Ligands: A Lesson Pertinent to Bimetallic Artificial Enzymes. Chem. Eur. J. 2003, 9, 741-747.
    [60]Deal K A, Burstyn J N, Mechanistic Studies of Dichloro(1,4,7-triazacyclononane)copper(II)-catalyzed Phosphate Diester Hydrolysis. Inorg. Chem. 1996, 35, 2792-2798.
    [61] Hegg E L, Burstyn J N, Toward the Development of Metal-based Synthetic Nucleases and Proteases: a Rationale and Progress Report in Applying the Principles of Coordination Chemistry. Coord. Chem. Rev. 1998, 173, 133-165.
    [62] Morrow J R, Trogler W C, Hydrolysis of Phosphate Diesters with Copper(II) Catalysts. Inorg. Chem. 1988, 27, 3387-3394.
    [63] Menger F M, Gan L H, Johnson E, Durst H D, Phosphate Ester Hydrolysis Catalyzed by Metallomicelles. J. Am. Chem. Soc. 1987, 109, 2800-2803.
    [64] Hengge A C, Cleland W W, Direct Measurement of Transition-state Bond Cleavage in Hydrolysis of Phosphate Esters of p-Nitrophenol. J. Am. Chem. Soc. 1990, 112, 7421-7422.
    [65] Deal K A, Hengge A C, Burstyn J N, Characterization of Transition States in Dichloro(1,4,7-triazacyclononane)copper(II)-Catalyzed Activated Phosphate Diester Hydrolysis. J. Am. Chem. Soc. 1996, 118, 1713-1718.
    [66] Schenk G, Peralta R A, Batista S C, Bortoluzzi A J, Szpoganicz B, Dick A K, Herrald P, Hanson G R, Szilagyi R K, Riley M J, Gahan L R, Neves A, Probing the Role of the Divalent Metal Ion in Uteroferrin Using Metal Ion Replacement and a Comparison to Isostructural Biomimetics. J. Biol. Inorg. Chem. 2008, 13, 139-155
    [67] Segel I H, Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. 1975, Wiley, New York.
    [68] Livieri M, Mancin F, Saielli G, Chin J, Tonellato U, Mimicking Enzymes: Cooperation between Organic Functional Groups and Metal Ions in the Cleavage of Phosphate Diesters. Chem. Eur. J. 2007, 13, 2246-2256.
    [69] Menger F M, Shi L, Exposure of Self-Assembly Interiors to External Elements. A Kinetic Approach. J. Am. Chem. Soc. 2006, 128, 9338-9339.
    [70] Menger F M, The Structure of Micelles. Acc. Chem. Res. 1979, 12, 111-117.
    [71] Menger F M, Dell D W J, On the Structure of Micelles. J. Am. Chem. Soc. 1984, 106, 1109-1113.
    [72] Martell A E, Smith R M, Critical Stability Constants. 1977, Plenum Press, New York.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700