用户名: 密码: 验证码:
不同分子量与构型结构的聚乳酸均聚物与立体共聚物的凝聚态、热力学及结晶动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,生物降解高分子在基础研究和化学工业领域都是研究热点。多种脂肪族聚酯都具有良好的水解性质,降解产物对环境和生物体没有毒性,应用前景广阔。其中,聚乳酸(PLA)被认为是最有吸引力的可生物降解聚酯材料。因为PLA原料乳酸可以通过生物技术制备,PLA为热塑性聚合物,具有高强度和高模量,可以应用现有技术工艺进行成型加工。目前,大量文献报道了PLA及其共聚物在生物医用方面的研究成果。PLA可作为组织工程支架材料,制备可被人体吸收的医用植入体,药物释放系统中可作为药物载体,也可作为人体创口敷膜等。PLA的各种应用研究依赖于其特定的物理性质,如PLA作为骨科材料必须具有高模量,则需要较高的分子量和特定的凝聚态结构,而如果作为药物缓释材料,降解周期是一个重要参数,分子量相对较低。所以,PLA的分子量、分子结构、热行为、凝聚态结构和形貌等相关基础研究具有重要意义,这也是本论文的主要研究内容。
     目前PLA的合成多采用辛酸亚锡为催化剂,PLA的结晶结构、热行为等物理性质研究也是基于辛酸亚锡体系。但是,辛酸亚锡对于生物体具有一定毒性,可能限制PLA的医学应用。本论文中,PLA通过锌催化开环聚合制备,而锌催化剂对生物体无毒性作用。在此基础上,合成制备了不同分子量、不同分子结构的PLA,研究PLA的热力学行为、结晶结构和形貌等。主要内容如下:
     (1)制备了左旋聚乳酸(PLLA)样品,研究了PLLA基本热力学行为、微观形貌等,实验结果表明PLLA的结晶行为与催化剂没有明显的联系。等温结晶研究中,PLLA的熔融重结晶会引起双重熔融行为,等温可观察到有限的片晶增厚现象,结晶结构以稳定的α晶型结构存在。Avrami方程分析表明PLLA等温结晶为异相成核、三维生长,在105℃附近达到最大总结晶生长速率。PLLA球晶形貌观察到同心裂纹、环形或者六边形,形成原因是球晶的周期性生长特点和冷却时的热收缩效应。使用自成核、非等温方法研究了PLLA的球晶生长速率,并应用Lauritzen-Hoffman方程非线性拟合PLLA球晶生长速率,得到PLLA的结晶动力学参数。
     (2)研究了分子量对PLLA的热力学以及动力学的影响。Flory相关公式可以推测,当分子量趋向于极大时,PLLA玻璃化转变温度为60.0℃,熔融温度为178.8℃。Avrami方程表明,分子量越高,PLLA总结晶速率越低,高过冷度时结晶诱导时间也越长。最大总结晶速率和分子量之间存在着标度律,幂律为-0.5。PLLA熔体等温结晶研究中,采用线性和非线性Hoffman-Weeks方程计算PLLA的平衡熔融温度,阐明了线性HW方程对于低分子量PLLA熔融温度计算失效的原因,得到极大分子量PLLA的平衡熔融温度为207.6℃。PLLA玻璃化转变研究中,发现了双吸热峰对应的热焓恢复现象,PLLA结晶时出现的受限无规态和自由无规态分子链是形成双峰的原因。通过化学刻蚀观察到板条状晶沿径向生长,片晶结构规整。Lauritzen-Hoffman理论分析得到不同分子量PLLA的结晶动力学上的区域Ⅲ与区域Ⅱ的转变温度在115-120℃。
     (3)研究不同立体构型的PLA的结晶行为、形貌和酶降解过程。DSC研究显示不同右旋乳酸单元含量的PLA立体共聚物有着相同的结晶机制。ESEM研究确证了蛋白酶K对于PLA熔体等温结晶薄膜的自由非晶和受限结晶区域的降解作用。球晶中的片晶在降解过程中保持其空间排布,而并不会坍塌。球晶的成核位置在材料表面或是内部可能是观测到的两类PLA降解形貌的形成原因。FTIR研究确证了半结晶PLA中晶体特征峰和非晶特征峰的存在。921 cm~(-1)晶体特征峰的分裂说明了受限非晶区的降解影响了晶区链段的振动状态,而955 cm~(-1)非晶特征峰附近出现肩峰确证了蛋白酶K降解过程中PLA非晶组分的物理老化现象。
     (4)研究了PLLA/PDLA的立体复合晶体。共混比例1:1,左旋和右旋PLA分子量接近。实验应用了三种PLLA/PDLA体系,目的是探讨不同分子量和不同旋光度对立体复合晶体的影响,研究立体复合晶体的晶体结构、热行为、酶降解过程等等。立体复合结晶受熔体状态的影响,当熔融温度升高或者熔融时间延长时,立体复合结晶将急剧减弱甚至消失,但通过溶液结晶,立体复合结晶可以再次恢复。异相和均相熔体的模型假设可以解释此实验现象。
During the past two decades,biodegradable polymers have attracted much interest in both basic research and chemical industry.Aliphatic polyesters present excellent degradation properties,with degradation by-products harmless to the environment and animal body.Especially,polylactide(PLA) is regarded as the most promising biodegradable polyester.The raw material of PLA,lactic acid,can be obtained from renewable sources.PLA is a thermoplastic with high strength and high modulus,and can be processed by using conventional industrial equipments and techniques.Up to now,a great deal of work has been reported on biomedical applications of PLA such as tissue engineering scaffolds,resorbable medical implants, sustained drug delivery systems and wound dressings.All these applications strongly depend on the specific physical properties of PLA.For example,high molecular weigh(MW) and highly condensed structure are required for higher-modulus PLA used as osteosynthetic materials,while drug delivery systems generally require amorphous copolymers of relatively low MW.This work consists in investigating the morphology and crystallization of PLA,including the thermodynamics,crystallization kinetics,condensed structure,morphology,and the influence of MW and configurational structure.
     Many researchers have studied the crystallization of PLA obtained by using Sn(Oct)_2 as catalyst.However,Sn(Oct)_2 is more or less cyto-toxic,which could limit the potential medical applications of PLA.Zinc lactate was used as catalyst in this work for the sake of biocompatibility.PLA with various MWs and configurational structures were thus synthesized for studies on the thermodynamics,crystal structure, and morphology etc.The main contents are shown as follows.
     1.Poly(L-lactide)(PLLA) was synthesized by ring opening polymerization of L-lactide using zinc lactate as catalyst.The basic thermal behaviors and morphologies were examined by using DSC,POM and SEM.The results show that the catalyst has no significant effect on the crystallization.Isothermally crystallized PLLA exhibits double melting behavior,which could be ascribed to melt recrystallization mechanism. Limited lamellar thickening was detected at certain temperatures,withαform crystal structure.Avrami analysis showed that PLLA crystallization starts with heterogeneous nucleation,followed by three-dimensional growth.The maximal overall crystal growth rate was obtained at approximately 105℃.Concentric cracks,either circular or hexagonal,were observed during melt crystallization at 135℃and quenching in liquid nitrogen,which was assigned to rhythmic growth and thermal shrinkage.In addition,the crystal growth rate of PLLA spherulites was evaluated by using self nucleation combined with non-isothermal method.Lauritzen-Hoffman equation was used for nonlinear fitting of the obtained data,which allowed deducing the kinetic parameters of PLLA crystallization.
     2.The influences of MW on the thermodynamics and kinetics of PLLA crystallization were investigated.The glass transition temperature of PLLA with infinite MW was estimated to be 60.0℃,and the melting temperature 178.8℃,based on the relevant equations from Flory.In Avrami analysis,PLLA with higher MW presents lower overall crystal growth rate,higher super-cooling degree leading to longer induction period for crystallization.And there exists a scale law between the maximal crystal growth rate and MW with power of-0.5.Linear and nonlinear Hoffman-Weeks expressions were applied to calculate equilibrium melting temperature of isothermally melt crystallized PLLA.Linear extrapolation was found not applicable to PLLA with low MW.The equilibrium melting temperature of PLLA was determined to be 207.6℃.Double endothermic peaks were observed during PLLA glass transition.The two peaks result from enthalpy recovery of both confined and free amorphous fractions in crystallized PLLA.SEM shows that lathlike lamellae align along radial direction and are well organized in chemically etched PLLA spherulites.The transition temperature from RegimeⅡto RegimeⅢwas found to be around 115-120℃for PLLA with different MWs according to Lauritzen-Hoffman theory.
     3.PLA samples with various configurational structures were synthesized from different L-lactide and DL-lactide feeds.DSC shows that the PLA samples present the same crystallization mechanism.ESEM observations confirmed that proteinase K could degrade both free and confined amorphous fractions of PLA through L-lactic acid units.During enzymatic degradation,lamellae inside the spherulites preserve their structural organization without collapsing.Two kinds of PLA spherulitic morphology were observed,which probably result from different nucleation locations, i.e.inside or at the surface.Furthermore,both crystal and amorphous characteristic peaks were detected on FTIR spectra.Splitting of the crystal peak at 921 cm~(-1) seems to indicate that degradation of confined amorphous fraction influences the vibration state of chains in lamellae,while a shoulder peak appearing near the amorphous peak at 955 cm~(-1) is considered as an evidence of physical aging of PLLA amorphous fraction.
     4.The crystallization behaviors of PLLA/PDLA stereocomplex were investigated by using DSC and ESEM.PLLA and PDLA with similar MWs were mixed at 1:1 ratio.Three different types of PLLA/PDLA blends were utilized to illustrate the influence of MW and configurational structure on PLA stereocomplexation.In particular,sterecomplexation was found to weaken or even disappear when PLLA/PDLA was melted at higher temperature or for prolonged period.This interesting phenomenon was assigned to the initial melt state,i.e.homogeneous or heterogeneous.
引文
1.Carothers,W.H.;Dorough,G.L.;Natta,F.J.V.,Studies of polymerization and ring formation x the reversible polymerization of six-membered cyclic esters[J].Journal of the American Chemical Society 1932,54,761-772.
    2.Pitt,G.G.;Gratzi,N.H.;Kimmel,G.L.;Surles,J.;Sohindler,A.,Aliphatic polyesters ⅱ the degradation of poly dl lactide poly epsilon caprolactone and their copolymers in vivo[J].Biomaterials 1981,2,215-220.
    3.Tsuji,H.;Ikada,Y.,Properties and morphology of poly 1 lactide 4 effect of structural parameters on long term hydrolysis of poly 1 lactide in phosphate buffered solution[J].Polymer Degradation and Stability 2000,67,179-189.
    4.Chandra,R.;Rustgi,R.,Biodegradable polymers[J].Progress in Polymer Science 1998,23,(7),1273-1335.
    5.Ching,C.;Kaplan,D.L.;Thomas,E.L.,Biodegradble polymers and packaging [M].Technomic:Lancaster,1993.
    6.Doi,Y.;Fukuda,K.,Biodegradable plastics and polymers studies in polymer science[M].Elsevier:Amsterdam,1994;Vol.12.
    7.Hollinger,J.O.,Biomedical applications of synthetic biodegradable polymers [M].CRC Press:New York,1995.
    8.Kopecek,J.;Ulbrich,K.,Biodegradation of biomedical polymers[J].Progress in Polymer Science 1983,9,(1),1-58.
    9.Privalova,L.G.;Zaikov,G.E.,Polymers in surgery problems and prospects[J].Polymer Plastics Technology and Engineering 1990,29,(5&6),455-520.
    10.Thomson,R.C.;Wake,M.C.;Yaszemski,M.J.;Mikos,A.G.,Biodegradable polymer scaffolds to regenerate organs[J].Advances in Polymer Science 1995,122,(2),245-274.
    11.Ikada,Y.;Tsuji,H.,Biodegradable polyesters for medical and ecological applications[J].Macromolecular Rapid Communication 2000,21,(3),117-132.
    12.Atala,A.;Mooney,D.;Vacanti,J.P.;Langer,R.,Synthetic biodegradable polymer scaffolds[M].Birkhauser:Boston,1997.
    13.Chu,C.C.;Fraunhofer,L.A.v.;Greisler,H.P.,Wound close biomaterials and devices[M].CRC Press:New York,1996.
    14. Szycher, M., High performance biomaterials [M]. Technomic: Lancaster, 1991.
    
    15. Kaplan, D. L., Biopolymers from renewable resources [M]. Springer: Berlin,1998.
    
    16. Garlotta, D., A literature review of poly lactic acid [J]. Journal of Polymers and the Environment 2001, 9, (2), 63-84.
    
    17. Hartmann, M. H.; Kaplan, D. L., Biopolymers from renewable resourcs [M].Springer-Verlag: Berlin, 1998.
    
    18. Jamshidi, K.; Hyon, S. H.; Ikada, Y., Thermal characterization of polylactides [J].Polymer 1988, 29, (12), 2229-2234.
    
    19. Spinu, M.; Jackson, C.; Keating, M. Y.; Gardner, K. H., Material design in poly lactic acid systems block copolymers star homo and copolymers and stereocomplexes [J]. Journal of Macromolecular Science, Part A, Pure and Applied Chemistry 1996,33,(10), 1497-1530.
    
    20. Sinclair, R. G., The case for polylactic acid as a commodity packaging plastic [J].Journal of Macromolecular Science, Part A, Pure and Applied Chemistry 1996, 33,(5), 585-597.
    
    21. Vert, M.; Li, S. M.; Spenlehauer, G.; Guerin, P., Bioresorbability and biocompatibility of aliphatic polyesters [J]. Journal of Materials Science: Materials in Medicine 1992, 3, (6), 432-446.
    
    22. Drumright, R. E.; Gruber, P. R.; Henton, D. E., Polylactic acid technology [J].Advanced Materials 2000, 12, (23), 1841-1846.
    
    23. Zhang, X.; MacDonald, D. A.; Goosen, M. F. A.; McAuley, K. B., Mechanism of lactide polymerization in presence of stannous octoate the effect of hydroxyl and carboxyl substances [J]. Journal of Polymer Science, Part A, Polymer Chemistry 1994,32, (15), 2965-2970.
    
    24. Ajioka, M.; Enomoto, K.; Suzuke, K.; Yamaguchi, A., Basic properties of polylactic acid produced by the direct polycondensation polymerization of lactic acid [J]. Bulletin of Chemical Society of Japan 1995, 68, 2125-2131.
    
    25. Ajioka, M.; Suizu, H.; Higuchi, C; Kashima, T., Aliphatic polyester and their copolymers synthesized through direct condensation polymerization [J]. Polymer Degradation and Stability 1998, 59, 137-143.
    
    26. Gupta, A. P.; Kumar, V., New emerging trends in synthetic biodegradable polymers polylactide a critique [J]. European Polymer Journal 2007, 43,4053-4074.
    
    27. Shyamroy, S.; Garnaik, B.; Sivaram, S., Structure of poly 1 lactic acids prepared by the dehydropolycondensation of 1 lactic acid with organotin catalysts [J]. Journal of Polymer Science, Part A, Polymer Chemistry 2005, 43, (10), 2164-2177.
    
    28. Takasu, A.; Narukawa, Y.; Hirabayashi, T., Direct dehydration polycondensation of lactic acid catalyzed by water stable lewis acids [J]. Journal of Polymer Science,Part A, Polymer Chemistry 2006,44, (18), 5247-5253.
    
    29. Moon, S. I.; Lee, C. W.; Taniguchi, I.; Miyamoto, M.; Kimura, Y., Melt solid polycondensation of 1 lactic acid an alternative route to poly 1 lactic acid with high molecular weight [J]. Polymer 2001, 42, 5059-5062.
    
    30. Moon, S. I.; Taniguchi, I.; Miyamoto, M.; Kimura, Y; Lee, C. W., Synthesis and properties of high molecular weight poly 1 lactic acid by melt solid polycondensation under different reaction conditions [J]. High Performance Polymer 2001, 13, 189-196.
    
    31. Fortunato, B.; Pilati, F.; Manaresi, P., Solid state polycondensation of poly butylene terephthalate [J]. Polymer 1981, 22, 655-657.
    
    32. Kricheldorf, H. R., Syntheses and application of polylactides [J]. Chemosphere 2001,43,49-54.
    
    33. Kricheldorf, H. R.; Saunders, I. K., Polylactones 19 anionic polymerization of 1 lactide in solution [J]. Die Makromolekulare Chemie 1990, 191, (5), 1057-1066.
    
    34. Tang, Z.; Chen, X.; Liang, Q.; Bian, X.; Yang, L.; Piao, L., Strontium based initiator system for ring opening polymerization of cyclic esters [J]. Journal of Polymer Science, Part A, Polymer Chemistry 2003, 41, 1934-1941.
    
    35. Kricheldorf, H. R.; Dunsing, R., Polylactones 8 mechanism of the cationic polymerization of 11 dilactide [J]. Makromolekulare Chemie 1986, 187, 1611-1625.
    
    36. Wang, C; Li, H.; Zhao, X., Ring opening polymerization of 1 lactide initiated by creatinine [J]. Biomaterials 2004, 25, 5797-5801.
    
    37. Stolt, M.; Marcro, A. S., Use of monocarboxylic iron derivatives in the ring opening polymerization of 1 lactide [J]. Macromolecules 1999, 32, (20), 6412-6417.
    
    38. Kharas, G. B.; Sanchez-Riera, F.; Severson, D. K., Polymers of lactic acid [A]. In Plastics from Microbes [M], Mobley, D. P., Ed. Hanser Publisher: Munich, 1994; pp93-258.
    
    39. Tsuji, H.; Ikada, Y, Crystallization from the melt of polylactides with different optical purities and their blends [J]. Macromolecular chemistry and physics 1996, 197,(10), 3483-3499.
    
    40. Hoogsten, W.; Postema, A. R.; Pennings, A. J.; Brinke, G. T.; Zugenmair, P.,Crystal structure conformation and morphology of solution spun poly 1 lactide fibers [J]. Macromolecules 1990, 23, (2), 634-642.
    
    41. Sasaki, S.; Asakura, T., Helix distortion and crystal structure of the alpha form of poly 1 lactide [J]. Macromolecules 2003, 36, (22), 8385-8390.
    
    42. Puiggali, J.; Ikada, Y.; Tsuji, H.; Cartier, L.; Okihara, T.; Lotz, B., The frustrated structure of poly 1 lactide [J]. Polymer 2000,41, (25), 8921-8930.
    
    43. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B., Epitaxial crystallization and crystalline polymorphism of polylactides [J]. Polymer 2000, 41,8909-8919.
    
    44. Auras, R.; Harte, B.; Selke, S., An overview of polylactides as packaging materials [J]. Macromolecular Bioscience 2004, 4, 835-864.
    
    45. Fischer, E. W.; Sterzel, H. J.; Wegner, G., Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions [J]. Kolloid Z.u.Z. Polymere 1973, 251, 980-990.
    
    46. Tsuji, H.; Ikada, Y., Stereocomplex formation between enantiomeric poly lactic acids 9 stereocomplexation from the melt [J]. Macromolecules 1993, 24, (26),6918-6926.
    
    47. Vasanthakumari, R.; Pennings, A. J., Crystallisation kinetics of poly 1 lactic acid [J]. Polymer 1983, 24, (175-178).
    
    48. Kolstad, J. J., Crystallization kinetics of poly 1 lactide co meso lactide [J]. Journal of Applied Polymer Science 1996, 62,1079-1091.
    
    49. Tsuji, H.; Ikada, Y, Blends of isotactic and atactic poly lactides 2 molecular weight effects of atactic component on crystallization and morphology of equimolar blends from the melt [J]. Polymer 1996, 37, 595-602.
    
    50. Baratian, S.; Hall, E. S.; Lin, J. S.; Xu, R.; Runt, J., Crystallization and solid state structure of random polylactide copolymers poly 1 lactide co d lactides [J]. Macromolecules 2001, 34, 4857-4864.
    
    51. Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H., Stereocomplex formation between enantiomeric polylactides [J]. Macromolecules 1987,20,904-906.
    
    52. Celli, A.; Scandola, M., Thermal properties and physical aging of poly 1 lactic acid [J]. Polymer 1992, 33, 2699-2703.
    
    53. Tsuji, H.; Ikada, Y, Properties and morphologies of poly 1 lactide 1 annealing condition effects on properties and morphologies of poly 1 lactide [J]. Polymer 1995,36, (40), 2709-2716.
    
    54. Yasuniwa, M.; Tsubakihara, S.; Sugimoto, Y; Nakafuku, C., Thermal analysis of the double melting behavior of poly 1 lactic acid [J]. Journal of Polymer Science: Part B: Polymer Physics 2004, 42, 25-32.
    
    55. Urbanovici, E.; Schneider, H. A.; Cantow, H. J., Some considerations concerning the temperature dependence of the bulk crystallization rate constants of polymeric materials [J]. Journal of Polymer Science: Part B: Polymer Physics 1997, 35,359-369.
    
    56. Cai, H.; Dave, V.; Gross, R. A.; McCarthy, S. P., Effects of physical aging crystallinity and orientation on the enzymatic degradation of polylactic acid [J].Journal of Polymer Science: Part B: Polymer Physics 1996, 34, 2701-2708.
    
    57. MacDonald, R. T.; McCarthy, S. P.; Gross, R. A., Enzymatic degradability of poly lactide effects of chain stereochemistry and material crystallinity [J]. Macromolecules 1996,29,7356-7361.
    
    58. Li, S. M.; McCarthy, S., Influence of crystallinity and stereochemistry on the enzymatic degradation of poly lactides [J]. Macromolecules 1999, 32, 4454-4456.
    
    59. Pranamuda, H.; Tokiwa, Y.; Tanaka, H., Polylactide degradation by an amycolatopsis sp [J]. Applied and Environmental Microbiology 1997, 63, 1637-1640.
    
    60. Ohkita, T.; Lee, S. H., Thermal degradation and biodegradability of poly lactic acid corn starch biocomposites [J]. Journal of Applied Polymer Science 2006, 100,3009-3017.
    
    61. Jarerat, A.; Tokiwa, Y., Degradation of poly 1 lactide by fungus [J].Macromolecular Bioscience 2001,1, 136-140.
    
    62. Williams, D. F., Enzymic hydrolysis of polylactic acid [J]. Engineering in Medicine 1981, 10, 5-7.
    
    63. Tokiwa, Y.; Calabia, B. P., Biodegradability and biodegradation of poly lactide [J].Applied Microbiology and Biotechnology 2006, 72, 244-251.
    
    64. Li, S. M.; McCarthy, S., Influence of crystallinity and stereochemistry on the enzymatic degradation of polylactides [J]. Macromolecules 1999, 32, 4454-4456.
    
    65. Li, S. M.; Vert, M., Biodegradable polymers polyesters [A]. In The Encyclopedia of Controlled Drug Delivery [M], Mathiowitz, E., Ed. John Wiley & Sons: 1999; pp71-93.
    
    66. Li, S. M.; Vert, M., Synthesis characterization and stereocomplex induced gelation of block copolymers prepared by ring opening polymerization of 1 d lactide in the presence of poly ethylene glycol [J]. Macromolecules 2003, 36, 8008-8014.
    
    67. Drumright, R. E.; Gruber, R. R.; Henton, D. E., Polylactic acid technology [J]. Advanced Materials 2000, 12,(23), 1841-1845.
    
    68. Schwach, G.; Coudane, J.; Engel, R.; Vert, M., More about the polymerization of lactides in the presence of stannous octoate [J]. Journal of Polymer Science, Part A:Polymer Chemistry 1997, 35, (16), 3431-3440.
    
    69. He, Y.; Fan, Z. Y.; Wei, J.; Li, S. M., Crystallization behavior of poly 1 lactide [J].Chemical Journal of Chinese Universities(Chinese) 2006, 27, 745-748.
    
    70. He, Y.; Fan, Z. Y.; Wei, J.; Li, S. M., Morphology and melt crystallization of poly 1 lactide obtained by ring opening polymerization of 1 lactide with zinc catalyst [J].Polymer Engineering and Science 2006, 46, 1583-1589.
    
    71. He, Y.; Fan, Z. Y.; Hu, Y. F.; Wu, T.; Wei, J.; Li, S. M., DSC analysis of isothermal melt crystallization glass transition and melting behavior of poly 1 lactide with different molecular weights [J]. European Polymer Journal 2007,43, 4431-4439.
    
    72. He, Y.; Wu, T.; Wei, J.; Fan, Z. Y.; Li, S. M., Morphological investigation on melt crystallized polylactide homo and stereo copolymers by enzymatic degradation with proteinase K [J]. Journal of Polymer Science: Part B: Polymer Physics 2008, 46,959-970.
    
    73. He, Y.; Xu, Y.; Wei, J.; Fan, Z. Y.; Li, S. M., Unique crystallization behavior of poly 1 lactide poly d lactide stereocomplex depending on initial melt states [J].Polymer Accepted.
    1.Li,S.M.;Tenon,M.;Garreau,H.;Braud,C.;Vert,M.,Enzymatic degradation of stereocopolymers derived from 1 d1 and meso lactides[J].Polymer Degradation and Stability 2000,67,85-90.
    2.Garlotta,D.,A literature review of poly lactic acid[J].Journal of Polymers and the Environment 2001,9,(2),63-84.
    3.Iwata,T.;Doi,Y.,Crystal structure and biodegradation of aliphatic polyester crystals[J].Macromolecular Chemistry and Physics 1999,200,2429-2442.
    4.Vert,M.;Li,S.M.;Spenlehauer,G.;Guerin,P.,Bioresorbability and biocompatibility of aliphatic polyesters[J].Journal of Materials Science:Materials in Medicine 1992,3,432-446.
    5.Vert,M.;Schwach,G.;Coudane,J.,Present and future of pla polymers[J].Journal of Macromolecular Science,Pure and Applied Chemistry 1995,A32,787-796.
    6.Gogolewski,S.,Resorbable polymers for internal fixation[J].Clinical Materials 1992,10,13-20.
    7.Vasanthakumari,R.;Pennings,A.J.,Crystallisation kinetics of poly 1 lactic acid [J].Polymer 1983,24,(175-178).
    8.Miyata,T.;Masuko,T.,Crystallization behavior of poly 1 lactide[J].Polymer 1998,39,(22),5515-5521.
    9.Ohtani,Y.;Okumura,K.;Kawaguchi,A.,Crystallization behavior of amorphous poly 1 lactide[J].Journal of Macromolecular Science:Part B:Physics 2003,B42,877-888.
    10.Iannace,S.;Nicolais,L.,Isothermal crystallization and chain mobility of poly 1lactide[J].Journal of Applied Polymer Science 1997,64,911-919.
    11.Tsuji,H.;Miyata,T.;Tezuka,Y.;Saha,S.K.,Physical properties crystallization and spherulite growth of linear and 3 arm poly 1 lactides [J]. Biomacromolecules 2005,6, 244-254.
    
    12. Tsuji, H.; Tezuka, Y.; Saha, S. K.; Suzuki, M.; Itsuno, S., Spherulite growth of 1 lactide copolymers effects of tacticity and comonomers [J]. Polymer 2005, 46,4917-4927.
    
    13. Tsuji, H.; Tezuka, Y., Stereocomplex formation between enantiomeric poly lactic acids 12 spherulite growth of low molecular weight poly lactic acids from the melt [J].Biomacromolecules 2004, 5, 1181-1186.
    
    14. Abe, H.; Kikkawa, Y; Inoue, Y; Doi, Y, Morphological and kinetic analyses of regime transition for poly s lactide crystal growth [J]. Biomacromolecules 2001, 2,1007-1014.
    
    15. Tsuji, H.; Tezuka, Y; Yamada, K., Alkine and enzymatic degradation of 1 lactide copolymers ii crystallized films of poly 1 lactide co d lactide and poly 1 lactide with similar crystallinities [J]. Journal of Polymer Science: Part B: Polymer Physics 2005,43, 1064-1075.
    
    16. Tsuji, H.; Ikada, Y, Properties and morphologies of poly 1 lactide 1 annealing condition effects on properties and morphologies of poly 1 lactide [J]. Polymer 1995,36, (40), 2709-2716.
    
    17. Yamane, H.; Sasai, K., Effect of the addtion of poly d lactic acid on the thermal property of poly 1 lactic acid [J]. Polymer 2003,44, 2569-2575.
    
    18. Schwach, G.; Coudane, J.; Engel, R.; Vert, M., More about the polymerization of lactides in the presence of stannous octoate [J]. Journal of Polymer Science: Part A:Polymer Chemistry 1997, 35, 3431-3440.
    
    19. Vert, M.; Chabot, F.; Leray, J.; Christel, P., Stereoregular bioresorbable polyesters for orthopedic surgery [J]. Macromolecular Chemistry and Physics, Supplement 1981,5,30-41.
    
    20. Vert, M.; Chabot, F.; Leray, J.; Christel, P. French Patent [P]. 7829978, 1978.
    
    21. Yui, N.; Dijkstra, P. J.; Feijen, J., Stereo block copolymers of 1 and d lactides [J].Makromolekulare Chemie 1990,191,481-488.
    
    22. Tonelli, A. E.; Flory, P. J., The configuration statistics of random poly lactic acid chains i experimental results [J]. Macromolecules 1969,2, 225-227.
    
    23. Sarasua, J. R.; Prud'homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N.,Crystallization and melting behavior of polylactides [J]. Macromolecules 1998, 31,3895-3905.
    24. Fisher, E. W.; Sterzel, H. J.; Wegner, G, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemicals reactions [J]. Kolloid Zeitschrift and Zeitschrift fuer Polymere 1973,251, 980-990.
    
    25. Pyda, M.; Bopp, R. C.; Wunderlich, B., Heat capacity of poly lactic acid [J].Journal of Chemical Thermodynamics 2004,36, 731-742.
    
    26. Cohn, D.; Younes, H.; Marom, G., Amorphous and crystalline morphologies in glycolic acid and lactic acid polymers [J]. Polymer 1987,28, 2018-2022.
    
    27. Gilding, D. K.; Reed, A. M., Biodegradable polymers for use in surgery polyglycolic poly lactic acid homo and copolymers 1 [J]. Polymer 1979, 20,1459-1464.
    
    28. Kishore, K.; Vasanthakumari, R., Nucleation parameters for polymer crystallization from non isothermal thermal analysis [J]. Colloid and Polymer Science 1988,266,999-1002.
    
    29. De Santis, P.; Kovacs, A. J., Molecular conformation of poly s lactic acid [J].Biopolymers 1968,6, 299-306.
    
    30. Yasuniwa, M.; Tsubakihara, S.; Iura, K.; Ono, Y.; Dan, Y.; Takahashi, K.,Crystallization behavior of poly 1 lactic acid [J]. Polymer 2006,47, 7554-7563.
    
    31. Srimoaon, P.; Dangseeyun, N.; Supaphol, P., Multiple melting behavior in isothermally crystallized poly trimethylene terephthalate [J]. European Polymer Journal 2004,40, 599-608.
    
    32. Tan, S.; Su, A.; Li, W.; Zhou, E., New insight into melting and crystallization behavior in semicrystalline poly ethylene terephthalate [J]. Journal of Polymer Science: Part B: Polymer Physics 2000,38, 53-60.
    
    33. Liu, T.; Yan, S.; Bonnet, M.; Lieberwirth, I.; Rogausch, K. D.; Petermann, J., Dsc and tern investigations on multiple melting phenomena in isotactic polystyrene [J].Journal of Materials Science 2000, 35, 5047-5055.
    
    34. Liu, T.; Petermann, J., Multiple melting behavior in isothermally cold crystallized isotactic polystyrene [J]. Polymer 2001,42, 6453-6461.
    
    35. Yasuniwa, M.; Tsubakihara, S.; Sugimoto, Y; Nakafuku, C., Thermal analysis of the double melting behavior of poly 1 lactic acid [J]. Journal of Polymer Science: Part B: Polymer Physics 2004,42,25-32.
    
    36. Avrami, M., Kinetics of phase change i general theory [J]. Journal of Chemical Physics 1939,7, 1103-1112.
    
    37. Avrami, M., Kinetics of phase change ii transformation time relations for random distribution of nuclei [J]. Journal of Chemical Physics 1940, 8, 212-224.
    
    38. Cebe, P.; Hong, S. D., Crystallization behavior of poly ether ether ketone [J].Polymer 1986,27, 1183-1192.
    
    39. Lotz, B.; Cheng, S. Z. D., A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals [J]. Polymer 2005,46, 577-610.
    
    40. Tsuji, H.; Ikada, Y., Stereocomplex formation between enantiomeric poly lactic acids 9 stereocomplexation from the melt [J]. Macromolecules 1993,26, 6918-6926.
    
    41. Gazzano, M.; Focarete, M. L.; Riekel, C; Scandola, M., Structural study of PLLA spherulites [J]. Biomacromolecules 2004, 5, 553-558.
    
    42. Xu, J.; Guo, B.; Chen, G.; Zhang, Z., Terraces on banded spherulites of polyhydroxyalkanoates [J]. Journal of Polymer Science: Part B: Polymer Physics 2003,41,2128-2134.
    
    43. Ding, J. D.; Zhu, J. X.; Yang, Y. L., Banded spherulites of poly ethylene oxide and the concentric cracks within a single spherulite [J]. Chemical Journal of Chinese Universities 1996, 3, 498-499.
    
    44. Kyu, T.; Chiu, H. W.; Guenthner, A. J.; Okabe, Y.; Saito, H.; Inoue, T., Rhythmic growth of target and spiral spherulites of crystalline polymer blends [J]. Physical Review Letters 1999, 83,2749-2752.
    
    45. Martinez-Salazar, J.; Sanchez-Cuesta, M.; Barham, P. J.; Keller, A., Thermal expansion and spherulite cracking in 3 hydroxybutyrate 3 hydroxyvalerate copolymers [J]. Journal of Materials Science Letters 1989, 8,490-492.
    
    46. Di Lorenzo, M. L., Determination of spherulite growth rates of poly 1 lactic acid using combined isothermal and non isothermal procedures [J]. Polymer 2001, 42,9441-9446.
    1.Vasanthakumari,R.;Pennings,A.J.,Crystallisation kinetics of poly 1 lactic acid [J].Polymer 1983,24,(175-178).
    2.Miyata,T.;Masuko,T.,Crystallization behavior of poly 1 lactide[J].Polymer 1998,39,(22),5515-5521.
    3.Tsuji,H.;Horii,F.;Hyon,S.H.;Ikada,Y.,Stereocomplex Formation between Enantiomeric Poly(lactide acid)s.2.Stereocomplex Formation in Concentrated Solutions[J].Macromolecules 1990,24,2719-2724.
    4.Tsuji,H.;Ikada,Y.,Stereocomplex Formation between Enantiomeric Poly(lactic acid)s.9.Stereocomplexation from the Melt[J].Macromolecules 1993,1993,(26),6918-6926.
    5.Hay,J.N.;Sabir,M.,Crystallization kinetics of high polymers,poly(ethylene oxide).Ⅱ.[J].Polymer 1969,10,(3),203-211.
    6.Pyda,M.;Bopp,R.C.;Wundedich,B.,Heat capacity of poly(lactic acid)[J].Journal of Chemical Thermodynamics 2004,36,(9),731-742.
    7.Flory,P.J.,Thermodynamics of crystallization in high polymers.Ⅱ.Simplified derivation of melting-point relationships[J].Journal of Chemical Physics 1947,15,674.
    8.Flory,P.J.,Thermodynamics of crystallization in high polymers.Ⅲ.Dependence of melting points of polyesters on molecular weight and composition[J].Journal of Chemical Physics 1947,15,(685).
    9.Avrami,M.,Kinetics of phase change.I.General theory.[J].Journal of Chemical Physics 1939, 7, 1103-1112.
    
    10. Iannace, S.; Nicolais, L., Isothermal crystallization and chain mobility of poly(L-lactide) [J]. Journal of Applied Polymer Science 1997,64, (5), 911-919.
    
    11. Abe, H.; Kikkawa, Y.; Inoue, Y.; Doi, Y, Morphological and kinetic analyses of regime transition for poly s lactide crystal growth [J]. Biomacromolecules 2001, 2,1007-1014.
    
    12. Miyata, T.; Masuko, T., Crystallization behavior of poly(L-lactide) [J]. Polymer 1998, 39, (22), 5515-5521.
    
    13. Vasanthakumari, R.; Pennings, A. J., Crystallization kinetics of poly(L-lactic acid) [J]. Polymer 1983,24, (2), 175-178.
    
    14. Iannace, S.; Nicolais, L., Isothermal crystallization and chain mobility of poly 1 lactide [J]. Journal of Applied Polymer Science 1997,64, (5), 911-919.
    
    15. Umenoto, S.; Okui, N., Power law and scaling for molecular weight dependence of crystal growth rate in polymeric materials [J]. Polymer 2005,46, 8790-8795.
    
    16. Hoffman, J. D., Regime III crystallization in melt-crystallized polymers the variable cluster model of chain folding [J]. Polymer 1983,24, (1), 3-26.
    
    17. He, Y; Fan, Z. Y; Wei, J.; Li, S. M., Morphology and melt crystallization behavior of poly 1 lactide obtained by ring opening polymerization of 1 lactide with zinc catalyst [J]. Polymer Engineering and Science 2006, Accepted.
    
    18. Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y, Crystal modifications and thermal behavior of poly 1 lactic acid revealed by infrared spectroscopy [J]. Macromolecules 2005,38, 8012-8021.
    
    19. Cho, T. Y.; Strobl, G., Temperature dependent variations in the lamellar structure of poly 1 lactide [J]. Polymer 2006,47,1036-1043.
    
    20. Yasuniwa, M.; Tsubakihara, S.; Sugimoto, Y; Nakafuku, C., Thermal analysis of the double-melting behavior of poly(L-lactic acid) [J]. Journal of Polymer Science,Part B: Polymer Physics 2004,42, (1), 25-32.
    
    21. Hoffman, J. D.; Weeks, J. J., Melting process and equilibrium melting temperature of poly chlorotrifluoroethylene [J]. Journal of Research of the National Institute of Standards and Technology 1962,66A, 13-28.
    
    22. Hoffman, J. D.; Miller, R. L., Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment [J]. Polymer 1997,38, (13), 3151-3212.
    
    23. Pyda, M.; Bopp, R. C.; Wunderlich, B., Heat capacity of poly lactic acid [J]. Journal of Chemical Thermodynamics 2004,36, (9), 731-742.
    
    24. Alamo, R. G; Viers, B. D.; Mandelkern, L., A reexamination of the relation between the melting temperature and the crystallization temperature linear polyethylene [J]. Macromolecules 1995,28, 3205-3213.
    
    25. Marand, H.; Xu, J.; Srinivas, S., Determination of the equilibrium melting temperature of polymer crystals linear and nonlinear hoffman weeks extrapolations [J].Macromolecules 1998, 31, 8219-8229.
    
    26. Xu, J.; Srinivas, S.; Marand, H.; Agarwal, P., Equilibrium melting temperature and undercooling dependence of the spherulitic growth rate of isotactic polypropylene [J]. Macromolecules 1998, 31, 8230-8242.
    
    27. Flory, P. J., Thermodynamics of crystallization in high polymers ii simplified derivation of melting point relationships [J]. Journal of Chemical Physics 1947, 15,684.
    
    28. Wang, Y.; Gomez Ribelles, J. L.; Salmeron Sanchez, M.; Mano, J. F.,Morphological contributions to glass transition in poly 1 lactic acid [J].Macromolecules 2005, 38, 4712-4718.
    
    29. Lotz, B.; S.Z.D., C, A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals [J]. Polymer 2005, 46,(3), 577-610.
    
    30. Fischer, E. W.; Sterzel, H. J.; Wegner, G, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions [J]. Kolloid Z.u.Z. Polymere 1973, 251, 980-990.
    
    31. He, Y.; Fan, Z. Y.; Wei, J.; Li, S. M., Crystallization Behavior of Poly(L-lactide) obtained by ring opening polymerization of L-lactide with zinc catalyst [J]. Polymer Engineering and Science 2006, Accepted.
    
    32. Di Lorenzo, M. L., Crystallization behavior of poly(L-lactic acid) [J]. European Polymer Journal 2005,41, (3), 569-575.
    1.Ikada,Y.;Shikinami,Y.;Hara,Y.;Tagawa,M.;Fukada,E.,Enhancement of bone formation by drawn poly 1 lactide[J].Journal of Biomedical Materials Research 1996,30,553-558.
    2.Leenslag,J.W.;Pennings,A.J.;Bos,R.R.M.;Rozema,F.R.;Boering,G.,Resorbable materials of poly 1 lactide vii in vivo and in vitro degradation[J].Biomaterials 1987,8,311-314.
    3.Li,S.M.;Vert,M.,Biodegradable polymers polyesters[A].In Encyclopedia of Controlled Drug Delivery[M],Mathiowitz,E.,Ed.John Wiley & Sons:New York,1999;pp 71-93.
    4.Penning,J.P.;Dijkstra,H.;Penning,A.J.,Preparation and properties of absorbable fibers from 1 lactide copolymers[J].Polymer 1993,34,942-951.
    5.Vert,M.;Li,S.M.;Garreau,H.,Recent advances in the field of lactic acid glycolic acid polymer based therapeutic systems[J].Macromolecular Symposia 1995,98,633-642.
    6.Williams,D.F.,Enzymic hydrolysis of polylactic acid[J].Engineering in Medicine 1981, 10, 5-7.
    
    7. Reeve, M. S.; McCarthy, S. P.; Downey, M. J.; Gross, R. A., Polylactide stereochemistry effect on enzymatic degradability [J]. Macromolecules 1994, 27,825-831.
    
    8. Cai, H.; Dave, V.; Gross, R. A.; McCarthy, S. P., Effects of physical aging crystallinity and orientation on the enzymatic degradation of polylactic acid [J].Journal of Polymer Science: Part B: Polymer Physics 1996, 34, 2701-2708.
    
    9. Li, S. M.; McCarthy, S., Influence of crystallinity and stereochemistry on the enzymatic degradation of poly lactides [J]. Macromolecules 1999, 32,4454-4456.
    
    10. Li, S. M.; Tenon, M.; Garreau, H.; Braud, C; Vert, M., Enzymatic degradation of stereocopolymers derived from 1 d1 and meso lactides [J]. Polymer Degradation and Stability 2000, 67, 85-90.
    
    11. MacDonald, R. T.; McCarthy, S. P.; Gross, R. A., Enzymatic degradability of poly lactide effects of chain stereochemistry and material crystallinity [J]. Macromolecules 1996,29,7356-7361.
    
    12. Tsuji, H.; Miyauchi, S., Enzymatic hydrolysis of poly lactides effects of molecular weight 1 lactide content and enantiomeric and diastereoisomeric polymer blending [J]. Biomacromolecules 2001,2, 597-604.
    
    13. Fisher, E. W.; Sterzel, H. J.; Wegner, G, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemicals reactions [J]. Kolloid Zeitschrift & Zeitschrift fuer Polymere 1973,251, 980-90.
    
    14. Sarasua, J. R.; Prud'homme, P. E.; Wisniewski, M.; Borgne, A. L.; Spassky, N.,Crystallization and melting behavior of polylactides [J]. Macromolecules 1998, 31,3895-3905.
    
    15. Baratian, S.; Hall, E. S.; Lin, J. S.; Xu, R.; Runt, J., Crystallization and solid state structure of random polylactide copolymers poly 1 lactide co d lactides [J].Macromolecules 2001, 34, 4857-4864.
    
    16. Kalb, B.; Penning, A. J., General crystallization behavior of poly 1 lactic acid [J].Polymer 1980,21, 607-612.
    
    17. Miyata, T.; Masuko, T., Morphology of poly 1 lactide solution grown crystals [J].Polymer 1997, 38, 4003-4009.
    
    18. Iwata, T.; Doi, Y., Morphology and enzymatic degradation of poly 1 lactic acid single crystals [J]. Macromolecules 1998,31, 2461-2467.
    
    19. Tsuji, H.; Ikada, Y., Properties and morphology of poly 1 lactide ii hydrolysis in alkaline solution[J].Journal of Polymer Science:Part A:Polymer Chemistry 1998,36,59-66.
    20.Liu,L.J.;Li,S.M.;Garreau,H.;Vert,M.,Selective enzymatic degradations of poly 1 lactide and poly caprolactone blend films[J].Macromolecules 2000,1,350-359.
    21.He,Y.;Fan,Z.Y.;Wei,J.;Li,S.M.,Morphology and melt crystallization of poly 1 lactide obtained by ring opening polymerization of 1 lactide with zinc catalyst[J].Polymer Engineering and Science 2006,46,1583-1589.
    22.He,Y.;Gao,Z.F.;Xin,Y.;Yu,Y.;Li,S.M.;Fan,Z.Y.,Crystallization behavior of poly 1 lactide[J].Chemical Journal of Chinese Universities 2006,27,745-748.
    23.Leenslag,J.W.;Penning,A.J.,Synthesis of high molecular weight poly 1 lactide initiated with tin 2 ethylhexanoate[J].Makromolekulare Chemic 1987,188,1809-1814.
    24.Tanzi,M.C.;Verderio,P.;Lampugnani,M.G.;Resnati,M.;Dejana,E.,Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use[J].Journal of Material Science:Materials in Medicine 1994,5,393-396.
    25.Tsuji,H.;Tezuka,Y.,Stereocomplex formation between enantiomeric poly lactic acids 12 spherulite growth of low molecular weight poly lactic acids from the melt[J].Biomacromolecules 2004,5,1181-1186.
    26.Brochu,S.;Prud'homme,P.E.;Barakat,I.;Jerome,R.,Stereocomplexation and morphology of polylactides[J].Macromolecules 1995,28,5230-5239.
    27.Vert,M.;Chabot,F.;LeRay,J.;Christel,P.,Stereoregular bioresorbable polyesters for orthopedic surgery[J].Maeromolecular Chemistry and Physics,Supplement 1951,5,30-41.
    28.Avrami,M.,Kinetics of phase change i general theory[J].Journal of Chemical Physics 1939,7,1103-1112.
    29.He,Y.;Fan,Z.Y.;Hu,Y.F.;Wu,T.;Wei,J.;Li,S.M.,Dsc analysis of isothermal melt crystallization glass transition and melting behavior of poly 1 lactide with different molecular weights[J].European Polymer Journal 2007,43,4431-4439.
    30.Banks,W.;Sharples,A.,The Avrami equation in polymer crystallization[J].Makromolekulare Chemic 1963,59,233-236.
    31.Yasuniwa,M.;Tsubakihara,S.;Iura,K.;Ono,Y.;Dan,Y.;Takahashi,K.,Crystallization behavior of poly 1 lactic acid[J].Polymer 2007,47,7554-7563.
    32. Tsuji, H.; Tezuka, Y.; Yamada, K., Alkaline and enzymatic degradation of 1 lactide copolymers ii crystallized films of poly 1 lactide co d lactide and poly 1 lactide with similar crystallinities [J]. Journal of Polymer Science: Part B: Polymer Physics 2005,43, 1064-1075.
    
    33. Keith, H. D.; Padden, F. J., Spherulitic crystallization from the melt ifractionation and impurity segregation and their influence on crystalline morphology [J]. Journal of Applied Physics 1964,35, 1270-1285.
    
    34. Keith, H. D.; Padden, F. J., Spherulitic crystallization from the melt ii influence of fractionation and impurity segregation on the kinetics of crystallization [J]. Journal of Applied Physics 1964, 35, 1286-1296.
    
    35. Hoffman, J. D.; Miller, R. L., Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited theory and experiment [J]. Polymer 1997,38,3151-3212.
    
    36. Meaurio, E.; Lopez-Rodriguez, N.; Sarasua, J. R., Infrared spectrum of poly 1 lactide application to crystallinity studies [J]. Macromolecules 2006,39, 9291-9301.
    
    37. Zhang, J. M.; Tsuji, H.; Noda, I.; Ozaki, Y., Weak intermolecular interactions during the melt crystallization of poly 1 lactide investigated by two dimensional infrared correlations [J]. Journal of Physical Chemistry B 2004,108, 11514-11520.
    1.Drumright,R.E.;Gruber,R.R.;Henton,D.E.,Polylactic acid technology[J].Advanced Materials 2000,12,(23),1841-1845.
    2.Li,S.M.;Vert,M.,Biodegradable polymers polyesters[A].In The Encyclopedia of Controlled Drug Delivery[M],Mathiowitz,E.,Ed.John Wiley & Sons:1999;pp 71-93.
    3.Ikada,Y.;Jamshidi,K.;Tsuji,H.;Hyon,S.H.,Stereocomplex formation between enantiomeric poly lactides[J].Macromolecules 1987,20,904-906.
    4. Fukushima, K.; Chang, Y. H.; Kimura, Y., Enhanced stereocomplex formation of poly 1 lactic acid and poly d lactic acid in the presence of stereoblock poly lactic acid [J]. Macromolecular Bioscience 2007, 7, 829-835.
    
    5. Li, S. M.; Vert, M., Synthesis characterization and stereocomplex induced gelation of block copolymers prepared by ring opening polymerization of 1 d lactide in the presence of poly ethylene glycol [J]. Macromolecules 2003,36, 8008-8014.
    
    6. Tsuji, H., In vitro hydrolysis of blends from enantiomeric poly lactides part 4 well homo crystallized blend and nonblended films [J]. Biomaterials 2003, 24, 537-547.
    
    7. Fox, T. G.; Garrett, B. S.; Goode, W. E.; Gratch, S.; Kincaid, J. F.; Spell, A.;Stroupe, J. D., Crystalline polymers of methyl methacrylate [J]. Journal of the American Chemical Society 1958, 80, 1768-1769.
    
    8. Pauling, L.; Corey, R. B., Two rippled-sheet configurations of polypeptide chains,and a note about the pleated sheets [J]. Proceedings of the National Academy of Sciences of the United States of America 1953, 39, 253-256.
    
    9. Grenier, D.; Prud'homme, R. E., Complex formation between enantiomeric polyesters [J]. Journal of Polymer Science, Polymer Physics Edition 1984, 22, (4),577-584.
    
    10. Schomaker, E.; Challa, G., Complexation of stereoregular poly methyl methacrylates 13 influence of chain length on the process of complexation in dilute solution [J]. Macromolecules 1988, 21, 3506-3510.
    
    11. Tsuji, H.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly lactic acids 3 calorimetric studies on blend films cast from dilute solution [J].Macromolecules 1991, 24, 5651-5656.
    
    12. Tsuji, H.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly lactic acids 4 differential scanning calorimetric studies on precipitates from mixed solutions of poly d lactic acid and poly 1 lactic acid [J]. Macromolecules 1991,24, 5657-5662.
    
    13. Tsuji, H.; Ikada, Y., Stereocomplex formation between enantiomeric poly lactic acids 9 stereocomplexation from the melt [J]. Macromolecules 1993,26, 6918-6926.
    
    14. Tsuji, H.; Ikada, Y., Stereocomplex formation between enatiomeric poly lactic acids xi mechanical properties and morphology of solution cast films [J]. Polymer 1999,40, 6699-6708.
    15. Tsuji, H.; Horii, F.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly lactic acids 2 stereocomplex formation in concentrated solutions [J].Macromolecules 1991, 24, 2719-2724.
    
    16. Tsuji, H.; Ikada, Y., Stereocomplex formation between enantiomeric poly lactic acids 6 binary blends from copolymers [J]. Macromolecules 1992,25, 5719-5723.
    
    17. Tsuji, H.; Hyon, S. H.; Ikada, Y., Stereocomplex formation between enantiomeric poly lactic acids 5 calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution [J]. Macromolecules 1992,25, 2940-2946.
    
    18. Tsuji, H., Poly lactide stereocomplex formation structure properties degradation and applications [J]. Macromolecular Bioscience 2005, 5, 569-597.
    
    19. Tsuji, H.; Tezuka, Y., Stereocomplex formation between enantiomeric poly lactic acids 12 spherulite growth of low molecular weight poly lactic acids from the melt [J].Biomacromolecules 2004, 5, 1181-1186.
    
    20. Brizzolara, D.; Cantow, H. J.; Diederichs, K.; Keller, E.; Domb, A. J.,Mechanism of the stereocomplex formation between enantiomeric poly lactides [J].Macromolecules 1996, 29, 191-197.
    
    21. Lippits, D. R.; Rastogi, S.; Hohne, G. W. H., Melting kinetics in polymers [J].Physical Review Letters 2006, 96, 218303.
    
    22. Lippits, D. R.; Rastogi, S.; Hohne, G. W. H.; Mezari, B.; Magusin, P. C. M.,Heterogeneous distribution of entanglements in the polymer melt and its influence on crystallization [J]. Macromolecules 2007,40,1004-1010.
    
    23. Rastogi, S.; Lippits, D. R.; Peters, G. W. M.; Graf, R.; Yao, Y. F.; Spiess, H. W.,Heterogeneity in polymer melts from melting of polymer crystals [J]. Nature Materials 2005,4, 635-641.
    
    24. He, Y.; Fan, Z. Y.; Hu, Y. F.; Wu, T.; Wei, J.; Li, S. M., Dsc analysis of isothermal melt crystallization glass transition and melting behavior of poly 1 lactide with different molecular weights [J]. European Polymer Journal 2007, 43,4431-4439.
    
    25. He, Y.; Fan, Z. Y.; Wei, J., Morphology and melt crystallization of poly 1 lactide obtained by ring opening polymerization of 1 lactide with zinc catalyst [J]. Journal of Polymer Engineering and Science 2006,46, 1583-1589.
    
    26. Tsuji, H.; Horii, F.; Nakagawa, M.; Ikada, Y.; Odani, H.; Kitamaru, R.,Stereocomplex formation between enantiomeric poly lactic acids 7 phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high resolution solid state 13c nmr spectroscopy [J]. Macromolecules 1992,25,4114-4118.
    
    27. Okihara, T.; Tsuji, M.; Kawaguchi, A.; Kawaguchi, A.; Tsuji, H.; Hyon, S. H.;Ikada, Y., Crystal structure of stereocomplex of poly 1 lactide and poly d lactide [J].Journal of Macromolecular Science, Physics 1991, 30, (1-2), 119-140.
    
    28. Garlotta, D., A literature review of poly lactic acid [J]. Journal of Polymers and the Environment 2001,9, 63-84.
    
    29. Miyata, T.; Masuko, T., Crystallization behavior of poly 1 lactide [J]. Polymer 1998,39,5515-5521.
    
    30. Wang, Y. M.; Mano, J. F., Influence of melting conditions on the thermal behavior of poly 1 lactic acid [J]. European Polymer Journal 2005,41, 2335-2342.
    
    31. Bero, M.; Dobrzynski, P.; Kasperezyk, J., Synthesis of disyndiotactic polylactide [J]. Journal of Polymer Science: Part A: Polymer Chemistry 1999, 37, 4038-4042.
    
    32. Schwach, G.; Coudane, J.; Engel, R.; Vert, M., Stannous octoate versus zinc initiated polymerization of racemic lactide [J]. Polymer Bulletin 1994, 32, 617-623.
    
    33. Pang, X.; Du, H. Z.; Chen, X. S.; Zhuang, X. L.; Cui, D. M.; Jing, X. B.,Aluminum schiff base catalysts derived from belta-diketone for the stereoselective polymerization of racemic lactides [J]. Journal of Polymer Science: Part B: Polymer Physics 2005,43, 6605-6612.
    
    34. Hu, J. L.; Tang, Z. H.; Qiu, X. Y.; Pang, X.; Yang, Y. K.; Chen, X. S.; Jing, X. B.,Formation of flower or cake shaped stereocomplex particles from the stereo multiblock copoly rac lactides [J]. Biomacromolecules 2005,6,2843-2850.
    
    35. Reeve, M. S.; McCarthy, S. P.; Downey, M. J.; Gross, R. A., Polylactide stereochemistry effect on enzymatic degradability [J]. Macromolecules 1994, 27,825-831.
    
    36. Li, S. M; McCarthy, S., Influence of crystallinity and stereochemistry on the enzymatic degradation of polylactides [J]. Macromolecules 1999, 32, 4454-4456.
    
    37. He, Y.; Wu, T.; Wei, J.; Fan, Z. Y.; Li, S. M., Morphological investigation on melt crystallized polylactide homo and stereocopolymers by enzymatic degradation with proteinase k [J]. Journal of Polymer Science: Part B: Polymer Physics 2008, 46,959-970.
    
    38. Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y., Infrared spectroscopic study of ch3 o c interaction during poly 1 lactide poly d lactide stereocomplex formation [J].Macromolecules 2005, 38,1822-1828.
    39. Schmidt, S. C; Hillmyer, M. A., Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide [J]. Journal of Polymer Science: Part B:Polymer Physics 2001,39,300-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700