用户名: 密码: 验证码:
聚乳酸共混改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用熔体共混与复合技术,将PLA分别与热塑性淀粉(TPS)、乙酰柠檬酸三丁酯(ATBC)、聚己二酸-1, 3-丁二醇酯(PBA)和纳米炭黑(CB)进行共混、增塑和无机纳米填料复合等改性以提高PLA的性能和实用性。
     PLA与热塑性淀粉(TPS)进行共混,不仅降低PLA材料的成本,还提高其应用性能。实验证明,水含量对淀粉的塑化至关重要,干燥的淀粉很难塑化完全;同时也发现,水的存在使PLA在熔融加工过程中会发生水解,导致PLA分子量降低,性能恶化。为了提高无水淀粉的塑化效果,改善无水热塑性淀粉(DTPS)与PLA共混体系的分散性,首先采用柠檬酸(CA)为无水淀粉的促塑化剂和PLA/DTPS共混体系的相分散剂。研究发现基于干燥淀粉质量2%的CA就能够显著提高其塑化效果和熔体流动性,从而有效改善PLA/DTPS共混体系的分散性。
     采用过氧化二异丙苯(DCP)引发马来酸酐(MAH)接枝PLA为反应型增容剂,使用“两步法”挤出工艺对PLA/DTPS共混体系进行增容改性。实验证明, PLA/DTPS共混体系在MAH和CA共同作用下,两相之间的分散性和相容性显著提高,PLA/DTPS共混体系的性能得到明显改善,体系的拉伸强度可达40MPa,优于PLA自身强度。根据实验结果,总结出CA和MAH对PLA/DTPS共混体系有分散–接枝协同增容作用。
     柠檬酸酯类增塑剂虽然能够有效增塑PLA,但由于析出严重而影响柠檬酸酯的应用。本文首次采用PBA作为PLA增塑剂,对比研究发现当增塑质量大于20wt%时,PBA较ATBC具有更高的增塑效率。PBA增塑的PLA体系的断裂伸长率可达到600%以上,并且能够保持23.7MPa的拉伸强度。PBA的加入能够有效降低增塑PLA膜的水蒸气透过率,改善PLA熔体流动性和加工性能。
     CB不仅能够提高PLA材料的拉伸强度,还可以获得可生物降解导电聚合物,并且通过控制复合体系中增塑剂与CB的浓度使材料的电导率可控。将CB经ATBC或PBA浸润处理后,可以显著提高CB与PLA基体之间的相容性,从而获得高分散PLA/CB复合体系。加入增塑剂后,PLA/CB复合体系的电导率提高了1个数量级,体系的拉伸强度和断裂伸长率可以分别保持在45MPa和100%以上,具有良好的应用前景。此外,CB的加入还有效抑制了共混体系中增塑剂的迁移和水蒸气透过率。
In this paper Poly (lactic acid) (PLA) is blending, plasticizing, compositing modified with thermoplastic starch (TPS), acetyl tributyl citrate (ATBC), Poly(1,3-butylene adip ate) (PBA) and carbon black (CB) to improve the properties of PLA through melting blending technique respectively.
     After blending PLA with TPS, not only can decrease the cost of PLA, but also increase the application. Water is realized as an important plasticizer for the plasticization of TPS during research. It is impossible to achieve high plasticized dry starch in the present of glycerol. At the same, PLA can be depolymerized in the presence of water at elevated temperatures, which decreases the molecular of PLA and results in poor mechanical properties. In order to increase the plasticization of dry starch and the dispersion in immiscible PLA/thermoplastic dry starch (DTPS) blend, citric acid (CA) is used as plasticization accelerant and dispersant for DTPS and PLA/DTPS blend respectively. 2wt% CA can dramatically increase the plasticization and the fluidity of DTPS. So the dispersion between PLA and DTPS can be increased in our research.
     Maleic anhydride (MAH) with initiator Dicumyl peroxide (DCP) is used as reactive compatibilizer to increase the compatibility in PLA/DTPS blend through two step extrusion processing. In the present of MAH and CA, the dispersion and compatibility in PLA/DTPS blend dramatically increased in our research. So a high performance PLA/DTPS blend can be achieved. The tensile strength of PLA/DTPS blend can reach to 40MPa, which is higher than pure PLA. Moreover the compabilizing mechanism of phase dispersion-grafting synergism in PLA/DTPS blends is advanced.
     ATBC is a kind of environment friendly plasticizer which can plasticize PLA effectively. But the plasticization and application of PLA is dramatically influenced by the migration of ATBC. So in this paper PBA as a novel plasticizer is used to plasticize PLA. Compared with ATBC, PBA is more effective to plasticize PLA when the plasticizer content is higher than 20wt%. The elongation at break of PBA plasticized PLA can excess 600%, and the tensile strength keep 23.7MPa. So PBA has stronger practicability. Moreover hydrophobic plasticizers can also increase melting processing and water vapor permeability properties.
     CB not only can increase the tensile strength of PLA, but also conductive polymer composites came from renewable source can be achieved. And the electrical conductivity can be controlled by the content of CB and plasticizer. The compatibility between PLA and CB dramatically increases after CB is dipped by ATBC or PBA. So a high dispersion PLA/CB composite can be achieved. In the present of plasticizer the electrical conductivity of PLA/CB composite increase 1 quantity class. Moreover the tensile stress and elongation at break keep at 45MPa and 100% respectively. Finally the migration of plasticizer and water vapor permeability are restrained in the present of CB.
引文
[1] Kyrikou I, Briassoulis D, Biodegradation of agricultural plastic films: A critical review, Journal of Polymers and The environment, 2007, 15 (2): 125-150
    [2] Yu L, Dean K, Li L, Polymer blends and composites from renewable resources, Progress in Polymer Science, 2006, 31(6): 576-602
    [3] Auras R, Harte B, Selke S, An overview of polylactides as packaging materials, Macromolecular Bioscience, 2004: 4(9): 835-864
    [4] Klemchuk P P, Degradable plastics: a critical review, Polymer Degradation and Stability, 1990, 27(2): 183~202
    [5]王宁,于九皋,马骁飞,生物可降解热塑性材料的研究进展,石油化工,2007,36(1): 1-9
    [6] Flieger M, Kantorova M, Prell A, et al, Biodegradable plastics from renewable sources, Folia Microbiologica, 2003, 48 (1): 27-44
    [7] Rouilly A, Rigal L, Agro-materials: A bibliographic review, Journal of Macromolecular Science-Polymer Reviews C, 2002, 42 (4): 441-479
    [8] Averous L, Biodegradable multiphase systems based on plasticized starch: A review, Journal of Macromolecular Science-Polymer Reviews C, 2004, 44 (3): 231-274
    [9] Edgar K J, Buchanan C M, Debenham J S, et al, Advances in cellulose ester performance and application, Progress in Polymer Science, 2001, 26 (9): 1605-1688
    [10] Dutkiewicz J K, Superabsorbent materials from shellfish waste - A review, Journal of BIomedical Materials Research, 2002, 63 (3): 373-381
    [11] Xu Y X, Hanna M A, Preparation and properties of biodegradable foams from starch acetate and poly(tetramethylene adipate-co-terephthalate), Carbohydrate Polymers, 2005, 59 (4): 521-529
    [12] Wang K, Li W W, Gao C, Poly(epsilon-caprolactone)-functionalized carbon nanofibers by surface-initiated ring-opening polymerization, Journal of Applied Polymer Science, 2007, 105 (2): 629-640
    [13] Gan Z H, Abe H, Kurokawa H, et al, Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters, Biomacromolecules, 2001, 2 (2): 605-613
    [14] Cataldo F, Angelini G, Some aspects of the ozone degradation of poly(vinyl alcohol), Polymer Degradation and Stability, 2006, 91 (11): 2793-2800
    [15] Ha C S, Cho W J, Miscibility, properties, and biodegradability of microbial polyester containing blends, Progress in Polymer Science, 2002, 27 (4): 759-809
    [16] Philip S, Keshavarz T, Roy I, olyhydroxyalkanoates: biodegradable polymers with a range of applications, Journal of Chemical Technology and Biotechnology, 2007, 82 (3): 233-247
    [17]任杰,可降解与吸收材料,北京:化学工业出版社, 2003, 10-12
    [18] Kurose T, Urman K, Otaigbe JU, et al, Effect of uniaxial drawing of soy protein isolate biopolymer film on structure and mechanical properties, Polymer Engineering and Science, 2007, 47 (4): 374-380
    [19] Walker A M, Tao Y, Torkelson J M, Polyethylene/starch blends with enhanced oxygen barrier and mechanical properties: Effect of granule morphology damage by solid-state shear pulverization, Polymer, 2007, 48 (4): 1066-1074
    [20] Ratanakamnuan U, Aht-Ong D, Preparation and characterization of low-density polyethylene/Banana starch films containing compatibilizer and photosensitizer, Journal of Applied Polymer Science, 2006, 100 (4): 2717-2724
    [21] Huang C Y, Roan M L, Kuo M C, et al, Effect of compatibiliser on the biodegradation and mechanical properties of high-content starch/low-density polyethylene blends, Polymer Degradation and Stability, 2005, 90 (1): 95-105
    [22] Pedroso A G, Rosa D S, Effects of the compatibilizer PE-g-GMA on the mechanical, thermal and morphological properties of virgin and reprocessed LDPE/corn starch blends, Polymers for Advanced Technologies, 2005, 16 (4): 310-317
    [23] Leloup V M, Colonna P, Ring S G,α-Amylase adsorption on starch crystallites, Biotechnology and Bioengineering, 1991, 38(2): 127~134.
    [24]张力田.变性淀粉.广州:华南理工大学出版社,1992, 6: 9
    [25]惠斯特勒R L,贝密勒J N,帕斯卡尔E F著.王雒文,闵大铨,杨家顺等译.淀粉的化学与工艺学.北京:中国食品出版社,1988: 289~333
    [26]刘延奇,酸酶催化水解对淀粉结晶结构与性质的影响研究:[博士学位论文],天津;天津大学,2004
    [27] Zobel H F, Starch crystal transformations and their industrial importance, Starch/St?rke, 1988, 40: 1~7
    [28] Elsenhaber F, and Schulz W, Monte carlo simulation of the hydration shell of double-helical amylose: a left-handed antiparallel double helix fits best into liquid water structure, Biopolymers, 1992, 32: 1643-1664
    [29] Christine G, Sylvia R, Horst A, and Gregor D, Crystalline parts of three different conformations detected in native and enzymatically degraded starches, Starch/st?rke, 1993, 45(9): 309-314
    [30] Shogren, R L, Effect of moisture-content on the melting and subsequent physical aging of cornstarch, Carbohydrate Polymers, 1992, 19(2): 83-90.
    [31] Smits A L M, Hulleman S H D, Wan Soest J J G, et al. The influence of Polyols on the molecular organization in starch~based plastics. Polymers for Adevanced Technologies, 1999, 10 (10): 570~573
    [32] Baek M H, Yoo B, Lim S T, Effects of sugars and sugar alcohols on thermal transition and cold stability of corn starch gel. Food Hydrocolloids, 2004, 18 (1): 133~142
    [33] Grondahl M, Eriksson Lisa, Gatenholm P, Material Properties of Plasticized Hardwood Xylans for Potential Application as Oxygen Barrier Films. Biomacromolecules, 2004, 5 (4): 1528~1535
    [34] Zhang P, Whistler R L, Mechanical Properties and Water Vapor Permeability Thin Film from Corn Hull Arabinoxylan. Journal of Applied Polymer Science, 2004, 93 (6): 2896~2902
    [35] Arvanitoyannis I, Biliaderis C G, Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers, 1999, 38 (1): 47~58
    [36] Farhat I A, Mousia Z, Mitchell J R, Structure and thermomechanical properties of extruded amylopectin–sucrose systems. Carbohydrate Polymers, 2003, 52 (1): 29~37
    [37] DaRoz A L, Carvalho A J F, Gandini A, et al. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing, Carbohydrate Polymers, 2006, 63 (3): 417~424
    [38] Ma X F, Yu J G, Urea and Formamide as a Mixed Plasticisizer for Thermoplastic Starch, Polymer Inernationalt, 2004, 53 (11): 1 780~1 785
    [39] Huang M F, Yu J G, Ethanolamine as a Novel Plasticser for Thermoplastic Starch, Polymer Degradation and Stability, 2005, 90 (3): 501~507
    [40] Ma X F, Yu J G, Formamide as the Plasticisizer for Thermoplastic Starch. Journal of Applied Polymer Science, 2004, 93(4): 1 769~1 773
    [41] Ma X F, Yu J G, The Plasticizer Containing Amide Groups for Thermoplastic Starch. Carbohydrate Polymers, 2004, 57(2): 197~203
    [42] Yang J H, Yu J G, Ma X F, Preparation and Properties of Ethylenebisformaide Plasticized Potato Starch (EPTPS). Carbohydrate Polymers, 2006, 63(2): 218~223
    [43] Forssell P M, Mikkila JM, Moates GK, et al. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch, Carbohydrate Polymers, 1997, 34 (4): 275-282
    [44] Smits A L M, Kruiskamp P H, van Soest J J G, et al. Interaction between dry starch and plasticisers glycerol or ethylene glycol, measured by differential scanning calorimetry and solid state NMR spectroscopy Carbohydrate Polymers, 2003, 53 (4): 409-416
    [45] Hulleman S H D, Janssen F H P, Feil H, The role of water during plasticization of native starches, Polymer, 1998, 39 (10): 2043- R spectroscopy, Carbohydrate Polymers, 2003, 53 (4): 409-416 2048
    [46] Lourdin D, Coignard L, Bizot H, Colonna P, et al. Influence of equilibrium relative humidity and plasticizer concentration on the water content and glass transition of starch materials, Polymer, 1997, 38(21): 5401-5406.
    [47] van Soest J J G, Benes K, de Wit D, et al. The influence of starch molecular mass on the properties of extruded thermoplastic starch, Polymer, 1996, 37 (16): 3543-3552.
    [48] Ma X F, Yu J G, Kennedy J F, Studies on the Properties of Natural Fibers-Reinforced Thermoplastic Starch Composites, Carbohydrate Polymers, 2005, 62(1): 19~24
    [49] Puglia D, Tomassucci A, Kenny J M. Processing, properties and stability of biodegradable composites based on Mater-Bi-(R) and cellulose fibres, Polymers for advanced Technologies, 2003, 14 (11-12): 749-756
    [50] Lu Y S, Weng L H, Cao X D, Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter, Macromolecular Bioscience, 2005, 5 (11): 1101-1107
    [51] Huang M F, Yu J G, Ma X F, Studies on the Properties of Montonrillonite-Reinferced Thermoplastic Starch Composite, Polymer, 2004, 45(20): 7 017~7 023
    [52]黄明福,于九皋,马骁飞,蒙脱土增强热塑性淀粉性能的研究,石油化工, 2004, 33(7): 662~665
    [53] Huang M F, Yu J G, Ma X F, et al. High Performance Biodegradable Thermoplastic Starch-EMMT Nanoplastics. Polymer, 2005, 46(9): 3 157~3 162
    [54] Huang M F, Yu J G, Ma X F, High Mechanical Performance MMT-Urea and Formamide Plasticized Thermoplastic Cornstarch BiodegradableNanocomposites, Carbohydrate Polymers, 2006, 63(3): 393~399
    [55] Huang M F, Yu J G, Structure and Properties Thermoplastic Corn Starch/Mentmorillonite Biodegradable Composites, Journal of Applied Polymer Science, 2006, 99(2): 170~176
    [56] Bikiaris D, Panayiotou C, LDPE/Starch Blends Compatibilized with PE- g-MA Copolymers, Journal of Applied Polymer Science, 1998, 70(8): 1 503~1 521
    [57] Bikiaris D, Prinos J, Panayiotou C, Effect of EAA and starch on the thermooxidative degrandation of LDPE. Polymer Degradation and Stability, 1997, 56(1): 1~9.
    [58] Sailaja R R N, Chanda M, Use of Poly(Ethylene-co-Vinyl Alcohol) as Compatibilizer in LDPE/Thermoplastic Tapioca Starch Blends, Journal of Applied Polymer Science, 2002, 86(13): 3 126~3 134
    [59] Wang S J, Yu J G, Yu J L, Influence of Maleic Anhydride on the Compatibility of Thermal Plasticized Starch and Linear Low-Density Polyethylene, Journal of Applied Polymer Science, 2004, 93(2): 686~695
    [60] Baldev R, Udaya S K, Siddaramaiah, Low Density Polyethylene/Starch Blend Films for Food Packaging Applications, Advances in Polymer Technology, 2004, 23(1): 32~45
    [61] Rodriguez-Gonzalez F J, Virgilio N, Ramsay B A, et al, Influence of melt drawing on the morphology of one- and two-step processed LDPE/thermoplastic starch blends, Advances in Polymer Technology, 2003, 22 (4): 297-305.
    [62] Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD, High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene, Polymer, 2003, 44 (5): 1517-1526
    [63] Huneault M A, Li H B, Morphology and properties of compatibilized polylactide/thermoplastic starch blends, Polymer, 2007, 48 (1): 270-280
    [64] Shin B Y, Lee S I, Shin Y S, et al. Rheological, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone, Polymer Engineering and Science, 2004, 44 (8): 1429-1438
    [65] Ohkita T, Lee S H, Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite, Journal of Applied Polymer Science, 2005, 97 (3): 1107-1114
    [66] Lai S M, Don T M, Huang Y C, Preparation and properties of biodegradable thermoplastic starch/poly(hydroxy butyrate) blends, Journal of Applied Polymer Science, 2006, 100 (3): 2371-2379
    [67] Martin O, Schwach E, Averous L, et al. Properties of biodegradable multilayer films based on plasticized wheat starch, Starch-Starke, 2001, 53 (8): 372-380
    [68] Lee K B, Kim D J, Lee Z W, et al. Pattern generation of biological ligands on a biodegradable poly(glycolic acid) film, Langmuir, 2004, 20 (7): 2531-2535
    [69] Makal U, Wood L, Ohman DE, et al. Polyurethane biocidal polymeric surface modifiers, Biomaterials, 2006, 27 (8): 1316-1326
    [70] Qian Z Y, Li S, He Y, et al. Preparation of biodegradable polyesteramide microspheres, Colloid and Polymer Science, 2004, 282 (10): 1083-1088
    [71] Kumar N, Langer R S, Domb A J, Polyanhydrides: an overview, Advanced Drug delivery Reviews, 2002, 54 (7): 889-910
    [72] Gopferich A, Tessmar J, Polyanhydride degradation and erosion, Advanced Drug delivery Reviews, 2002, 54 (7): 911-931
    [73] Ferruti P, Marchisio MA, Duncan R, Poly(amido-amine)s: Biomedical applications, Macromolecular Rapid Communications, 2002, 23 (5-6): 332-355
    [74] Nakayama M, Okano T, Miyazaki T, et al. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release, Journal of Controlled Release, 2006, 115 (1): 46-56
    [75] Garlotta D, A literature review of poly(lactic acid), Journal of Polymers and the Environment, 2001, 9 (2): 63-84
    [76] Drumright R E, Gruber P R, Henton D E, Polylactic acid technology, Advanced Materials, 2000, 12 (23): 1841-1846
    [77] John R P, Nampoothiri K M, Pandey A, Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives, Applied Microbiology and Biotechnology, 2007, 74 (3): 524-534
    [78] Laws A, Gu Y C, Marshall V, Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria, Biotechnology Advances, 2001, 19 (8): 597-625
    [79] Mehta R, Kumar V, Bhunia H, et al. Synthesis of poly(lactic acid): A review, Journal of Macromolecular Science-Polymer Reviews C, 2005, 45 (4): 325-349
    [80] Jacobsen S, Degee P H, Fritz H G, et al. Polylactide (PLA) - A new way of production, Polymer Engineering and Science, 1999, 39 (7): 1311-1319
    [81] Hartmann M H,‘‘High MolecularWeight Polylactic Acid Polymers’’, in: Biopolymers from Renewable Resources, 1st edition, Kaplan D L Ed., Springer-Verlag Berlin Heidelberg, Berlin 1998, p. 367–411
    [82] Zhang X C,Wyss U P, Pichora D, et al. An investigation of the synthesis and thermal-stability of poly(DL-lactide) Degradation, Journal of Bioactive and Compatible Polymers, 1994, 9 (1): 80-100
    [83] He G S, Ma L L, Pan J, et al. ABA and BAB type triblock copolymers of PEG and PLA: A comparative study of drug release properties and "stealth" particle characteristics, International Journal of Pharmaceutics, 2007, 334 (1-2): 48-55
    [84] Haynes D, Abayasinghe N K, Harrison G M, et al. In situ copolyesters containing poly(L-lactide) and poly(hydroxyalkanoate) units, Biomacromolecules, 2007, 8 (4): 1131-1137
    [85] Pan J, Wang Y L, Qin S H, et al. Grafting reaction of poly(D,L)lactic acid with maleic anhydride and hexanediamine to introduce more reactive groups in its bulk. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2005, 74B (1): 476-480
    [86] Noda I, Satkowski M M, Dowrey A E, et al. Polymer alloys of Nodax copolymers and poly(lactic acid), Macromolecular Bioscience, 2004, 4 (3): 269-275
    [87] Park J W, Im S S. Morphological changes during heating in poly(L-lactic acid)/poly(butylene succinate) blend systems as studied by synchrotron X-ray scattering. Journal of Polymer Science Part B: Polymer Physics, 2002, 40 (17): 1931-1939
    [88] Rezgui F, Swistek M, Hiver J M, et al. Deformation and damage upon stretching of degradable polymers (PLA and PCL), Polymer, 2005, 46 (18): 7370-7385
    [89] Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(L-lactide), 2005, Polymer, 46 (23): 10290-10300
    [90] Ke T, Sun X Z, Starch, poly(lactic acid), and poly(vinyl alcohol) blends, Journal of Polymers and the Environment, 2003, 11 (1): 7-14
    [91] Park J W, Lee D J, Yoo E S, Melt rheology of poly (lactic acid): Consequences of blending chain architectures, Korea Polymer Journal, 1999, 7(2): 93-101.
    [92] Wang H, Sun X Z, Seib P, Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate, Journal of Applied Polymer Science, 2002, 84(6): 1257-1262.
    [93] Zhang J F, Sun X Z, Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride, Biomacromolecules, 2004, 5(4): 1446-1451.
    [94] Martin O, Ave′rous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer, 2001, 42 (14): 6209-6219.
    [95] Shogren R L, Doane W M, Garlotta D, et al. Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil. Polymer Degradation and Stability, 2003, 79 (3): 405-411
    [96] Chen L, Qiu X Y, Xie Z G, et al. Poly(L-lactide)/starch blends compatibilized with poly(L-lactide)-g-starch copolymer, Carbohydrate Polymers, 2006, 65 (1): 75-80
    [97] Chang L J, Reactive Blending of Biodegradable Polymers: PLA and Starch. Journal of Polymers and the Environment, 2000, 8 (1): 33-37
    [98] Wu C S, Improving Polylactide/Starch Biocomposites by Grafting Polylactide with Acrylic Acid - Characterization and Biodegradability Assessment, Macromolecular Bioscience, 2005, 5(4): 352-361.
    [99] Zhang J F, Sun X Z, Physical Characterization of Coupled Poly(lactic acid)/Starch/Maleic Anhydride Blends Plasticized by Acetyl Triethyl Citrate, Macromolecular Bioscience, 2004, 4(11): 1053-1060.
    [100] Wang H, Sun X Z, Seib P, Effects of Starch Moisture on Properties of Wheat Starch/Poly(Lactic Acid) Blend Containing Methylenediphenyl Diisocyanate, Journal of Polymers and the Environment, 2002, 10 (4): 133-138
    [101] Ke T Y, Sun S Z, Seib P, Blending of poly(lactic acid) and starches containing varying amylose content, Journal of Applied Polymer Science, 2003, 89 (13): 3639-3646
    [102] Ke T Y, Sun X Z, Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends, Journal of Applied Polymer Science, 2001, 81 (12): 3069-3082
    [103] Oksman K, Skrifvars M, Selin J F. Natural fibres as reinforcement in polylactic acid (PLA) composites, Composites Science and Technology, 2003, 63 (9): 1317-1324
    [104] Peesan M, Supaphol P, Rujiravanit R, Preparation and characterization of hexanoyl chitosan/polylactide blend films, Carbohydrate Polymers, 2005, 60 (3): 343-350
    [105] Cohen S B, Meirisch C M, Wilson H A, et al. The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits, Biomaterials, 2003, 24 (15): 2653-2660
    [106] Thellen C, Orroth C, Froio D, et al. Influence of montmorillonite layered silicate on plasticized poly(L-lactide) blown films, Polymer, 2005, 46 (25): 11716-11727
    [107] Pluta M, Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization, Polymer, 2004, 45 (24): 8239-8251
    [108]石万聪,盛承祥,增塑剂,北京:化学工业出版社, 1989. 302-367
    [109] Rahman M, Brazel C S, The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges, Progress in Polymer Science, 2004, 29 (12): 1223-1248
    [110] Ljungberg N, Wesslen B, The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid), Journal of Applied Polymer Science, 2002, 86 (5): 1227-1234
    [111] Labrecque L V, Kumar R A, Dave V, et al. Citrate Esters as Plasticizers for Poly (lactic acid), Journal of Applied Polymer Science, 1997, 66 (66): 1507-1513 (ATBC and PEG)
    [112] Baiardo M, Frisoni G, Scandola M, et al. Thermal and mechanical properties of plasticized poly(L-lactic acid), Journal of Applied Polymer Science, 2003, 90 (7): 1731-1738
    [113] Ljungberg N, Andersson T, Wesslen B, Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate, Journal of Applied Polymer Science, 2003, 88 (14): 3239-3247
    [114] Jacobsen S, Fritz H G, Plasticizing polylactide - The effect of different plasticizers on the mechanical properties, Polymer Engineering and Science, 1999, 39 (7): 1303-1310
    [115] Ljungberg N, Wesslen B, Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging, Polymer, 2003, 44 (25): 7679-7688
    [116] Ljungberg N, Wesslen B, Preparation and properties of plasticized poly(lactic acid) films, Biomacromolecules 2005, 6 (3): 1789-1796
    [117] Ljungberg I, Wesslen B, Thermomechanical film properties and aging of blends of poly(lactic acid) and malonate oligomers, Journal of Applied Polymer Science, 2004, 94 (5): 2140-2149
    [118] Ljungberg N, Colombini D, Wesslen B, Plasticization of poly(lactic acid) with oligomeric malonate esteramides: Dynamic mechanical and thermal film properties, Journal of Applied Polymer Science, 2005, 96 (4): 992-1002
    [119] Cohn D, Younes H, Biodegradable PEO/PLA block copolymers, Journal of Biomedical Materials Research, 1988, 22(11):993-1009
    [120] Piorkowska E, Kulinski Z, Galeski A, et al. Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol), Polymer, 2006, 47 (20): 7178-7188
    [121] Sheth M, AnandA Kumar R, Dave V, et al. Biodegradable polymer blends of Poly(lactic acid) and poly(ethylene glycol), Journal of Applied Polymer Science, 1997, 66 (8): 1495-1505
    [122] Hu Y, Rogunova M, Topolkaraev V, et al. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity, Polymer, 2003, 44 (19): 5701-5710
    [123] Hu Y, Hu Y S, Topolkaraev V, et al. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity, Polymer, 2003, 44 (19): 5711-5720
    [124] Hu Y, Hu Y S, Topolkaraev V, et al. Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol), Polymer, 2003, 44 (19): 5681-5689
    [125] Kulinski Z, Piorkowska E, Crystallization, structure and properties of plasticized poly(L-lactide), Polymer, 2005, 46 (23): 10290-10300
    [126] Kulinski Z, Piorkowska E, Gadzinowska K, et al. Plasticization of poly(L-lactide) with poly(propylene glycol), Biomacromolecules 2006, 7 (7): 2128-2135
    [127] Fox TG, Influence of diluent and copolymer composition on the glass transition temperature of a polymer system, Bulletin of American Physical Society, 1956, 1 (2): 123-125
    [128] Couchman P R, Karasz F E, A classical thermodynamic discussion of the effect of composition on glass transition temperatures, Macromolecules, 1978, 11(4): 668-672
    [129] Flory P J, Principles of Polymer Chemistry, Cornell University Press, New York, 1953.
    [130] Ray S S, Bousmina M,Biodegradable polymers and their layered silicate nano composites: In greening the 21st century materials world, Progress in Materials Science, 2005, 50 (8): 962-1079
    [131]张志焜,崔作林,纳米技术与纳米材料,北京:国防工业出版社,2001. 1~14
    [132] Ray S S, Yamada K, Okamoto M, et al, Polymer-layered silicate nanocomposite: a novel biodegradable material, Nano Letter, 2002, 2 (10): 1093~1096
    [133] Koerner H, Jacobs D, Tomlin D W, et al, Tuning polymer nanocomposite morphology: AC electric field manipulation of epoxy-montmorillonite (Clay) suspensions, Advanced materials, 2004, 16 (4):297~302
    [134] Okamoto M, Nam P H, Maiti P, et al, A house of cards structure in polypropylene-clay nanocomposites under elongational flow, Nano Letter, 2001, 1 (6): 295~298
    [135] Sun T, Garces J M, High-perfomance polypropylene-clay nanocomposites by in-situ polymerization with metalocene/clay catalysts, Advanced Materials, 2002, 14 (2): 128~130
    [136] Lee T W, Park O O, Yoon J, et al, Polymer-layered silicate nanocomposite light-emitting devices, Advanced Materials, 2001, 13 (3): 211~213
    [137] Zilg C, Thomann R, Mulhaupt R, et al, Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates, Advanced Materials, 1999, 11 (1): 49~52
    [138] Osman M, Atallah A, High-density polyethylene micro-and nanocomposites: effect of particle shape, size and surface treatment on polymer crystallinity and gas permeability, Macromolecular Rapid Commumications, 2004, 25 (17): 1540~1544
    [139] Fu X, Qutubuddin S, Polymer-clay nanocomposites: exforliation of organophilic montmorillonite nanolayers in polystyrene, Polymer, 2001, 42 (2): 807~813
    [140] Oriakhi C O, Zhang X R, Lerner M M, Synthesis and luminescence properties of a poly(p-phenylenevinylene)/montmorillonite layered nanocomposite, Applied Clay Science, 1999, 15 (1-2): 109~118
    [141] Kornmann X, Lindberg H, Berglund L A, Synthesis of epoxy-clay nanocompo-sites: influence of the nature of the clay on structure, Polymer, 2001, 42 (4): 1303~1310
    [142] Tien Y I, Wei K H, Hydrogen bonding and mechanical properties in segmented monmorillonite/polyurethane nanocomposites of different hard segment ratios, Polymer, 2001, 42 (7): 3213~3221
    [143] Abdalla M O, Dean D, Campbell S, Viscoelastic and mechanical properties of thermoset PMR-type polyinide-clay nanocomposites, Polymer, 2002, 43 (22): 5887~5893
    [144] Magaraphan R, Lilayuthalert W, Sirivat A, et al, Preparation ,structure, properties and thermal behavior of rigid-rod polyinide/motmorillonite nano-composites, Composites Science and Technology, 2001, 61 (9):1253~1264
    [145] Lee D, Char K, Thermal degradation behavior of polyaniline in polyaniline /Na+-montmorillonite nanocomposites, Polymer Degradation and Stability, 2002, 75 (3): 555~560
    [146] Fong H, Liu W D, Wang C S, at al, Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite, Polymer, 2002, 43 (3): 775~780
    [147] Hong S H, Kim B H, Joo J, et al, Polypyrrole-montmorillonite nanocomposites synthesized by emulsion polymerization, Current Applied Physics, 2001, 1 (9): 447~450
    [148] Xie W, Gao Z M, Liu K N, et al, Thermol characterization of organically modified montmorillonite, Thermochimica Acta, 2001, 367-368: 339~350
    [149] Arroyo M, Lopez-Manchado M A, Herrero B, Organo-montmorillonite as subsitute of carbon black in natural rubber compounds, Polymer, 2003, 44 (8): 2447~2453
    [150] Ray S S, Yamada K, Okamoto M, et al, New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties, Polymer, 2003, 44 (21): 6633-6646 OCT 2003
    [151]柯杨船,[美]皮特·斯壮,聚合物─无机纳米复合材料,北京:化学工业出版社,2003. 3~55
    [152] Alexandre M, Dubois P, Polymer-layered silicate nanocomposites: preparation, tproperties and used of a new class of materials, Materials Science and Engineering, 2000, 28 (1): 1~63
    [153] Takenawa R, Komori Y, Hayashi S, et al, Intercalation of nitroanilines into kaolinite and second harmonic generation, Chemistry of Materials, 2001, 13 (10): 3741~3746
    [154] Chang J H, Jang T G, Ihn K J, et al, Poly(vinyl alcohol) nanocomposites with different clays: prestine clays and organoclays, Journal of Applied Polymer Science, 2003, 90 (12): 3208~3214
    [155] Zhu Y, Sun D X, Preparation of silicon dioxide/polyurethane nanocomposites by a sol-gel process, Journal of Applied Polymer Science, 2004, 92 (3): 2013-2016
    [156] Wan W T, Yu D M, Xie Y C, et al. Effects of nanoparticle treatment on the crystallization behavior and mechanical properties of polypropylene/calcium carbonate nanocomposites, Journal of Applied Polymer Science, 2006, 102 (4): 3480-3488
    [157] Fu Q, Wang G, Shen J, Polyethylene toughened by CaCO3 particle: brittle-ductile transition of CaCO3 toughened HDPE, Journal of Applied Polymer Science, 1993, 49 (4): 673-677
    [158] Gray CA, Muranko H, Studies of robustness of industrial aciniform aggregates and agglomerates - Carbon black and amorphous silicas: A review amplified by new data, Journal of Occupational and Environmental Medicine, 2006, 48 (12): 1279-1290
    [159] David R C, Marshall L F, Peter H C, Mechanical and microstructural properties of pectin/starch films, Journal of Applied Polymer Science, 1995, 57(6): 663-670.
    [160] Kim S H, Kim Y H, Biodegradable polymer blends of ply(L-lactic acid) and gelatinized starch, Polymer Engineer and Science, 2000, 40(12): 2539-2550.
    [161] Yu J G, Wang N, Ma X F, The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol, Starch-Starke, 2005, 57 (10): 494-504.
    [162] Onteniente J P, Abbès B, Safa L H, Fully Biodegradable Lubricated Thermoplastic Wheat Starch: Mechanical and Rheological Properties of an Injection Grade, Starch/St?rke, 2000, 52(4): 112-117.
    [163]刘泽华,热塑性淀粉材料的增强及其老化性能研究(博士学位论文),天津大学, 2002, 19.
    [154] Willemse R C, de Boer A P, van Dam J, Gotsis A D, Co-continuous morphologies in polymer blends: a new model, Polymer, 1998, 39(24): 5879-5887.
    [165] Zhao R, Macosko C W, Polymer-polymer mutual diffusion via rheology of coextruded multilayers, Aiche Journal, 2007, 53 (4): 978-985
    [166] Wu S, Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects, Polymer Engineer and Science, 1987, 27(5): 335-343
    [164] Tokita N, Analysis of morphology formation in elastomer blends, Rubber Chemistry and Technology, 1977, 50(5): 292-300
    [168] Lee K M, Han C D, Effect of hydrogen bonding on the rheology of polycarbonate/ organoclay nanocomposites, Polymer, 2003, 44(16): 4573~4588
    [169] Kim B, Peppas N A, Analysis of molecular interactions in poly(methacrylic acid-g-ethylene glycol) hydrogels, Polymer, 2003, 44(13): 3701~3707
    [170] Malek M A, Chong C S, FTIR study of H2O in polyallyl diglycol carbonate; Vibrational Spectroscopy, 2000, 24(2): 181~184
    [171] Kaczmarek H, Szalla A, Kaminska A, Study of poly(acrylic acid)–poly(vinylpyrrolidone) complexes and their photostability, Polymer, 2001, 42(14): 6057~6069
    [172] Shogren R L, Thompson A R, Greene R V, et al, Complexes of starch polysaccharides and poly (ethylene co-acrylic acid): Structural characterization in the solid state,Journal of Applied Polymer Science, 1991,42(8): 2279~2286
    [173] Wu Q, Zhang L, Preparation and Characterization of Thermoplastic Starch Mixed with Waterborne Polyurethane, Industrial Engineering Chemistry Research, 2001, 40(2): 558~564
    [174] Kazuo O, Kenji A, Shin O, et al, Effects of the noncyclic cyanamides on the retrogradation of waxy corn starch, Bulletin of Chemical Society of Japan, 2000, 73: 1283~1284
    [175] Masakuni T, Susumu H, Gelatinization Mechanism of Potato Starch, Carbohydrate Polymers, 2002, 48(4): 397~401
    [176] Kazuo O, Isao Y, Toshiaki Y, et al, Studies on the retrogradation and structural properties of waxy corn starch, Bulletin of Chemical Society of Japan, 1998, 71: 1095~1100
    [177] Aoi K, Takasu A, Okada M, New chitin-based polymer hybrids, 3. Miscibility of chitin-graft-poly(2-ethyl-2-oxazoline) with poly(vinyl alcohol), Macromolecular Chemistry and Physics, 1998, 199(12): 2805~2811
    [178] Pawlak A, Mucha M, Thermogravimetric and FTIR studies of chitosan blends, Thermochimica Acta, 2003, 396(1-2): 153~166
    [179] Zhang G B, Zhang J M, Zhou X S, Shen D Y, Miscibility and phase structure of binary blends of polylactide and poly(vinylpyrrolidone), Journal of Applied Polymer Science, 2003, 88 (4), 973-979.
    [180] Ma X F, Yu J G, Wang N, Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends, Journal of Polymer Science Part B-Polymer Physics, 2006, 44 (1): 94-101.
    [181] Van Soest J J G, S. Hulleman H D, Vliegenthart J F G, Crystallinity in Starch Bioplastics. Industrial Crops and Products, 1996, 5: 11~12
    [182] Van Soest J J G, Vliegenthart J F G, Crystallinity in starch plastics: consequences for material properties. Trends in Biotechnology, 1997, 15(6): 208~213
    [183] Horowitz, H. H., Metzger, G. (1963). A New Analysis of Thermogravimetric Traces. Analysis Chemistry, 35(10), 1464-1468.
    [184]吴人洁,现代分析技术在高聚物中的应用,上海科学技术出版社,1987,597
    [185] Carlson D, Nie L, Narayan R, et al. Maleation of polylactide (PLA) by reactive extrusion, Journal of Applied Polymer Science, 1999, 72 (4): 477-485
    [186] Rahman M, Brazel CS, The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges, Progress in Polymer Science, 2004, 29 (12): 1223-1248
    [187] Lindstrom A, Hakkarainen M, Designed chain architecture for enhanced migration resistance and property preservation in poly(vinyl chloride)/polyester blends, Biomacromolecules, 2007, 8 (4): 1187-1194
    [188]何曼君,张红东,陈维孝等,高分子物理,上海:复旦大学出版社, 2007, 51-55
    [189] Zhang JF, Zheng Q, Yang YQ, et al. High-density polyethylene/carbon black conductive composites. I. Effect of CB surface modification on its resistivity-temperature behavior, Journal of Applied Polymer Science, 2002, 83 (14): 3112-3116
    [190] Sinclair R g, The case for polylactic acid as a commodity packaging plastic, J M S-Pure Appl chem, 1996, 33(5): 585-597
    [191] Babinec SJ, Mussell RD, Lundgard RL, et al. Electroactive thermoplastics, Advanced Materials, 2000, 12 (23): 1823-1834
    [192] Zallen R, The Physics of Amorphous Solids, New York: Wiley, 1983 Ch4.
    [193] J Janzen, On the critical conductive filler loading in antistatic composites, Journal of Applied of Physics, 1975, 146 (2):966-969.
    [194] Bueche F, Conductive Polymer Composites, Journal of Applied of Physics, 1972, 43: 4837-4841.
    [195] Sumita M, Sakata K, Asai S, et al. Dispersion of filler and the electrical conduc- tivity of polymer blends filled with carbon black, Polymer Bulletin, 1991, 25 (2): 265-271.
    [196] Sumita M, Asai S, Miyadera N, et al. Electrical conductivity of carbon black filled ethylene-vinyl acetate copolymer. as a function of vinyl acetate content, Colloid Polym Sci,1986,264 (2): 212-217
    [197] Wessling B, Electrical Conductivity in Heterogeneou Polymer Systems. V(1): Further Experimental Evidence for a Phase Transintion at the Criticle Volume Concentration, Polymer Engineer and Science, 1991, 31 (16): 1200-120
    [198] Lux E, Models Proposed to Explain the Electrical Conductivity of Mixtures Made of Conductive and Insulating Materials, Journal of Material Science, 1993, 28 (2): 285-301.
    [199] Izhik AP, Uriev NB, Surface properties and specific features of structurization of disperse carbon black with different degrees of oxidation, Colloid Journal, 2002, 64 (5): 562-566
    [200] Zhang W, Dehghani-Sanij AA, Blackburn RS, Carbon based conductive polymer composites, Journal of Materials Science, 2007, 42 (10): 3408-3418
    [201] Metin D, Tihminhoglu F, Balkose D, et al. The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites, Composites Part A-Applied Science and Manufacturing, 2004, 35 (1): 23-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700