用户名: 密码: 验证码:
明胶微球和明胶基复合微球的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
明胶微球具有许多优良的物理、化学和生物性能,被广泛应用于医药工程、生物技术、材料科学和电子信息产业等领域。随着明胶微球在不同领域中用途的增多,人们对其形态、结构和性能提出了更高的要求。由于乳化装置的不断改进,现已能够制备出纳米级~亚微米级的明胶微球,但是难以制备尺寸均一的微球,这将给明胶微球的实际应用带来阻碍。因此,如何制备出粒径可控、尺寸均一的明胶微球,一直是研究者们关注的问题,也是本论文研究的重点之一。
     明胶/羟基磷灰石(HAP)复合微球是近年来备受关注的一种骨修复材料,与其他种类的骨替代材料相比,明胶/HAP复合材料的生物相容性和生物降解性是很理想的,与骨组织也可以达成良好的结合。但是,与天然骨相比,这种骨修复材料的力学性能,即弹性模量、断裂韧性和抗拉强度还有待改进。这是本论文的又一工作重点,并对两相在微观结构上的复合进行了初步的机理探讨。主要的研究工作包括:
     1.采用条件温和的乳化-凝胶法制备明胶微球,通过扫描电子显微镜(SEM)和粒径分布曲线,系统研究了制备参数对明胶微球粒径和形貌的影响,得出如下结论:降低明胶溶液浓度、减小水油比例、增大乳化剂用量等都能够减小明胶微球的粒径;提高乳化的搅拌速率、选择合适的乳化时间和乳化温度等有利于改善微球的分散性和圆整度。通过研究,可以实现微球尺寸的可控制备。
     2.研究了四种不同种类的油相,它们的主要脂肪酸成分对明胶微球大小和形态的影响。疏水能力强的油脂,制备出的微球粒径小;疏水能力弱的油脂,制备出的微球粒径大。这一研究表明,制备明胶微球油相的类型不可忽视。
     3.研究了阳离子型乳化剂CTAB、非离子型乳化剂Tween/Span、阴离子型乳化剂SDS和复合乳化剂等对明胶微球形成的影响。结果表明,非离子型乳化剂较为温和,阳离子型乳化剂CTAB在用量较少的情况下即可达到满意的乳化效果,阴离子型乳化剂的乳化效果较差;CTAB/Span 80为1:1时所得的微球平均粒径仅6.5μm,球型圆整,是制备明胶微球的理想复合乳化剂。
     4.通过研究明胶微球在不同乳化时间下的形态变化,并测试明胶在形成微球前后理化性质的改变,对明胶微球的形成机理进行了初步探讨。
     5.在油包水的乳液体系中,通过原位合成的方法使HAP在明胶链上化学沉积,改变明胶溶液的浓度,制得了一系列的明胶/ HAP复合物微球。采用XRD、FTIR、SEM、TEM和TGA等测试手段对产物的组成、形貌以及热失重情况进行了表征。结果表明,明胶用量对复合物微球中HAP的形成具有重要影响。随着明胶用量由少到多,HAP晶体经历了棒状-针状-颗粒状的变化,在明胶溶液浓度为0.025 g/mL时,复合物微球中无机相含量达40%。另外,对HAP晶体变化的原因进行了理论推测。
Gelatin microspheres (GMs) have been known to display a variety of applications in different technological fields including medicine, biology, chemical and electronic information industry because of their diverse and excellent physical, chemical, biological and amphoteric properties. As the widely use of GMs in different field, People has brought forward higher call for its morphology, structure and properties. Although nano- and micro- GMs could be prepared thanks to the development of emulsifying devices, uniform-sized microspheres are still difficult to synthesized. In this dissertation an attempt was made to optimize the manufacturing conditions, in order to prepare homogeneous and size-controlled GMs.
     Gelatin/hydroxyapatite (HAP) composite microspheres have been extensively investigated because of their similar composition and structure to natural bone, perfect biocompatibility and osteoconductive activity. However, to be an ideal bone repair material, low elastic modulus, high fracture toughness and tensile strength are needed. Therefore, an attempt of optimizing the preparation conditions was performed with the aim to improve the microstructure and properties of the composite microspheres. The main research work in the present dissertation can be summarized as follows:
     1. A series of GMs were prepared by emulsification-coacervation method in water-in-oil (w/o) emulsions. The influence of preparation parameters on particle size, surface morphology and dispersity of GMs were examined. The experimental results indicated that increasing the concentration of gelatin solution and water /oil ratio would increase the particle size of GMs. On the contrary, increasing the concentration of the emulsifier and stirring speed would decrease the particle size of GMs. At proper emulsifying time and temperature would get the best sphericity of GMs. According to the practical application, size tunable GMs can be prepared.
     2. Four kinds of oil phase were used to study its influence on the particle size and morphology of GMs. The experimental results indicated that GMs with smaller size can be obtained by using the oil phase with higher hydrophobicity. Accordingly, lower hydrophobic oil can lead to larger particle size.
     3. The influences of CTAB, Tween/Span, SDS and composite emulsifiers on the formation of GMs were investigated. The results showed that Span was a tender emulsifier, lower dosage of CTAB could have good effect, and SDS was not an ideal choice for this study. We also found that the mean diameter of GMs was just 6.5μm when the ratio of CTAB and Tween 80 was 1:1.
     4. The mechanism of GMs’formation was carried out preliminarily by study the changes of morphology and physicochemical properties of gelatin during the emulsifying time.
     5. By changing the concentration of gelatin solutions, a series of Gelatin/ HAP composite microspheres were prepared through in-suit synthesis method in water-in-oil (w/o) emulsions. The products were characterized by XRD、FTIR、SEM、TEM and TGA. The experimental results indicated that the concentration of gelatin solutions had great influence on the formation of HAP. The initial rod-like crystalline shape of HAP changed to needle-like, and then to granules. The binding of gelatin and HAP had a maximum value at gelatin concentration around 0.025 g/mL. In addition, the reasons of the HAP crystal formation were presupposed theoretically.
引文
1.沃德A. G.,考茨A.,李文渊,明胶的科学与工艺学. 1982:轻工业出版社.
    2.王远亮.明胶化学基础讲座:五、胶原和明胶的水解与降解明胶科学与技术. 1987, 7(1): 38-46.
    3.中国感光研究会编.感光过程理论基础, 1983.
    4.阮埃乃.明胶的凝胶及溶胶一凝胶的转化.明胶科学与技术, 1990, 2.
    5.黄文,毛汉颖,陈华新.机械剪切超声空化复合乳化装置的研制.广西民族学院学报(自然科学版), 2004, 4: 68-71.
    6.金增辉,徐大庆.膜乳化法.武汉食品工业学院学报, 1995, 2: 31-36.
    7. Lambrich U., Schubert H. Emulsification using microporous systems. Journal of Membrane Science, 2005, 257(1-2): 76-84.
    8. Simon M. Joscelyne Gun Tr?g?rdh. Membrane emulsification—a literature review. Journal of Membrane Science, 2000, 169: 107-117.
    9. Zhu J., Barrow D. Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes. Journal of Membrane Science, 2005, 261(1-2): 136-144.
    10. Wang L. Y., Ma G. H., Su Z. G. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. Journal of Controlled Release, 2005, 106(1-2): 62-75.
    11.吴俊,景文珩,邢卫红,徐南平.陶瓷膜乳化法制备油包水乳状液的初步研究.盐城工学院学报(自然科学版), 2004, 4: 1-4.
    12. Vladisavljevi G. T., Tesch S., Schubert H. Preparation of water-in-oil emulsions using microporous polypropylene hollow fibers: influence of some operating parameters on droplet size distribution. Chemical Engineering & Processing, 2002, 41(3): 231-238.
    13. Behrend O., Schubert H. Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrasonics-Sonochemistry, 2001, 8(3): 271-276.
    14. Freitas S., Rudolf B., Merkle H. P., Gander B. Flow-through ultrasonic emulsification combined with static micromixing for aseptic production of microspheres by solvent extraction. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 61(3): 181-187.
    15.梁文平,乳状液科学与技术基础. 2001,北京:科学出版社.
    16.赵国玺,表面活性剂物理化学. 1984:北京大学出版社.
    17.梁治齐,李金华,功能性乳化剂与乳状液. 2000,北京:中国轻工业出版社.
    18.刘程,表面活性剂应用大全. 1992:北京工业大学出版社.
    19.戚文彬,表面活性剂与分析化学,上册. 1986:中国计量出版社.
    20. Murray B. S. Interfacial rheology of food emulsifiers and proteins. Current Opinion in Colloid & Interface Science, 2002, 7(5-6): 426-431.
    21. Dickinson E. Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids and Surfaces B: Biointerfaces, 1999, 15(2): 161-176.
    22. Saxena A., Antony T., Bohidar H. B. Dynamic Light Scattering Study of Gelatin Surfactant Interactions. J. Phys. Chem. B, 1998, 102(26): 5063-5068.
    23. Wilde P., Mackie A., Husband F., Gunning P., Morris V. Proteins and emulsifiers at liquid interfaces. Advances in colloid and interface science, 2004, 108: 63-71.
    24. Cornec M., Mackie A. R., Wilde P. J., Clark D. C. Competitive adsorption ofβ-lactoglobulin andβ-casein with Span 80 at the oil-water interface and the effects on emulsion behaviour. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 114: 237-244.
    25. Jm R. P., Jm N. G., Mr R. N. Protein-lipid interactions at the oil-water interface. Colloids and Surfaces B: Biointerfaces, 2001, 21(1): 207-216.
    26. Mayya K. S., Bhattacharyya A., Argillier J. F. Micro-encapsulation by complex coacervation: influence of surfactant. Polymer International, 2003, 52: 644-647.
    27. Goloub T., Pugh R. J. The role of the surfactant head group in the emulsification process: Single surfactant systems. Journal of Colloid and Interface Science, 2003, 257(2): 337-343.
    28. Goloub T. P., Pugh R. J. The role of the surfactant head group in the emulsification process: Binary (nonionic–ionic) surfactant mixtures. Journal of Colloid and Interface Science, 2005, 291(1): 256-262.
    29. Olijve J., Mori F., Toda Y. Influence of the molecular-weight distribution of gelatin on emulsion stability. Journal of Colloid and Interface Science, 2001, 243(2): 476-482.
    30. Nakagawa K., Iwamoto S., Nakajima M., Shono A., Satoh K. Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation. Journal of Colloid and Interface Science, 2004, 278(1): 198-205.
    31.陈青如.分子蒸馏法精制植物油脂及提纯其中不饱和脂肪酸的研究.华东理工大学, 2005.
    32.黄惠琴,鲍时翔.多价不饱和脂肪酸分离与纯化技术进展.中国油脂, 1999, 24(002): 32-34.
    33.阮征,吴谋成.多不饱和脂肪酸的研究进展.中国油脂, 2003, 28(002): 55-59.
    34.谷利伟,赵金兰.共轭亚油酸研究进展.粮油食品科技, 2001, 9(002): 28-29.
    35.张海满,刘福祯.α—亚麻酸的功能,资源及生产方法.中国油脂, 2000, 25(006): 192-194.
    36.陶国琴,李晨.α—亚麻酸的保健功效及应用.食品科学, 2000, 21(012): 140-143.
    37.董杰明,吴瑞华,袁昌鲁,周连甲.γ-亚麻酸的保健作用.卫生研究, 2003, 32(003): 299-301.
    38.蔡志宁,赵谋明.蛋白质乳浊液体系稳定性研究进展.食品与发酵工业, 2005, 31(002): 73-77.
    39. Dickinson E. Emulsion stability. Food Hydrocolloids, Structure Properties and Functions, 1993: 387-99.
    40. Dickinson E., Stainsby G., Advances in food emulsions and foams. 1988: Elsevier Applied Science London.
    41.李雄伟,王丹青.功能高分子微球研究: 99MTC明胶微球的制备及其动物活体显像.生物医学工程学杂志, 1991, 8(002): 99-103.
    42.褚书铃,宋蕾.明胶微球的研究.北京医科大学学报, 1993, 25(006): 449-450.
    43.吴传斌,何素梅.阿霉素磁性明胶微球的制备及特性研究.中国医药工业杂志, 1994, 25(002): 63-66.
    44.张自然,陆彬.硫酸链霉素肺靶向明胶微球的研究.华西医科大学学报, 1995, 26(002): 167-171.
    45.巩志立,赵晶.明胶微球乙型肝炎疫苗的研究.中国生物制品学杂志, 1997, 10(3): 165.
    46.吴功柱,梁如槐. 5—氟脲嘧啶明胶微球化学交联固化研究.中国药房, 1998, 9(004): 154-155.
    47.路伟,王亮明.肝素钠明胶微球的制备工艺研究.中国生化药物杂志, 1998, 19(003): 136-138.
    48.陆彬,杨红.肺靶向卡铂明胶微球的研究.药学学报, 1999, 34(010): 786-789.
    49.钟延强,任常顺.氟比洛芬明胶微球的制备及其体内外释药特性研究.中国药学杂志, 1999, 34(006): 382-384.
    50.钟延强,王春燕.关节腔内注射用氟比洛芬明胶微球的制备及体外释药的研究.药学实践杂志, 1998, 16(006): 341-344.
    51.钟延强,任常顺.关节腔内注射用氟比洛芬明胶微球.药学学报, 1999, 34(007): 543-546.
    52.丁红,邢桂琴.阿霉素明胶微球的制备与特性研究.中国医院药学杂志, 2000, 20(007): 387-389.
    53.邓嵘,吴万垠.莪术油明胶微球用于肝动脉栓塞.药学学报, 2000, 35(007): 539-543.
    54.李维新,高国栋.显影固体栓塞剂含钡明胶微球的研制.第四军医大学学报, 2001, 22(019): 1812-1814.
    55.吴道澄,吴红.氟尿嘧啶大粒径明胶微球的制备与性质.解放军药学学报, 2002, 18(005): 257-261.
    56.唐辉,陈文.缓释阿维菌素明胶微球的研制及其体外释放特性.中国新药杂志, 2002, 11(006): 462-464.
    57.刘世宽.卡铂肺靶向明胶微球的实验研究.中国现代应用药学, 2002, (02).
    58.刘锐玲,杨香丽,申永政,赵正保. 5-氨基水杨酸明胶微球的体外溶出研究.中国新医药, 2003, 2(010): 9-10.
    59.吴红,吴道澄,于开涛,封兴华,姚志军.平阳霉素明胶微球的制备及其释药特性.生物医学工程学杂志, 2003, 20(004): 646-649.
    60.史朝晖,王东凯,王晓艳,曾垂宇.利福平明胶微球制剂及体内外释药特性的研究.中华临床医药杂志(北京), 2004, 5(014): 7-9.
    61.肖玉鸿,吴红,刘宏伟,陈书军,李飞,吴道澄. rhBMP-2明胶微球的制备及对人牙周膜细胞增殖和碱性磷酸酶活性影响.第四军医大学学报, 2005, 26(009): 799-801.
    62.詹国平,黄可龙,谢恩伟.肺靶向硫酸链霉素明胶微球的制备.中国医院药学杂志, 2005, 25(007): 625-628.
    63. Wei H. J., Yang H. H., Chen C. H., Lin W. W., Chen S. C., Lai P. H., Chang Y., Sung H. W. Gelatin microspheres encapsulated with a nonpeptide angiogenic agent, ginsenoside Rg1, for intramyocardial injection in a rat model with infarcted myocardium. Journal of Controlled Release, 2007, 120(1-2): 27-34.
    64. Saxena A., Sachin K., Bohidar H. B., Verma A. K. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids andSurfaces B: Biointerfaces, 2005, 45(1): 42-48.
    65. Olivares M. L., Peirotti M. B., Deiber J. A. Analysis of gelatin chain aggregation in dilute aqueous solutions through viscosity data. Food Hydrocolloids, 2006, 20(7): 1039-1049.
    66. Yang Y. Y., Chia H. H., Chung T. S. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Journal of Controlled Release, 2000, 69(1): 81-96.
    67. Vandelli M. A., Rivasi F., Guerra P., Forni F., Arletti R. Gelatin microspheres crosslinked with D, L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. International journal of pharmaceutics, 2001, 215(1-2): 175-184.
    68. Cortesi R., Nastruzzi C., Davis S. S. Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials, 1998, 19(18): 1641-1649.
    69. Kuijpers A. J., Engbers G. H. M., Feijen J., De Smedt S. C., Meyvis T. K. L., Demeester J., Krijgsveld J., Zaat S. A. J., Dankert J. Characterization of the network structure of carbodiimide cross-linked gelatin gels. Macromolecules, 1999, 32(10): 3325-3333.
    70.杨永新,李岩.交联固化对明胶微球质量的影响.西北药学杂志, 2001, 16(001): 40-41.
    71. Kawaguchi H. Functional polymer microspheres. Progress in Polymer Science, 2000, 25(8): 1171-1210.
    72.马光辉,苏志国,高分子微球材料. 2005:化学工业出版社.
    73.邹国林,徐传斌.超氧化物歧化酶明胶微球的制备及性质.武汉大学学报:自然科学版, 1995, 41(004): 517-520.
    74. Ethirajan A., Ziener U., Chuvilin A., Kaiser U., Colfen H., Landfester K. Biomimetic Hydroxyapatite Crystallization in Gelatin Nanoparticles Synthesized Using a Miniemulsion Process. Advanced Functional Materials, 2008, 18(15).
    75. Sivakumar M., Panduranga Rao K. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite–gelatin composite microspheres. Biomaterials, 2002, 23(15): 3175-3181.
    76. Yin Hsu F., Chueh S. C., Jiin Wang Y. Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials, 1999, 20(20): 1931-1936.
    77. Bigi A., Panzavolta S., Roveri N. Hydroxyapatite-gelatin films: a structural and mechanical characterization. Biomaterials, 1998, 19(7-9): 739-744.
    78. Yaylaoglu M. B., Korkusuz P., rsü, Korkusuz F., Hasirci V. Development of a calcium phosphate–gelatin composite as a bone substitute and its use in drug release. Biomaterials, 1999, 20(8): 711-719.
    79. Chang M. C., Ko C. C., Douglas W. H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials, 2003, 24(17): 2853-2862.
    80. Yang Z., Jiang Y., Yu L., Wen B., Li F., Sun S., Hou T. Preparation and characterization of magnesium doped hydroxyapatite–gelatin nanocomposite. Journal of Materials Chemistry, 2005, 15(18): 1807-1811.
    81. Kim H. W., Kim H. E., Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials, 2005, 26(25): 5221-5230.
    82. Kim H. W., Song J. H., Kim H. E. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Advanced Functional Materials, 2005, 15(12): 1988-1994.
    83. Furuichi K., Oaki Y., Imai H. Preparation of nanotextured and nanofibrous hydroxyapatite through dicalcium phosphate with gelatin. Chem. Mater, 2006, 18(1): 229-234.
    84. Liu W. B., Qu S. X., Shen R., Jiang C. X., Li X. H., Feng B., Weng J. Influence of pH values on preparation of hydroxyapatite/gelatin composites. Journal of Materials Science, 2006, 41(6): 1851-1853.
    85. Teng S., Chen L., Guo Y., Shi J. Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres. Journal of inorganic biochemistry, 2007, 101(4): 686-691.
    86. Mohamed K. R., Mostafa A. A. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Materials Science & Engineering C, 2008, 28(7): 1087-1099.
    87. Li J., Chen Y. P., Yin Y., Yao F., Yao K. Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ. Biomaterials, 2007, 28(5): 781-790.
    88. Landi E., Valentini F., Tampieri A. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 2008, 4(6): 1620-1626.
    89. Zandi M., Mirzadeh H., Mayer C., Urch H., Eslaminejad M. B., Bagheri F., Mivehchi H. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. 2009.
    90. Zhang Y., Zuo K., Zeng Y. P. Effects of gelatin addition on the microstructure of freeze-cast porous hydroxyapatite ceramics. Ceramics International, 2009.
    91. Liu X., Smith L. A., Hu J., Ma P. X. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials, 2009.
    92. Kim B. S., Mooney D. J. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends in Biotechnology, 1998, 16(5): 224-230.
    93. Chen G., Ushida T., Tateishi T. Scaffold design for tissue engineering. Macromolecular Bioscience, 2002, 2(2): 67-77.
    94.王慧明,王模堂.四种骨替代材料的人成骨细胞生物相容性研究.中国生物医学工程学报, 1996, 15(003): 239-244.
    95. Hulbert S. F., Morrison S. J., Klawitter J. J. Tissue reaction to three ceramics of porous and non-porous structures. Journal of Biomedical Materials Research, 1972, 6(5).
    96. Piattelli A., Podda G., Scarano A. Histological evaluation of bone reactions to aluminium oxide dental implants in man: a case report. Biomaterials, 1996, 17(7): 711-714.
    97. Chen Q. Z., Thompson I. D., Boccaccini A. R. 45S5 Bioglass?-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414-2425.
    98. Joschek S., Nies B., Krotz R., G pferich A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials, 2000, 21(16): 1645-1658.
    99. Takahashi K., Fujishiro Y., Yin S., Sato T. Preparation and compressive strength ofα-tricalcium phosphate based cement dispersed with ceramic particles. Ceramics International, 2004, 30(2): 199-203.
    100. Miyamoto Y., Ishikawa K., Takechi M., Toh T., Yuasa T., Nagayama M., Suzuki K. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. Journal of Biomedical Materials Research, 1999, 48(1).
    101. Von Gonten A. S., Kelly J. R., Antonucci J. M. Load-bearing behavior of a simulated craniofacial structure fabricated from a hydroxyapatite cement and bioresorbable fiber-mesh. Journal of Materials Science: Materials in Medicine, 2000, 11(2): 95-100.
    102. Del Real R. P., Wolke J. G. C., Vallet-Reg M., Jansen J. A. A new method to produce macropores in calcium phosphate cements. Biomaterials, 2002, 23(17): 3673-3680.
    103.潘朝晖,范清宇.促磷酸钙骨水泥吸收的研究进展.中国矫形外科杂志, 2004, 12(021): 1723-1724.
    104. von Knoch F., Wedemeyer C., Heckelei A., Saxler G., Hilken G., Brankamp J., Sterner T., Landgraeber S., Henschke F., L?er F. Promotion of bone formation by simvastatin in polyethylene particle-induced osteolysis. Biomaterials, 2005, 26(29): 5783-5789.
    105. Stańczyk M., Van Rietbergen B. Thermal analysis of bone cement polymerisation at the cement–bone interface. Journal of biomechanics, 2004, 37(12): 1803-1810.
    106. Stańczyk M. Study on modelling of PMMA bone cement polymerisation. Journal of biomechanics, 2005, 38(7): 1397-1403.
    107.杨志明,余希杰.外源性Ⅰ型胶原对人胚骨膜成骨细胞生物学特性的影响.华西医科大学学报, 2001, 32(001): 1-4.
    108.李志跃,孙运才.骨基质明胶复合红骨髓及同种骨修复节段性骨缺损的实验研究.中华骨科杂志, 2000, 20(007): 440-443.
    109.叶川,尹培荣,吴承龙,马敏先,宁旭.明胶海绵与人胚半月板细胞构建复合物的研究.贵阳医学院学报, 2005, 30(001): 15-17.
    110. Lee J. Y., Nam S. H., Im S. Y., Park Y. J., Lee Y. M., Seol Y. J., Chung C. P., Lee S. J. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. Journal of Controlled Release, 2002, 78(1-3): 187-197.
    111. Ignjatovi N., Savi V., Najman S., Plav?i M., Uskokovi D. A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials, 2001, 22(6): 571-575.
    112. Navarro M., Ginebra M. P., Planell J. A., Barrias C. C., Barbosa M. A. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomaterialia, 2005, 1(4): 411-419.
    113. Wu Y. C., Shaw S. Y., Lin H. R., Lee T. M., Yang C. Y. Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials, 2006, 27(6): 896-904.
    114. Murugan R., Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials, 2004, 25(17): 3829-3835.
    115. Kothapalli C. R., Shaw M. T., Wei M. Biodegradable HA-PLA 3-D porous scaffolds: Effect of nano-sized filler content on scaffold properties. Acta Biomaterialia, 2005, 1(6): 653-662.
    116. Xiao Y., Li D., Fan H., Li X., Gu Z., Zhang X. Preparation of nano-HA/PLA composite by modified-PLA for controlling the growth of HA crystals. Materials Letters, 2007,61(1): 59-62.
    117. Wang H., Li Y., Zuo Y., Li J., Ma S., Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials, 2007, 28(22): 3338-3348.
    118. Stanishevsky A., Chowdhury S., Chinoda P., Thomas V. Hydroxyapatite nanoparticle loaded collagen fiber composites: Microarchitecture and nanoindentation study. Journal of Biomedical Materials Research Part A, 2008, (4).
    119. Panzavolta S., Fini M., Nicoletti A., Bracci B., Rubini K., Giardino R., Bigi A. Porous composite scaffolds based on gelatin and partially hydrolyzedα-tricalcium phosphate. Acta Biomaterialia, 2009, 5(2): 636-643.
    120. Lu X., Wang Y., Liu Y., Wang J., Qu S., Feng B., Weng J. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through sol–gel techniques. Materials Letters, 2007, 61(18): 3970-3973.
    121. Fang J. Y., Chen J. P., Leu Y. L., Wang H. Y. Characterization and evaluation of silk protein hydrogels for drug delivery. Chemical & pharmaceutical bulletin, 2006, 54(2): 156-162.
    122. Du C., Cui F. Z., Feng Q. L., Zhu X. D., De Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. Journal of Biomedical Materials Research, 1998, 42(4).
    123. Bigi A., Boanini E., Panzavolta S., Roveri N. Biomimetic growth of hydroxyapatite on gelatin films doped with sodium polyacrylate. BIOMACROMOLECULES-WASHINGTON, 2000, 1(4): 752-756.
    124. Kikuchi M., Itoh S., Ichinose S., Shinomiya K., Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22(13): 1705-1711.
    125. Roveri N., Falini G., Sidoti M. C., Tampieri A., Landi E., Sandri M., Parma B. Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Materials Science & Engineering C, 2003, 23(3): 441-446.
    126. Rodrigues C. V. M., Serricella P., Linhares A. B. R., Guerdes R. M., Borojevic R., Rossi M. A., Duarte M. E. L., Farina M. Characterization of a bovine collagen–hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials, 2003, 24(27): 4987-4997.
    127. Chang M. C., Ikoma T., Kikuchi M., Tanaka J. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. Journal of Materials Science Letters, 2001, 20(13): 1199-1201.
    128. Chang M. C., Ikoma T., Kikuchi M., Tanaka J. The cross-linkage effect of hydroxyapatite/collagen nanocomposites on a self-organization phenomenon. Journal of Materials Science: Materials in Medicine, 2002, 13(10): 993-997.
    129. Chang M. C., Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials, 2002, 23(24): 4811-4818.
    130. Chang M. C., Ko C. C., Douglas W. H. Conformational change of hydroxyapatite/gelatin nanocomposite by glutaraldehyde. Biomaterials, 2003, 24(18): 3087-3094.
    131. Zhang L. J., Feng X. S., Liu H. G., Qian D. J., Zhang L., Yu X. L., Cui F. Z. Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Materials Letters, 2004, 58(5): 719-722.
    132. Kikuchi M., Ikoma T., Itoh S., Matsumoto H. N., Koyama Y., Takakuda K., Shinomiya K., Tanaka J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Science and Technology, 2004, 64(6): 819-825.
    133. Sivakumar M., Manjubala I., Panduranga Rao K. Preparation, characterization and in-vitro release of gentamicin from coralline hydroxyapatite–chitosan composite microspheres. Carbohydrate Polymers, 2002, 49(3): 281-288.
    134. Sivakumar M., Rao K. P. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres. Journal of Biomedical Materials Research, 2003, (2).
    135. Komlev V. S., Barinov S. M., Koplik E. V. A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release. Biomaterials, 2002, 23(16): 3449-3454.
    136. Komlev V. S., Barinov S. M., Girardin E., Oscarsson S., Rosengren, Rustichelli F., Orlovskii V. P. Porous spherical hydroxyapatite and fluorhydroxyapatite granules: processing and characterization. Science and Technology of Advanced Materials, 2003, 4(6): 503-508.
    137. Wu T. J., Huang H. H., Lan C. W., Lin C. H., Hsu F. Y., Wang Y. J. Studies on the microspheres comprised of reconstituted collagen and hydroxyapatite. Biomaterials, 2004, 25(4): 651-658.
    138. Sun J. S., Lin F. H., Wang Y. J., Huang Y. C., Chueh S. C., Hsu F. Y. Collagen-Hydroxyapatite/Tricalcium Phosphate Microspheres as a Delivery System for Recombinant Human Transforming Growth Factor-β1. Artificial Organs, 2003, 27(7): 605-612.
    1. Tanaka N., Takino S., Utsumi I. A new oral gelatinized sustained-release dosage form. Journal of Pharmaceutical Sciences, 1963, 52(7).
    2. Vandelli M. A., Romagnoli M., Monti A., Gozzi M., Guerra P., Rivasi F., Forni F. Microwave-treated gelatin microspheres as drug delivery system. Journal of Controlled Release, 2004, 96(1): 67-84.
    3. Kawaguchi H. Functional polymer microspheres. Progress in Polymer Science, 2000, 25(8): 1171-1210.
    4. Wang J., Tabata Y., Morimoto K. Aminated gelatin microspheres as a nasal delivery system for peptide drugs: evaluation of in vitro release and in vivo insulin absorption in rats. Journal of Controlled Release, 2006, 113(1): 31-37.
    5. Wu H., Zhang Z., Wu D., Zhao H., Yu K., Hou Z. Preparation and drug release characteristics of pingyangmycin-loaded dextran cross-linked gelatin microspheres for embolization therapy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006, (1).
    6. Mi F. L. Synthesis and Characterization of a Novel Chitosan? Gelatin Bioconjugate with Fluorescence Emission. Biomacromolecules, 2005, 6(2): 975-987.
    7. Narayani R., Panduranga Rao K. Gelatin microsphere cocktails of different sizes for the controlled release of anticancer drugs. International journal of pharmaceutics, 1996, 143(2): 255-258.
    8.贺枰,崔陇兰,强伟丽,徐宏,古宏晨.高Fe3O4含量单分散P (St/AA)复合微球的合成与表征.高分子学报, 2007, (008): 731-736.
    9.薛屏,刘海峰.亲水性含环氧基磁性聚合物微球的制备与性能表征.高分子学报, 2007, (001): 64-69.
    10. Vandelli M. A., Rivasi F., Guerra P., Forni F., Arletti R. Gelatin microspheres crosslinked with D, L-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. International journal of pharmaceutics, 2001, 215(1-2): 175-184.
    11. Kim H. W., Kim H. E., Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials, 2005, 26(25): 5221-5230.
    12.詹国平,黄可龙,谢恩伟.肺靶向硫酸链霉素明胶微球的制备.中国医院药学杂志, 2005, 25(007): 625-628.
    13.李维新,高国栋.显影固体栓塞剂含钡明胶微球的研制.第四军医大学学报, 2001, 22(019): 1812-1814.
    14. Esposito E., Cortesi R., Nastruzzi C. Gelatin microspheres: influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties. Biomaterials, 1996, 17(20): 2009-2020.
    15. Bruschi M. L., Cardoso M. L. C., Lucchesi M. B., Gremi?o M. P. D. Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization. International journal of pharmaceutics, 2003, 264(1-2): 45-55.
    16. Freiberg S., Zhu X. X. Polymer microspheres for controlled drug release. International journal of pharmaceutics, 2004, 282(1-2): 1-18.
    1.陈丽娟,王彤,彭必先.明胶中α、β和γ三种构象的全分析.感光科学与光化学, 1993, 11(4): 325-334.
    2. Hui Y. H.,徐生庚,裘爱泳,贝雷.油脂化学与工艺学. (第四卷).北京:中国轻工出版社, 2001, 6.
    3.李振纪,油茶. 1980:农业出版社.
    4.魏决,肖青.紫苏油成分的测定及开发利用. 1999.
    5.纪云,张晓红,郭荣.明胶和阳离子表面活性剂CTAB的相互作用.化学学报, 2004, 62(004): 345-350.
    6.赵国玺,表面活性剂物理化学. 1984:北京大学出版社.
    7.刘程,表面活性剂应用手册. 1992:化学工业出版社.
    8.牛金平,王军.新型表面活性剂的结构特点与物化性能.日用化学品科学, 2000, 23(002): 1-4.
    9.史京京,陈丽娟,王颖,彭必先,秦燕玲,田中田,王文俊,王军.胶冻强度与明胶α组份关系的研究.感光科学与光化学, 2002, 20(6): 462-467
    10.王颖,陈丽娟,彭必先.α1组分含量最高的明胶. 2001, 19(1): 35-38
    1. Zhai Y, Cui F Z. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2006, 291: 202~206.
    2. Bigi A, Boanini E, Panzavolta S, Roveri N. Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate. Biomacromolecules, 2000 1: 752~756.
    3. Chang M C, Ko C C, Douglas W H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials, 2003, 24: 2853~2862.
    4. Rhee S H, Lee J D, Tanaka J. . Nucleation of Hydroxyapatite Crystal through Chemical Interaction with Collagen. Communications of the American Ceramic Society, 2000, 83(11): 2890~2892.
    5. Mohamed K. R., Mostafa A. A. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosan-gelatin polymeric biocomposites. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2008, 28(7): 1087-1099.
    6. Li J. J., Yin Y. J., Yao F. L., Zhang L. L., Yao K. D. Effect of nano- and micro-hydroxyapatite/chitosan-gelatin network film on human gastric cancer cells. Materials Letters, 2008, 62(17-18): 3220-3223.
    7. Mobini S., Javadpour J., Hosseinalipour M., Ghazi-Khansari M., Khavandi A., Rezaie H. R. Synthesis and characterisation of gelatin-nano hydroxyapatite composite scaffolds for bone tissue engineering. Advances in Applied Ceramics, 2008, 107(1): 4-8.
    8. Narbat M. K. Preparation, structural and mechanical characterization of porous hydroxyapatite-gelatin composite scaffolds for bone tissue engineering. Proceedings of the Fifth IASTED International Conference on Biomedical Engineering, 2007: 452-457 468.
    9. Azami M., Orang F., Moztarzadeh F. Nanocomposite bone tissue-engineering scaffolds prepared from gelatin and hydroxyapatite using layer solvent casting and freeze-drying technique. 2006 International Conference on Biomedical and Pharmaceutical Engineering, Vols 1 and 2, 2006: 259-264,596.
    10. Matsumoto T., Okazaki M., Inoue M., Yamaguchi S., Kusunose T., Toyonaga T., Hamada Y., Takahashi J. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials, 2004, 25(17): 3807-3812.
    11. White A. A., Best S. M., Kinloch I. A. Hydroxyapatite-carbon nanotube composites for biomedical applications: a review. International Journal of Applied Ceramic Technology, 2007, 4(1): 1-13.
    12. Mizushima Y., Ikoma T., Tanaka J., Hoshi K., Ishihara T., Ogawa Y., Ueno A. Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. Journal of Controlled Release, 2006, 110(2): 260-265.
    13. Xu Q., Czernuszka J. T. Controlled release of amoxicillin from hydroxyapatite-coated poly (lactic-co-glycolic acid) microspheres. Journal of Controlled Release, 2008, 127(2): 146-153.
    14. Avés E. P., Estévez G. F., Sader M. S., Sierra J. C. G., Yurell J. C. L., Bastos I. N., Soares G. D. A. Hydroxyapatite coating by sol–gel on Ti–6Al–4V alloy as drug carrier. Journal of Materials Science: Materials in Medicine, 2009, 20(2): 543-547.
    15. Yang P., Quan Z., Li C., Kang X., Lian H., Lin J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials, 2008, 29(32): 4341-4347.
    16. Akao M., Aoki H., Kato K. Mechanical properties of sintered hydroxyapatite for prosthetic applications. Journal of Materials Science, 1981, 16(3): 809-812.
    17. Wang P. E., Chaki T. K. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. Journal of Materials Science: Materials in Medicine, 1993, 4(2): 150-158.
    18. Suchanek W., Yashima M., Kakihana M., Yoshimura M. Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: mechanical properties and microstructural evolution. Journal of the American Ceramic Society, 1997, 80(11): 2805-2813.
    19. Chu T. M. G., Orton D. G., Hollister S. J., Feinberg S. E., Halloran J. W. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials, 2002, 23(5): 1283-1293.
    20. Silva V. V., Lameiras F. S., Domingues R. Z. Microstructural and mechanical study of zirconia-hydroxyapatite(ZH) composite ceramics for biomedical applications. Composites Science and Technology, 2001, 61(2): 301-310.
    21. Woodard J. R., Hilldore A. J., Lan S. K., Park C. J., Morgan A. W., Eurell J. A. C., Clark S. G., Wheeler M. B., Jamison R. D., Wagoner Johnson A. J. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials, 2007, 28(1): 45-54.
    22. Abu Bakar M. S., Cheang P., Khor K. A. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Composites Science and Technology, 2003, 63(3-4): 421-425.
    23. Yunoki S., Ikoma T., Monkawa A., Ohta K., Kikuchi M., Sotome S., Shinomiya K., Tanaka J. Control of pore structure and mechanical property in hydroxyapatite/collagen composite using unidirectional ice growth. Materials Letters, 2006, 60(8): 999-1002.
    24. Chang M. C. Organic-inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution. Journal of Materials Science-Materials in Medicine, 2008, 19(11): 3411-3418.
    25. Tian K., Guan D. H., Wu P., Huang C. P., Niu L., Xian S. Q., Chen Y., Wang P., Qu Y. L., Ye Y. M., Wang T. T., Chen Z. Q. Controlled crystallization of tooth-like hydroxyapatite under gelatin monolayer. Bioceramics, Vol 19, Pts 1 and 2, 2007, 330-332: 663-666,1450.
    26. Fomin A. S., Barinov S. M., Ievlev V. M., Fadeeva I. V., Komlev V. S., Belonogov E. K., Turaeva T. L. Nanosized hydroxyapatite synthesized by precipitation in a gelatin solution. Doklady Chemistry, 2006, 411: 219-222.
    27. Roveri N, Falini G, Sidoti M C, Tampieri A, Landi E, Sandri M, Parma B. Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Materials Science and Engineering C, 2003, 23: 441~446.
    28. Kikuchi M, Ikoma T, Itoh S. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Composites Science and Technology 2004, 64: 819~825.
    29. Teng Shuhua, Chen Lijuan, Guo Yanchuan, Shi Jingjing Formation of nano-hydroxyapatite in gelatin droplets and the resulting porous composite microspheres.Journal of Inorganic Biochemistry, 2007, 101: 686~691.
    30. Ethirajan A., Ziener U., Chuvilin A., Kaiser U., Colfen H., Landfester K. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Advanced Functional Materials, 2008, 18(15): 2221-2227.
    31. Teng Shuhua , Shi Jingjing , Peng Bixian , Chen Lijuan The effect of alginate addition on the structure and morphology of hydroxyapatite/gelatin nanocomposites. Composites Science and Technology, 2006, 66: 1532~1538.
    32. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22: 1705~1711.
    33. Thomas V, Dean D R. , Jose M V. , Mathew B , Chowdhury S. , Vohra Y K. Nanostructured Biocomposite Scaffolds Based on Collagen Coelectrospun with Nanohydroxyapatite. Biomacromolecules, 2007, 8: 631~637.
    34. Li J. J., Chen Y. P., Yin Y. J., Yao F. L., Yao K. D. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials, 2007, 28(5): 81-790.
    35.郭玉明,贾潇凌.松质骨粘弹性性质的实验研究.中国生物医学工程学报, 2000, 19(003): 272-275.
    36.陈孟诗,李良.大鼠的骨生物力学指标选取及测试.生物医学工程学杂志, 2001, 18(004): 547-551.
    37.崔燎,陈槐卿,许碧连,刘钰瑜,吴铁,陈孟诗,李良.去卵巢大鼠椎骨组织形态计量学,生物力学特点及相关性研究.生物医学工程学杂志, 2004, 21(002): 178-183.
    38. Lawson A. C., Czernuszka J. T. Collagen-calcium phosphate composites. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1998, 212(6): 413-425.
    39. Mann S. Molecular recognition in biomineralization. Nature, 1988, 332(6160): 119-124.
    40. Berman A., Hanson J., Leiserowitz L., Koetzle T. F., Weiner S., Addadi L. Biological control of crystal texture: a widespread strategy for adapting crystal properties to function. Science, 1993, 259(5096): 776-779.
    41. Heuer A. H., Fink D. J., Laraia V. J., Arias J. L., Calvert P. D., Kendall K., Messing G. L., Blackwell J., Rieke P. C., Thompson D. H. Innovative materials processing strategies: a biomimetic approach. Science, 1992, 255(5048): 1098-1105.
    42.沃德A. G.,考茨A.,李文渊,明胶的科学与工艺学. 1982:轻工业出版社.
    1.汪国平,船舶涂料与涂装技术. 1998:化学工业出版社.
    2. Zentz F., Hellio C., Valla A., De La Broise D., Bremer G., Labia R. Antifouling activities of N-substituted imides: antimicrobial activities and inhibition of Mytilus edulis phenoloxidase. Marine Biotechnology, 2002, 4(4): 431-440.
    3. Schiff K., Diehl D., Valkirs A. Copper emissions from antifouling paint on recreational vessels. Marine Pollution Bulletin, 2004, 48(3-4): 371-377.
    4. Fischer K. J., Marine organism repellent covering for protection of underwater objects and method of applying same. 1993, Google Patents.
    5. Watts J. L., Anti-fouling coating composition containing capsaicin. 1995, Google Patents.
    6.陈容发.海洋环保辣素防污漆. 2002.
    7.张占平,齐育红,刘述锡,马永庆,刘红.船舶防污涂料与防污剂的研究进展.大连水产学院学报, 2006, 21(002): 175-179.
    8.郭虹,翟玉春,辛喆,徐馨阳.防污剂的研究进展.材料与冶金学报, 2006, 5(002): 157-160.
    9. Xu Q., Barrios C. A., Cutright T., Newby B. M. Z. Evaluation of toxicity of capsaicin and zosteric acid and their potential application as antifoulants. Environmental toxicology, 2005, 20(5): 467-474.
    10. Angarano M. B., McMahon R., Hawkins D., Schetz J. Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Biofouling, 2007, 23(5): 295-305.
    11. Qiu Y., Deng Z. W., Xu M., Li Q., Lin W. H. New A-nor steroids and their antifouling activity from the Chinese marine sponge Acanthella cavernosa. Steroids, 2008, 73(14): 1500-1504.
    12.成国祥,邢福保,杨炳兴,辣素类化合物微囊微球及其制备方法[P].
    13.王锦成,陈思浩,徐子成,胡燕华.辣椒素的纳米胶囊的合成及性能研究.化工新型材料, 2007, 35(002): 55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700