用户名: 密码: 验证码:
不同形貌TiO_2纳米材料的合成及其光电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Synthesis and Studies of Photovoltaic Properties of Titanium Dioxide Nanomaterials with Different Morphologies
  • 作者:王平
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2009
  • 导师:王德军
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2009-06-01
  • 答辩委员会主席:黄宗浩
摘要
TiO_2纳米材料作为一种重要的宽禁带半导体材料,由于其在太阳能转换,光催化,气体传感,以及制备光诱导亲疏水表面和光至变色器件等方面的应用,受到了各国科学家的广泛关注。为了满足上述应用的要求,发展合成不同形貌及尺寸的TiO_2纳米材料的方法是十分必要的。另外,大多数的应用本质上都是基于TiO_2纳米材料的光电过程,因此,深入了解其微观的光生电荷迁移行为对于提高基于这些材料制备的器件的性能是非常有益的。
     本论文发展了一种相对环保的反应体系,合成了三种形貌的TiO_2纳米材料:不同晶型(锐钛矿型,锐钛矿/金红石混晶,金红石型)的TiO_2一维纳米线,锐钛矿型TiO_2纳米晶(2 ~ 4 nm),以及金掺杂的单分散TiO_2微球(392 nm -587 nm可调),并系统的研究了这些材料的光电性质。研究发现,1.当TiO_2纳米线的晶型逐渐由锐钛矿向金红石转变时,纳米线的表面态密度逐渐减小,并且对于不同晶型的TiO_2纳米线来说,光生电子的迁移速率有着明显的差别。2.紫外光照射下,锐钛矿型TiO_2纳米晶在室温条件下表现出对氧气极高的气敏性质。3. Au掺杂的锐钛矿型TiO_2微球中,Au纳米颗粒同TiO_2具有较强的相互作用,并在紫外光和可见光照射下,Au纳米颗粒表现出完全不同的电学性质:可见光照射下,做为电子给体,将电子注入TiO_2中;紫外光照射下,做为电子受体,接收TiO_2中产生的电子。这些研究内容,为TiO_2纳米材料的应用提供了必要的实验依据和理论基础。
As a common wide-band gap semiconductor, Titanium dioxide (TiO_2) materials have been applied in many aspects, such as solar energy conversion, photodegradation of organic pollutants, and fabricating photovaltaic devices, et al. In the past few years, more and more new physical or chemical properties and applications of TiO_2 nanomaterials were observed and developed, as the continuous breakthroughs made in its preparation of different sizes and shapes. In addition to the well-known size confinement effect, TiO_2 nanomaterials were also found to have size, morphology and structure dependent optical and photoelectronic properties, meanwhile, we found that for all the applications of TiO_2 nanomaterials, such as photocatalyst, solar energy conversion and photovoltaic devices, their operating principles are all in fact correlated with the charge transfer properties in TiO_2 nanomaterials after its absorption of light. Thus, it is necessary to further understand the photo-induced charge transfer properties of TiO_2 nanomaterials of different morphologies, which is significantly important for its applications.
     Based on above analysis, in this thesis, we developed a new relatively environmentally friendly reaction system, in which the ethylene glycol (EG) was used to manipulate the hydrolysis rates of the titanium alkoxides, to synthesize TiO_2 based nanomaterials with different of morphologies, and further studied the photovoltaic properties of the as-synthesized TiO_2 nanomaterials through the Surface Photovoltage (SPV) and Surface Photocurrent (SPC) techniques. The information providing in this thesis should be beneficial for understanding the photocatalyst process and fabricating photovoltaic devices.
     The main contents are as follows:
     1. Synthesized TiO_2 one-dimensional nanowires with different types of crystalline phases via sol-gel method: Anatase, Anatase/Rutile mixed phase, and Rutile. Systematically studied the photovoltaic properties of these samples through the SPC, SPV and TPV techniques. The conclusions are as follows: 1. The surface of the anatase TiO_2 nanowires has more active sites, and the amount of the active sites gradually decrease as the change of the crystalline phase from anatase to rutile. 2. The mobility of the photo-induced electrons is significantly different for different types of TiO_2 nanowires, and found that the electrons move faster in anatase TiO_2 nanowires than that of rutile sample. The results should be beneficial for fabricating TiO_2 nanowires based photovoltaic devices.
     2. Developed a facile method to synthesis high-crystallinity anatase TiO_2 nanocrystals under mild conditions. Found that EG played the role to both control the hydrolysis and condensation rates of titanium isopropoxide, and H2O is the key reagent for the anatase formation, and the amount of H2O has been demonstrated to be an important parameter for the fast anatase phase formation. The simplicity (only three reagents are involved) and reproducibility of this method makes this route be possibly large-scaled. Besides, found that the surfactant used in the reaction system has significant effect on the photovoltaic properties of the nanocrystals. Meanwhile, it has been found that the nanocrystals exhibit the fast response to oxygen under the UV illumination at room temperature.
     3. Developed a facile method to synthesize monodisperse gold-doped titania spheres under high concentration of titanium precursor simply by introducing trace amount of CA into the reaction system, and the size of the spheres can be easily tuned between 392 and 587 nm through the changing of the amount of CA added. The detailed growth mechanism has been discussed where it was found that CA acts as the stabilizing agent in the reaction. Anatase titania spheres with gold nanodots (-7 nm) on its surface has been synthesized by the heating treatment. SPC and SPV investigations show that the gold nanodots have dual roles in the gold-doped anatase titania spheres: one is as the electron acceptor in the UV region, while the other is as the electron donor when it was illuminated by the visible light. TPV measurement indicates that the decay time of the injected plasmon-induced electrons is in the millisecond timescales and gradually increased as the increasing of the amount of gold doped. The information providing here should be beneficial for further understanding the charge transfer properties in the Au-TiO_2 system under the illumination of different wavelengths of light, synthesizing high efficient visible light catalysts and fabricating photovoltaic devices with higher performance.
引文
[1] PFAFF G. REYNDERS P. Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments [J]. Chem. Rev., 1999, 99: 1963-1982.
    [2] ZALLEN R. MORET M. P. The optical absorption edge of brookite TiO_2 [J]. Solid State Commun., 2006, 137 (3): 154-157.
    [3] YUAN S. CHEN W. HU S. Fabrication of TiO_2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine [J]. Mater. Sci. Eng. C, 2005, 25: 479-485.
    [4] FUJISHIMA A. HONDA K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238: 37-38.
    [5] O’REGAN B. GR?TZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films [J]. Nature, 1991, 353: 737-740.
    [6] NAZEERUDDIN M K. KAY A. RODICICIO I. HUMPHRY-BAKER R. MULLER E. LISKA P. VLACHOPOULOS N. GR?TZEL M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. Journal of the American Chemical Society, 1993, 115 (14): 6382- 6390.
    [7] FUJISHIMA A. HASHIMOTO K. WATANABE H. TiO_2 Photocatalysis, Fundamentals and Applications [M]. BKC, Inc.: Tokyo, Japan, 1999.
    [8] WANG R. HASHIMOTO K. FUJISHIMA A. CHIKUNI M. KOJIMA E. KITAMURA A. SHIMOHIGOSHI M. WATANABE T. Light-induced amphiphilic surfaces [J]. Nature, 1997, 388: 431-432.
    [9] WANG R. HASHIMOTO K. FUJISHIMA A. CHIKUNI M. KOJIMA E. KITAMURA A. SHIMOHIGOSHI M. WATANABE T. Photogeneration of Highly Amphiphilic TiO_2 Surfaces [J]. Adv. Mater. 1998, 10 (2): 135-138.
    [10] SUNADA K. KIKUCHI Y. HASHIMOTO K. FUJISHIMA A. Bactericidal and Detoxification Effects of TiO_2 Thin Film Photocatalysts [J]. Environ. Sci.Technol., 1998, 32 (5): 726-728.
    [11] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots. [J]. Science, 1996, 271: 933-937.
    [12] GUZELIAN A A. KATARI J E B. KADAVANICH A V. BANIN U. HAMAD K. JUBAN E. ALIVISATOS A P. WOLTERS R H. ARNOLD C C. HEATH J R. Synthesis of size-selected, surface-passivated InP nanocrystals [J]. Journal of Physical Chemistry, 1996, 100(17): 7212-7219.
    [13] KLEIN D L. ROTH R. LIM A K L. ALIVISATOS A P. MCEUEN P L. A single-electron transistor made from a cadmium selenide nanocrystal [J]. Nature, 1997, 389 (6652): 699-701.
    [14] BANIN U. LEE C J. GUZELIAN A A. KADAVANICH A V. ALIVISATOS A P. JASKOLSKI W. BRYANT G W. EFROS A L. ROSEN M. Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory [J]. Journal of Chemical Physics, 1998, 109 (6): 2306-2309.
    [15] PENG X G. WICKHAM J. ALIVISATOS A P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions [J]. Journal of the American Chemical Society, 1998, 120 (21): 5343-5344.
    [16] PENG X G. MANNA L. YANG W D. WICKHAM J. SCHER E. KADAVANICH A. ALIVISATOS A P. Shape control of CdSe nanocrystals [J]. Nature, 2000, 404 (6773): 59-61.
    [17] KONYA Z. PUNTES V F. KIRICSI I. ZHU J. ALIVISATOS P. SOMORJAI G A. Novel two-step synthesis of controlled size and shape platinum nanoparticles encapsulated in mesoporous silica [J] Catalysis Letters, 2002, 81 (3-4): 137-140.
    [18] MANNA L. MILLIRON D J. MEISEL A. SCHER E C. ALIVISATOS A P. Controlled growth of tetrapod-branched inorganic nanocrystals [J]. Nature Materials, 2003, 2 (6): 382-385.
    [19] BURDA C. CHEN X. NARAYANAN R. EL-SAYED M A. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chem. Rev., 2005, 105: 1025-1102.
    [20] WELLS A F. Structural Inorganic Chemistry [M]. Clarendon Press: Oxford, 1984.
    [21] TOMPSETT G A. BOWMAKER G A. COONEY R P. METSON J B. ROGERS K A. SEAKINS J M. The Raman spectrum of brookite, TiO_2 (Pbca, Z = 8) [J]. J. Raman Spectrosc., 1995, 26: 57-62.
    [22] SERPONE N. PILEZZETTI E. Photocatalysis: Fundamentals and Applications [M]. Wiley-Interscience: New York, 1989.
    [23] THOMPSON T L. YATES, JR. J T. Surface Science Studies of the Photoactivation of TiO_2-New Photochemical Processes [J]. Chem. Rev., 2006, 106: 4428-4453.
    [24] OSKAM G. NELLORE A. PENN R L. SEARSON P C. The Growth Kinetics of TiO_2 Nanoparticles from Titanium(IV) Alkoxide at High Water/Titanium Ratio [J]. J. Phys. Chem. B, 2003, 107 (8): 1734-1738.
    [25] KUZNETSOVA I N. BLASKOV V. STAMBOLOVA I. ZNAIDI L. KANAEV A. TiO_2 pure phase brookite with preferred orientation, synthesized as a spin-coated film [J]. Mater. Lett., 2005, 59 (29-30): 3820-3823.
    [26] LEE J H. YANG Y S. Effect of HCl concentration and reaction time on the change in the crystalline state of TiO_2 prepared from aqueous TiCl4 solution by precipitation [J]. J. Eur. Ceram. Soc., 2005, 25 (16): 3573-3578.
    [27] CHEMSEDDINE A. MORITZ T. Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization [J]. Eur. J. Inorg. Chem., 1999, 235-245.
    [28] POTTIER A. CHANEAC C. TRONC E. MAZEROLLES L. JOLIVET J P. Synthesis of brookite TiO_2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media [J]. J. Mater. Chem., 2001, 11: 1116-1121.
    [29] POTTIER A. CASSAIGNON S. CHANEAC C. VILLAIN F. TRONC E. JOLIVET J P. Size tailoring of TiO_2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy [J]. J. Mater. Chem. 2003, 13: 877-822.
    [30] SUGIMOTO T. ZHOU X. Synthesis of Uniform Anatase TiO_2 Nanoparticles by the Gel–Sol Method: 2. Adsorption of OH? Ions to Ti(OH)4 Gel and TiO_2 Particles [J]. J. Colloid Interface Sci. 2002, 252 (2): 347-353.
    [31] SUGIMOTO T. ZHOU X. MURAMATSU A. Synthesis of uniform anatase TiO_2 nanoparticles by gel–sol method: 4. Shape control [J]. J. Colloid Interface Sci.2003, 259 (1): 53-61.
    [32] UEKAWA N. KAJIWARA J. KAKEGAWA K. SASAKI Y. Low Temperature Synthesis and Characterization of Porous Anatase TiO_2 Nanoparticles [J]. J. Colloid Interface Sci. 2002, 250 (2): 285-290.
    [33] ZHANG H. BANFIELD J F. Thermodynamic analysis of phase stability of nanocrystalline titania [J]. J. Mater. Chem. 1998, 8: 2073-2076.
    [34] ZHANG H. FINNEGAN M. BANFIELD J F. Preparing Single-Phase Nanocrystalline Anatase from Amorphous Titania with Particle Sizes Tailored by Temperature [J]. Nano Lett. 2001, 1 (2): 81-85.
    [35] ZHANG H. BANFIELD J F. Size Dependence of the Kinetic Rate Constant for Phase Transformation in TiO_2 Nanoparticles Chem. Mater. 2005, 17 (13): 3421-3425.
    [36] BARBE C J. ARENDSE F. COMTE P. JIROUSEK M. LENZMANN F. SHKLOVER V. GR?TZEL M. Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications [J]. J. Am. Ceram. Soc., 1997, 80 (12): 3157-3171.
    [37] LIU P. BANDARA J. LIN Y. ELGIN D. ALLARD L F. SUN Y P. Formation of Nanocrystalline Titanium Dioxide in Perfluorinated Ionomer Membrane [J]. Langmuir, 2002, 18 (26): 10398-10401.
    [38] LI Y. LEE N H. HWANG D S. SONG J S. LEE E G. KIM S J. Synthesis and Characterization of Nano Titania Powder with High Photoactivity for Gas-Phase Photo-oxidation of Benzene from TiOCl2 Aqueous Solution at Low Temperature [J]. Langmuir, 2004, 20 (25): 10838-10844.
    [39] LIN J. LIN Y. LIU P. MEZIANI M J. ALLARD L F. SUN Y P. Hot-Fluid Annealing for Crystalline Titanium Dioxide Nanoparticles in Stable Suspension [J]. J. Am. Chem. Soc., 2002, 124 (38): 11514-11518.
    [40] LIM K T. HWANG H S. RYOO W. JOHNSTON K P. Synthesis of TiO_2 Nanoparticles Utilizing Hydrated Reverse Micelles in CO2 [J]. Langmuir, 2004, 20 (6): 2466-2471.
    [41] ZHANG D. QI L. MA J. CHENG H. Formation of crystalline nanosized titania in reverse micelles at room temperature [J]. J. Mater. Chem., 2002, 12: 3677-3680.
    [42] HONG S S. LEE M S. PARK S S. LEE G D. Synthesis of nanosized TiO_2/SiO2particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol [J]. Catal. Today, 2003, 87: 99-105.
    [43] KIM K D. KIM S H. KIM H T. Applying the Taguchi method to the optimization for the synthesis of TiO_2 nanoparticles by hydrolysis of TEOT in micelles [J]. Colloids Surf. A, 2005, 254: 99-105.
    [44] TRENTLER T J. DENLER T E. BERTONE J F. AGRAWAL A. COLVIN V L. Synthesis of TiO_2 Nanocrystals by Nonhydrolytic Solution-Based Reactions [J]. J. Am. Chem. Soc., 1999, 121 (7): 1613-1614.
    [45] COZZOLI P D. KORNOWSKI A. WELLER H. Low-Temperature Synthesis of Soluble and Processable Organic-Capped Anatase TiO_2 Nanorods [J]. J. Am. Chem. Soc., 2003, 125: 14539-14548.
    [46] COZZOLI P D. COMPARELLI R. FANIZZA E. CURRI M L. AGOSTIANO A. LAUB D. Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO_2 Nanorods: A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution [J]. J. Am. Chem. Soc., 2004, 126: 3868-3879.
    [47] TANG J. REDL F. ZHU Y. SIEGRIST T. BRUS L E. STEIGERWALD M L. An Organometallic Synthesis of TiO_2 Nanoparticles [J]. Nano Lett., 2005, 5: 543-548.
    [48] ARNAL P. CORRIU R J P. LECLERCQ D. MUTIN P H. VIOUX A. Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol–gel methods [J]. J. Mater. Chem., 1996, 6: 1925-1932.
    [49] JUN Y W. CASULA M F. SIM J H. KIM S Y. CHEON J. ALIVISATOS A P. Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO_2 Nanocrystals [J]. J. Am. Chem. Soc. 2003, 125: 15981-15985.
    [50] JOO J. KWON S G. YU T. CHO M. LEE J. YOON J. HYEON T. Large-Scale Synthesis of TiO_2 Nanorods via Nonhydrolytic Sol?Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli [J]. J. Phys. Chem. B 2005, 109: 15297-15302.
    [51] ZHANG Z. ZHONG X. LIU S. LI D. HAN M. Aminolysis Route to Monodisperse Titania Nanorods with Tunable Aspect Ratio [J]. Angew. Chem., Int. Ed. 2005, 44: 3466-3470.
    [52] YANG J. MEI S. FERREIRA J M F. Hydrothermal Synthesis of TiO_2 Nanopowders from Tetraalkylammonium Hydroxide Peptized Sols [J]. Mater. Sci. Eng. C, 2001, 15: 183-185.
    [53] CHAE S Y. PARK M K. LEE S K. KIM T Y. KIM S K. LEE W I. Preparation of Size-Controlled TiO_2 Nanoparticles and Derivation of Optically Transparent Photocatalytic Films [J]. Chem. Mater., 2003, 15: 3326-3331.
    [54] WEN B. LIU C. LIU Y. Bamboo-Shaped Ag-Doped TiO_2 Nanowires with Heterojunctions [J] Inorg. Chem., 2005, 44: 6503-6505.
    [55] BAVYKIN D V. FRIEDRICH J M. WALSH F C. Protonated Titanates and TiO_2 Nanostructured Materials: Synthesis, Properties, and Applications [J]. Adv. Mater., 2006, 18: 2807-2824.
    [56] WEI M. KONISHI Y. ZHOU H. SUGIHARA H. ARAKAWA H. A simple method to synthesize nanowires titanium dioxide from layered titanate particles [J]. Chem. Phys. Lett., 2004, 400: 231-234.
    [57] LI X L. PENG Q. YI J X. WANG X. LI Y D. Near Monodisperse TiO_2 Nanoparticles and Nanorods [J]. Chem. Eur. J., 2006, 12: 2383-2391.
    [58] ZHANG Y X. LI G H. JIN Y X. ZHANG Y. ZHANG J. ZHANG L D. Hydrothermal synthesis and photoluminescence of TiO_2 nanowires [J]. Chem. Phys. Lett., 2002, 365, 300-304.
    [59] KASUGA T. HIRAMATSU M. HOSON A. SEKINO T. NIIHARA K. Formation of Titanium Oxide Nanotube [J]. Langmuir, 1998, 14: 3160-3163.
    [60] KASUGA T. HIRAMATSU M. HOSON A. SEKINO T. NIIHARA K. Titania Nanotubes Prepared by Chemical Processing [J]. Adv. Mater., 1999, 11: 1307-1311.
    [61] DU G H. CHEN Q. CHE R C. YUAN Z Y. PENG L M. Preparation and Structure Analysis of Titanium Oxide Nanotubes [J]. Appl. Phys. Lett., 2001, 79: 3702-3704.
    [62] WANG Y Q. HU G Q. DUAN X F. SUN H L. XUE Q K. Microstructure and formation mechanism of titanium dioxide nanotubes [J]. Chem. Phys. Lett., 2002, 365: 427-431.
    [63] YAO B D. CHAN Y F. ZHANG X Y. ZHANG W F. YANG Z Y. WANG N. Formation mechanism of TiO_2 nanotubes [J]. Appl. Phys. Lett., 2003, 82,281-283.
    [64] BAVYKIN D V. PARMON V N. LAPKIN A A. WALSH F C. The effect of hydrothermal conditions on the mesoporous structure of TiO_2 nanotubes [J]. J. Mater. Chem., 2004, 14: 3370-3377.
    [65] LI H. BIAN Z. ZHU J. ZHANG D. LI G. HUO Y. LI H. LU Y. Mesoporous Titania Spheres with Tunable Chamber Stucture and Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc., 2007, 129: 8406-8407.
    [66] FENG X. SHANKAR K. VARGHESE O K. PAULOSE M. LATEMPA T J. GRIMES C A. Vertically Aligned Single Crystal TiO_2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications [J]. Nano Lett., 2008, 8: 3781-3786.
    [67] GONG D. GRIMES C A. VARGHESE O K. HU W C. SINGH R S. CHEN Z. DICKEY E C. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J. Mater. Res., 2001, 16: 3331-3334.
    [68] CAI Q Y. PAULOSE M. VARGHESE O K. GRIMES C A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J]. J. Mater. Res., 2005, 20: 230-236.
    [69] MACAK J M. TSUCHIYA H. SCHMUKI P. High-Aspect-Ratio TiO_2 Nanotubes by Anodization of Titanium [J]. Angew. Chem., Int. Ed., 2005, 44: 2100-2102.
    [70] PAULOSE M. SHANKAR K. YORIYA S. PRAKASAM H E. VARGHESE O K. MOR G K. LATEMPA T A. FITZGERALD A. GRIMES C A. Anodic Growth of Highly Ordered TiO_2 Nanotube Arrays to 134μm in Length [J]. J. Phys. Chem. B, 2006, 110: 16179-16184.
    [71] SHANKAR K. MOR G K. FITZGERALD A. GRIMES C A. Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO_2 Nanotube Arrays in Formamide?Water Mixtures [J]. J. Phys. Chem. C, 2007, 111: 21-26.
    [72] GRIMES C A. Synthesis and application of highly ordered arrays of TiO_2 nanotubes [J]. J. Mater. Chem., 2007, 17: 1451-1457.
    [73] MOR G K. VARGHESE O K. PAULOSE M SHANKAR K. GRIMES C A. A review on highly ordered, vertically oriented TiO_2 nanotube arrays: Fabrication, material properties, and solar energy applications [J]. Sol. Energy Mater. Sol. Cells, 2006, 90: 2011-2075.
    [74] WU J M. ZHANG T W. ZENG Y W. HAYAKAWA S. TSURU K. OSAKA A. Large-Scale Preparation of Ordered Titania Nanorods with Enhanced Photocatalytic Activity [J] Langmuir, 2005, 21: 6995-7002.
    [75] WU J M. HAYAKAWA S. TSURU K. OSAKA A. Nanocrystalline Titania Made from Interactions of Ti with Hydrogen Peroxide Solutions Containing Tantalum Chloride [J] Cryst. Growth Des. 2002, 2: 147-149.
    [76] WU J M. ZHANG T W. Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure [J]. J. Photochem. Photobiol. A, 2004, 162: 171-177.
    [77] WU J J. YU C C. Aligned TiO_2 Nanorods and Nanowalls [J]. J. Phys. Chem. B, 2004, 108: 3377-3379.
    [78] WU J M. SHIH H C. WU W T. Electron field emission from single crystalline TiO_2 nanowires prepared by thermal evaporation [J]. Chem. Phys. Lett., 2005, 413: 490-494.
    [79] LEI Y. ZHANG L D. FAN J C. Fabrication, characterization and Raman study of TiO_2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3 [J]. Chem. Phys. Lett., 2001, 338: 231-236.
    [80] LIU S. HUANG K. Straightforward fabrication of highly ordered TiO_2 nanowire arrays in AAM on aluminum substrate [J] Sol. Energy Mater. Sol. Cells, 2004, 85: 125-131.
    [81] HUANG W. TANG X. WANG Y. KOLTYPIN Y. GEDANKEN A. Selective synthesis of anatase and rutile via ultrasound irradiation [J]. Chem. Commun., 2000, 1415-1416.
    [82] YU J C. ZHANG L. YU J. Direct Sonochemical Preparation and Characterization of Highly Active Mesoporous TiO_2 with a Bicrystalline Framework [J]. Chem. Mater., 2002, 14: 4647-4653.
    [83] CORRADI A B. BONDIOLI F. FOCHER B. FERRARI A M. GRIPPO C. MARIANI E. VILLA C. Conventional and Microwave-Hydrothermal Synthesis of TiO_2 Nanopowders [J]. J. Am. Ceram. Soc., 2005, 88: 2639-2641.
    [84] HOLLAND B T. BLANFORD C. STEIN A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids [J]. Science, 1998, 281: 538-540.
    [85] HOLLAND B T. BLANFORD C F. DO T. STEIN A. Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites [J]. Chem. Mater., 1999, 11: 795-805.
    [86] NISHIMURA S. ABRAMS N. LEWIS B A. HALAOUI L I. MALLOUK T E. BENKSTEIN K D. VAN DE LAGEMAAT J. FRANK A J. Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals [J]. J. Am. Chem. Soc., 2003, 125: 6306-6310.
    [87] DONG W. BONGARD H J. MARLOW F. New Type of Inverse Opals: Titania With Skeleton Structure [J]. Chem. Mater., 2003, 15: 568-574.
    [88] WANG X D. GRAUGNARD E. KING J S. WANG Z L. SUMMERS C J. Large-Scale Fabrication of Ordered Nanobowl Arrays [J]. Nano Lett., 2004, 4: 2223-2226.
    [89] WANG X. NEFF C. GRAUGNARD E. DING Y. KING J S. PRANGER L A. TANNENBAUM R. WANG Z L. SUMMERS C J. Photonic Crystals Fabricated Using Patterned Nanorod Arrays [J]. Adv. Mater., 2005, 17: 2103-2106.
    [90] JIANG X. HERRICKS T. XIA Y. Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization [J]. Adv. Mater., 2003, 15: 1205-1209.
    [91] RICHEL A. JOHNSON N P. MCCOMB D W. Observation of Bragg reflection in photonic crystals synthesized from air spheres in a titania matrix [J]. Appl. Phys. Lett., 2000, 76: 1816-1818.
    [92] GU Z Z. FUJISHIMA A. SATO O. Patterning of a Colloidal Crystal Film on a Modified Hydrophilic and Hydrophobic Surface [J]. Angew. Chem. Int. Ed., 2002, 41: 2067-2070.
    [93] SIRGHI L. AOKI T. HATANAKA Y. Friction Force Microscopy Study of the Hydrophilicity of TiO_2 Thin Films Deposited by Radio Frequency Magnetron Sputtering [J]. Surf. Rev. Lett., 2003, 10: 345-349.
    [94] BOZZI A. YURANOVA T. KIWI J. Self-cleaning of wool-polyamide and polyester textiles by TiO_2-rutile modification under daylight irradiation at ambient temperature [J]. J. Photochem. Photobiol. A, 2005, 172: 27-34.
    [95] FENG X. ZHAI J. JIANG L. The Fabrication and Switchable Superhydrophobicity of TiO_2 Nanorod Films [J]. Angew. Chem. Int. Ed., 2005, 44: 5115-5118.
    [96] NAKAJIMA A. HASHIMOTO K. WATANABE T. TAKAI K. YAMAUCHI G. FUJISHIMA A. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties [J]. Langmuir, 2000, 16: 7044-7047.
    [97] MIYAZAKI H. HYODO T. SHIMIZU Y. EGASHIRA M. Hydrogen-sensing properties of anodically oxidized TiO_2 film sensors: Effects of preparation and pretreatment conditions [J]. Sens. Actuators B, 2005, 108: 467-472.
    [98] Tokudome H. Yamada Y. Sonezaki S. Ishikawa H. Bekki M. Kanehira K. Miyauchi M. Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO_2 electrode [J]. Appl. Phys. Lett., 2005, 87: 213901.
    [99] Linsebigler A L. Lu G. Yates J T. Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results [J]. Chem. Rev., 1995, 95 (3): 735-758.
    [100] WANG C C. ZHANG Z. YING J Y. Photocatalytic decomposition of halogenated organics over nanocrystalline titania [J]. Nanostruct. Mater., 1997, 9: 583-586.
    [101] PENG T. ZHAO D. DAI K. SHI W. HIRAO K. Synthesis of Titanium Dioxide Nanoparticles with Mesoporous Anatase Wall and High Photocatalytic Activity [J]. J. Phys. Chem. B, 2005, 109: 4947-4952.
    [102] ASAHI R. MORIKAWA T. OHWAKI T. AOKI K. TAGA Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science 2001, 293: 269-271.
    [103] IRIE H. WATANABE Y. HASHIMOTO K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_2-xNx Powders [J]. J. Phys. Chem. B, 2003, 107: 5483-5486.
    [104] HONG X. WANG Z. CAI W. LU F. ZHANG J. YANG Y. MA N. LIU Y. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide [J]. Chem. Mater., 2005, 17 (6): 1548-1552.
    [105] OHNO T. AKIYOSHI M. UMEBAYASHI T. ASAI K. MITSUI T. MATSUMURA M. Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal. A, 2004, 265:115-121.
    [106] JAKOB M. LEVANON H. KAMAT P V. Charge Distribution between UV-Irradiated TiO_2 and Gold Nanoparticles: Determination of Shift in the Fermi Level [J]. Nano Letters, 2003, 3 (3): 353-358.
    [107] SUBRAMANIAN V. WOLF E E. KAMAT P V. Catalysis with TiO_2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration [J]. J. Am. Chem. Soc., 2004, 126 (15): 4943–4950.
    [108] HIRAKAWA T. KAMAT P V. Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO_2 Clusters [J]. Langmuir, 2004, 20 (14): 5645-5647.
    [109] HIRAKAWA T. KAMAT P V. Charge Separation and Catalytic Activity of Ag@TiO_2 Core?Shell Composite Clusters under UV?Irradiation [J]. J. Am. Chem. Soc., 2005, 127 (11): 3928-3934.
    [110] GR?TZEL M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photochem. Photobiol. A, 2004, 164: 3-14.
    [111] MOR G K. SHANKAR K. PAULOSE M. VARGHESE O K. GRIMES C A. Use of Highly-Ordered TiO_2 Nanotube Arrays in Dye-Sensitized Solar Cells [J]. Nano Lett., 2006, 6 (2): 215-218.
    [112] KUDO A. Photocatalyst Materials for Water Splitting [J]. Catal. Surv. Asia 2003, 7: 31-38.
    [113] Mor G K. Shankar K. Paulose M. Varghese O K. Grimes C A. Enhanced Photocleavage of Water Using Titania Nanotube Arrays [J]. Nano Lett., 2005, 5: 191-195.
    [114] MOR G K. VARGHESE O K. GRIMES C A. CARVALHO M A. PISHKO M V. A room-temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination [J]. J. Mater. Res., 2004, 19: 628-634.
    [115] LI M. CHEN Y. An investigation of response time of TiO_2 thin-film oxygen sensors [J]. Sens. Actuators B, 1996, 32: 83-85.
    [116] RUIZ A M. CORNET A. SHIMANOE K. MORANTE J R. YAMAZOE N. Transition metals (Co, Cu) as additives on hydrothermally treated TiO_2 for gas sensing [J]. Sens. Actuators B, 2005, 109: 7-12.
    [117] COMINI E. FAGLIA G. SBERVEGLIERI G. LI Y X. WLODARSKI W. GHANTASALA M K. Sensitivity enhancement towards ethanol and methanol of TiO_2 films doped with Pt and Nb [J]. Sens. Actuators B, 2000, 64: 169-174.
    [118] BENKSTEIN K D. SEMANCIK S. Mesoporous nanoparticle TiO_2 thin films for conductometric gas sensing on microhotplate platforms [J]. Sens. Actuators B, 2006, 113: 445-453.
    [119] LIU Z. SUN D D. GUO P. LECKIE J O. An Efficient Bicomponent TiO_2/SnO2 Nanofiber Photocatalyst Fabricated by Electrospinning with a Side-by-Side Dual Spinneret Method [J]. Nano Lett., 2007, 7 (4): 1081-1085.
    [120] CHEN H. CHEN S. QUAN X. YU H. ZHAO H. ZHANG Y. Fabrication of TiO_2-Pt Coaxial Nanotube Array Schottky Structures for Enhanced Photocatalytic Degradation of Phenol in Aqueous Solution [J]. J. Phys. Chem. C, 2008, 112: 9285–9290.
    [1] BOCKRATH M. COBDEN D H. MCEUEN P L. CHOPRA N G. ZETTL A. THESS A. SMALLEY R E. Single-Electron Transport in Ropes of Carbon Nanotubes. [J]. Science, 1997, 275: 1922-1925.
    [2] LIEBER C M. One-Dimensional Nanostructures: Chemistry, Physics & Applications. [J]. Solid State Commun., 1998, 107: 607-616.
    [3] TANS S J. DEVORET M H. DAI H. THESS A. SMALLEY R E. GEERLIGS L J. DEKKER C. Individual Single-Wall Carbon Nanotubes as Quantum Wires. [J]. Nature, 1997, 386: 474-477.
    [4] TANS S J. VERSCHUEREN A R M. DEKKER C. Room-Temperature Transistor Based on a Single Carbon Nanotube. [J]. Nature, 1998, 393: 49-52.
    [5] LIEBER C M. MORALES A M. SHEEHAN P E. WONG E W. YANG P. One-Dimensional Nanostructures: Rational Synthesis, Novel Properties and Applications. [M]. In Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale; Welch Foundation: Houston, 1997.
    [6] YANG P. LIEBER C M. Nanorod-Superconductor Composites: A Pathway to High Critical Current Density Materials. [J]. Science, 1996, 273: 1836-1840.
    [7] YANG P. LIEBER C M. Columnar Defect Formation in Nanorod/Tl2Ba2Ca2Cu3Oz Superconducting Composites. [J]. Appl. Phys. Lett., 1997, 70: 3158-3160.
    [8] YANG P. LIEBER C M. Nanostructured High-Temperature Superconductors: Creation of Strong-Pinning Columnar Defects in Nanorod/Superconductor Composites. [J]. J. Mater. Res., 1997, 12: 2981-2996.
    [9] DAI H. HAFNER J H. RINZLER A G. COLBERT D T. SMALLEY R E. Nanotubes as Nanoprobes in Scanning Probe Microscopy. [J]. Nature, 1996, 384: 147.
    [10] WONG S S. HARPER J D. LANSBURY P T. LIEBER C M. Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems. [J]. J. Am. Chem.Soc., 1998, 120: 603-604.
    [11] WONG S S. JOSELEVICH E. WOOLLEY A T. CHEUNG C. LIEBER C M. Covalently Functionalized Nanotubes as Nanometer Probes for Chemistry and Biology. [J]. Nature, 1998, 394: 52-55.
    [12] WONG S S. WOOLLEY A T. JOSELEVICH E. CHEUNG C. LIEBER C M. Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy. [J]. J. Am. Chem. Soc., 1998, 120: 8557-8558.
    [13] WONG S S. WOOLLEY A T. ODOM T W. HUANG J-L. KIM P. VEZENOV D V. LIEBER C M. Single-Walled Carbon Nanotube Probes for High-Resolution Nanostructure Imaging. [J]. Appl. Phys. Lett., 1998, 73: 3465-3467.
    [14] HUANG M H. MAO S. FEICK H. YAN H. WU Y. KIND H. WEBER E. RUSSO R. YANG P. Room-Temperature Ultraviolet Nanowire Nanolasers [J]. Science, 2001, 292: 1897-1899.
    [15] YAN H. HE R. JOHNSON J. LAW M. SAYKALLY R J. YANG P. Dendritic Nanowire Ultraviolet Laser Array [J]. J. Am. Chem. Soc., 2003, 125 (16): 4728-4729.
    [16] VAN VUGT L K. RüHLE S. VANMAEKELBERGH D. Phase-Correlated Nondirectional Laser Emission from the End Facets of a ZnO Nanowire [J]. Nano Lett., 2006, 6 (12): 2707-2711.
    [17] STRATAKIS E. MISRA N. SPANAKIS E. HWANG D J. GRIGOROPOULOS C P. FOTAKIS C. TZANETAKIS P. Imaging Dielectric Properties of Si Nanowire Oxide with Conductive Atomic Force Microscopy Complemented with Femtosecond Laser Illumination [J]. Nano Lett., 2008, 8 (7): 1949-1953.
    [18] NG H T. HAN J. YAMADA T. NGUYEN P. CHEN Y P. MEYYAPPAN M. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor [J]. Nano Lett., 2004, 4 (7): 1247-1252.
    [19] PATOLSKY F. TIMKO B P. YU G. FANG Y. GREYTAK A B. ZHENG G. LIEBER C M. Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays [J]. Science, 2006, 313: 1100-1104.
    [20] LIND E. PERSSON A I. SAMUELSON L. WERNERSSON L-E. Improved Subthreshold Slope in an InAs Nanowire Heterostructure Field-Effect Transistor[J]. Nano Lett., 2006, 6 (9): 1842-1846.
    [21] WANG X. ZHOU J. SONG J. LIU J. XU N. WANG Z L. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire [J]. Nano Lett., 2006, 6 (12): 2768-2772.
    [22] KUANG Q. LAO C. WANG Z L. XIE Z. ZHENG L. High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire [J]. J. Am. Chem. Soc., 2007, 129 (19): 6070-6071.
    [23] WANG B. ZHU L F. YANG Y H. XU N S. YANG G W. Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen [J]. J. Phys. Chem. C, 2008, 112 (17): 6643-6647.
    [24] LAKSHMI B B. DORHOUT P K. MARTIN C R. Sol?Gel Template Synthesis of Semiconductor Nanostructures [J]. Chem. Mater., 1997, 9 (3): 857-862.
    [25] Li D. Xia Y. Fabrication of Titania Nanofibers by Electrospinning [J]. Nano Letters, 2003, 3 (4): 555-560.
    [26] KOBAYASHI S. HANABUSA K. HAMASAKI N. KIMURA M. SHIRAI H. SHINKAI S. Preparation of TiO_2 Hollow-Fibers Using Supramolecular Assemblies [J]. Chem. Mater., 2000, 12 (6): 1523-1525.
    [27] BAIKIE I D. Operation manual of the SKP Kelvin probe system, KP Technology Ltd, 2004, Manual Version SKP KP 4.3.
    [28] KRONIK L. SHAPIRA Y. Surface photovoltage phenomena theory, experiment, and applications [J]. Surf. Sci. Rep., 1999, 37: 1-206.
    [29] SCHUSTER N A. A Phase-Sensitive Detector Circuit Having High Balance Stability [J]. Rev. Sci. Instrum., 1951, 22: 254.
    [30] MORRISON S R. Changes of Surface Conductivity of Germanium with Ambient [J]. J. Phys. Chem., 1953, 57: 860-863.
    [31] STEINRISSER F. HETRICK R E. Electron Beam Technique for Measuring Microvolt Changes in Contact Potential [J]. Rev. Sci. Instrum., 1971, 42: 304.
    [32] NAKHMANSON R S. Frequency dependence of the photo-EMF of strongly inverted Ge and Si MIS structures-1. Theory [J]. Solid State Electron., 1975, 18: 617.
    [33] JOHNSON E O. Measurement of Minority Carrier Lifetimes with the Surface Photovoltage [J]. Jornal of Applied Physics, 1957, 28(11): 1349-1353.
    [34] HLáVKA J. ?VEHLA R. Measurement of fast surface photovoltage relaxation [J]. Review of Scientific Instruments, 1996, 67(7): 2588-2589.
    [35] LEE C H. YU G. MOSES D. HEEGER A J. SRDANOV V I. Nonlinear transient photovoltaic response in Al/C60/Au devices: Control of polarity with optical bias [J]. Applied Physics Letters, 1994, 65(6): 664-666.
    [36] PAN Y L. CHEN L B. WANG Y. ZHAO Y Y. LI F M. WAGIKI A. YAMASHITA M. TAKO T. Transient photovoltaic proterties in Al /tin–phthalocyanine /indium -tin-oxide sandwich cell [J]. Applied Physics Letters, 1996, 68(10): 1314-1316.
    [37] MAHRON B. BOSCHLOO G. HAGFELDT A. DLOCZIK L. DITTRICH TH. Photovoltage study of charge injection from dye molecules into transparent hole and electron conductors [J]. Applied Physics Letters, 2004, 84(26): 5455-5457.
    [38] DUZHKO V. DITTRICH TH. KAMENEV B. TIMOSHENKO V YU. BRUTTING W. Diffusion photovoltage in poly (p-phenylenevinylene) [J]. Jornal of Applied Physics, 2001, 89(8): 4410-4412.
    [39] DITTRICH TH. DUZHKO V. Photovoltage in Free-Standing Mesoporous Silicon Layers [J]. Physica Status Solidi A: Applied Research 2003, 197(1): 107-112.
    [40] DITTRICH TH. DUZHKO V. KOCH F. KYTIN V. RAPPICH J. Trap-limited photovoltage in ultrathin metal oxide layers [J]. Physical Review B, 2002, 65(15): 155319.1-155319.5.
    [41] JIANG X. WANG Y. HERRICKSB T. XIA Y. Ethylene glycol-mediated synthesis of metal oxide nanowires [J]. J. Mater. Chem., 2004, 14: 695-703.
    [42] CULLITY B D. Elements of X-Ray of Diffractions [M]. Addition-Wesley, Reading MA, 1978,102.
    [1] O’REGAN B. GRATZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films [J]. Nature, 1991, 353: 737-740.
    [2] HAGFELDT A. GRATZEL M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev., 1995, 95: 49-68.
    [3] TENNAKONE K. SENADEERA G K R. PERERA V P S. KOTTEGODA I R M. DE SILVA L A A. Dye-Sensitized Photoelectrochemical Cells Based on Porous SnO2/ZnO Composite and TiO_2 Films with a Polymer Electrolyte [J]. Chem. Mater., 1999, 11: 2474-2477.
    [4] KOKUBO H. DING B. NAKA T. TSUCHIHIRA H. SHIRATORI S. Multi-core cable-like TiO_2 nanofibrous membranes for dye-sensitized solar cells [J]. Nanotechnology 2007, 18: 165604.
    [5] ADACHI M. MURATA Y. TAKAO J. JIU J. SAKAMOTO M. WANG F. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO_2 Nanowires Made by the“Oriented Attachment”Mechanism [J]. J. Am. Chem. Soc., 2004, 126: 14943-14949.
    [6] JANG S R. LEE C. CHOI H. KO J J. LEE J. VITTAL R. KIM K J. Oligophenylenevinylene-Functionalized Ru(II)-bipyridine Sensitizers for Efficient Dye-Sensitized Nanocrystalline TiO_2 Solar Cells [J]. Chem. Mater., 2006, 18: 5604-5608.
    [7] MOR G K. SHANKAR K. PAULOSE M. VARGHESE O K. GRIMES C A. Use of Highly-Ordered TiO_2 Nanotube Arrays in Dye-Sensitized Solar Cells [J]. Nano Lett., 2006, 6: 215-218.
    [8] HUANG M. TSO E. DATYE A K. Removal of Silver in Photographic Processing Waste by TiO_2-Based Photocatalysis [J]. Environ. Sci. Technol., 1996, 30: 3084-3088.
    [9] SAWUNYAMA P. FUJISHIMA A. HASHIMOTO K. Langmuir, 1999, 15: 3551-3556.
    [10] CAO Y. ZHANG X. YANG W. DU H. BAI Y. LI T. YAO J. A BicomponentTiO_2/SnO2 Particulate Film for Photocatalysis [J]. Chem. Mater. 2000, 12: 3445-3448.
    [11] SAKTHIVEL S. KISCH H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide [J]. Angew. Chem., Int. Ed., 2003, 42: 4908-4911.
    [12] SHARMA R K. BHATNAGAR M C. SHARMA G L. Mechanism in Nb doped titania oxygen gas sensor [J]. Sens. Actuators, B: Chem, 1998, 46: 194-201.
    [13] WU N. WANG S. RUSAKOVA I A. Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides [J]. Science, 1999, 285: 1375-1377.
    [14] DU X. WANG Y. MU Y. GUI L. WANG P. TANG Y. A New Highly Selective H2 Sensor Based on TiO_2/PtO?Pt Dual-Layer Films [J]. Chem. Mater., 2002, 14: 3953-3957.
    [15] LIU S. CHEN A. Coadsorption of Horseradish Peroxidase with Thionine on TiO_2 Nanotubes for Biosensing [J]. Langmuir, 2005, 21: 8409-8431.
    [16] WANG G. WANG Q. LU W. LI J. Photoelectrochemical Study on Charge Transfer Properties of TiO_2?B Nanowires with an Application as Humidity Sensors [J]. J. Phys. Chem. B 2006, 110: 22029-22034.
    [17] IUCHI K I. OHKO Y. TATSUMA T. FUJISHIMA A. Cathode-Separated TiO_2 Photocatalysts Applicable to a Photochromic Device Responsive to Backside Illumination [J]. Chem. Mater., 2004, 16: 1165-1167.
    [18] NAOI K. OHKO Y. TATSUMA T. TiO_2 Films Loaded with Silver Nanoparticles: Control of Multicolor Photochromic Behavior [J]. J. Am. Chem. Soc., 2004, 126: 3664-3668.
    [19] KELLY K L. YAMASHITA K. Nanostructure of Silver Metal Produced Photocatalytically in TiO_2 Films and the Mechanism of the Resulting Photochromic Behavior [J]. J. Phys. Chem. B, 2006, 110: 7743-7749.
    [20] MIYAUCHI M. NAKAJIMA A. FUJISHIMA A. HASHIMOTO K. WATANABE T. Photoinduced Surface Reactions on TiO_2 and SrTiO3 Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity [J]. Chem. Mater., 2000, 12: 3-5.
    [21] GAO Y. MASUDA Y. KOUMOTO K. Light-Excited Superhydrophilicity of Amorphous TiO_2 Thin Films Deposited in an Aqueous Peroxotitanate Solution [J]. Langmuir 2004, 20: 3188-3194.
    [22] FENG X. ZHAI J. JIANG L. The Fabrication and Switchable Superhydrophobicity of TiO_2 Nanorod Films [J]. Angew. Chem., Int. Ed., 2005, 44: 5115-5118.
    [23] TANG J. QUAN H. YE J. Photocatalytic Properties and Photoinduced Hydrophilicity of Surface-Fluorinated TiO_2 [J]. Chem. Mater., 2007, 19: 116-122.
    [24] WELLS A F. Structural Inorganic Chemistry; Clarendon Press: Oxford, 1984.
    [25] TOMPSETT G A. BOWMAKER G A. COONEY R P. METSON J B. ROGERS K A. SEAKINS J M. The Raman spectrum of brookite, TiO_2 (Pbca, Z = 8) [J]. J. Raman Spectrosc. 1995, 26: 57-62.
    [26] D’HENNEZEL O. OLLIS D E H. Surface Prechlorination of Anatase TiO_2 for Enhanced Photocatalytic Oxidation of Toluene and Hexane [J]. Chim. Acta, 2001, 84: 3511-3518.
    [27] DIEBOLD U. The surface science of titanium dioxide [J]. Surf. Sci. Rep., 2003, 48: 53-229.
    [28] NAGAVENI K. SIVALINGAM G. HEGDE M S. MADRAS G. Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO_2 [J]. Appl. Catal. B, 2004, 48: 83-93.
    [29] NAVROTSKY A. KLEPPA O J. Enthalpy of the Anatase-Rutile Transformation [J]. J. Am. Ceram. Soc., 1967, 50: 626-626.
    [30] LéAUSTIC A. BABONNEAU F. LIVAGE J. Structural investigation of the hydrolysis-condensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 2. From the modified precursor to the colloids [J]. Chem. Mater., 1989, 1: 248-252.
    [31] LI G. LI L. BOERIO-GOATES J. WOODFIELD B F. High Purity Anatase TiO_2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry [J]. J. Am. Chem. Soc., 2005, 127: 8659-8666.
    [32] JUN Y W. CASULA M F. SIM J H. KIM S Y. CHEON J W. ALIVISATOS A P. Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO_2 Nanocrystals [J]. J. Am. Chem. Soc., 2003, 125: 15981-15985.
    [33] COZZOLI P D. KORNOWSKI A. WELLER H. Low-Temperature Synthesis ofSoluble and Processable Organic-Capped Anatase TiO_2 Nanorods [J]. J. Am. Chem. Soc., 2003, 125: 14539-14548.
    [34] ZHANG Z. ZHONG X. LIU S. LI D. HAN M. Aminolysis Route to Monodisperse Titania Nanorods with Tunable Aspect Ratio [J]. Angew. Chem., Int. Ed., 2005, 44: 3466-3470.
    [35] LI X. PENG Q. YI J X. WANG X. LI Y. Near Monodisperse TiO_2 Nanoparticles and Nanorods [J]. Chem. Eur. J., 2006, 12: 2383-2391.
    [36] THOMPSON T L. YATES J T. Surface Science Studies of the Photoactivation of TiO_2 New Photochemical Processes [J]. Chem. Rev., 2006, 106: 4428-4453.
    [37] WANG Y. HERRON N. Quantum size effects on the exciton energy of CdS clusters [J]. Phys. Rev. B, 1990, 42: 7253-7255.
    [38] WANG Y. JIANG X. XIA Y. A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions [J]. J. Am. Chem. Soc., 2003, 125: 16176-17177.
    [39] PEIRóA M. PERAL J. DOMINGO C. DOMèNECH X. AYLLóN J. A. Low-Temperature Deposition of TiO_2 Thin Films with Photocatalytic Activity from Colloidal Anatase Aqueous Solutions [J]. Chem. Mater., 2001, 13: 2567-2573.
    [40] JIANG X. HERRICKS T. XIA Y. Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization [J]. Adv. Mater., 2003, 15: 1205-1209.
    [41] HENGLEIN A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev., 1989, 89: 1861-1873.
    [42] ALIVISATOS A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots [J]. Science, 1996, 271: 933-937.
    [43] MEHROTRA R C. Ph.D. Thesis, London University, 1952.
    [44] WILEY B. HERRICKS T. SUN Y. XIA Y. Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons [J]. Nano Letters, 2004, 4: 1733-1739.
    [45] Wiley B. Sun Y. Mayers B. Xia Y. Shape-Controlled Synthesis of MetalNanostructures: The Case of Silver Chem. Eur. J., 2005, 11: 454-463.
    [46] KANEKO H. OKAMURA T. TAIMATSU H. MATSUKI Y. NISHIDA H. Performance of a miniature zirconia oxygen sensor with a Pd–PdO internal reference [J]. Sens. Actuators, B: Chem, 2005, 108: 331-334.
    [47] RADHAKRISHNAN R. VIRKAR A. SINGHAL S. DUNHAM G. MARINA O. Design, fabrication and characterization of a miniaturized series-connected potentiometric oxygen sensor [J]. Sens. Actuators, B: Chem, 2005, 105: 312-321.
    [48] LIU Y G. FENG P. XUE X Y. SHI S L. FU X Q. WANG C. WANG Y G. WANG T H. Room-temperature oxygen sensitivity of ZnS nanobelts [J]. Appl. Phys. Lett., 2007, 90: 042109.
    [49] FRANKE M E. KOPLIN T J. SIMON U. Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter? [J]. Small, 2006, 2: 36-50.
    [1] BERTONE J F. JIANG P K. HWANG S. MITTLEMAN D M. COLVIN V L. Thickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals [J]. Phys. Rev. Lett., 1999, 83: 300-303.
    [2] XIA Y. GATES B. YIN Y. LU Y. Monodispersed Colloidal Spheres: Old Materials with New Applications [J]. Adv. Mater., 2000, 12: 693-713.
    [3] VLASOV Y A. BO X Z. STURM J C. NORRIS D J. On-chip natural assembly of silicon photonic bandgap crystals [J]. Nature, 2001, 414: 289-293.
    [4] MANOHARAN V T. ELSESSER M T. PINE D J. Dense Packing and Symmetry in Small Clusters of Microspheres [J]. Science, 2003, 301: 483-487.
    [5] LOPEZ C. Materials Aspects of Photonic Crystals [J]. Adv. Mater., 2003, 15: 1679-1704.
    [6] VELIKOV K P. VAN BLAADEREN A. Synthesis and Characterization of Monodisperse Core?Shell Colloidal Spheres of Zinc Sulfide and Silica [J]. Langmuir, 2001, 17: 4779-4786.
    [7] LI X H. LI J X. LI G D. LIU D P. CHEN J S. Controlled Synthesis, Growth Mechanism, and Properties of Monodisperse CdS Colloidal Spheres [J]. Chem. Eur. J., 2007, 13: 8754-8761.
    [8] GE J. HU Y. YIN Y. Highly Tunable Superparamagnetic Colloidal Photonic Crystals [J]. Angew. Chem. Int. Ed., 2007, 46: 7428-7431.
    [9] MATIJEVI? E. MURPHY-WILHELMY D. Preparation and properties of monodispersed spherical colloidal particles of cadmium sulfide [J]. J. Colloid Interface Sci., 1982, 86: 476-484.
    [10] GE J. YIN Y. Magnetically Tunable Colloidal Photonic Structures in Alkanol Solutions [J]. Adv. Mater., 2008, 20: 3485-3491.
    [11] JIANG X. HERRICKS T. XIA Y. Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization [J]. Adv. Mater., 2003, 15: 1205-1209.
    [12] YU H K. YI G R. KANG J H. CHO Y S. MANOHARAN V N. PINE D J. YANG S M. Surfactant-Assisted Synthesis of Uniform Titania Microspheres andTheir Clusters [J]. Chem. Mater., 2008, 20: 2704–2710.
    [13] JAKOB M. LEVANON H. KAMAT P V. Charge Distribution between UV-Irradiated TiO_2 and Gold Nanoparticles: Determination of Shift in the Fermi Level [J]. Nano Lett., 2003, 3: 353-358.
    [14] MCFARLAND E W. TANG J. A photovoltaic device structure based on internal electron emission [J]. Nature, 2003, 421: 616-618.
    [15] FURUBE A. DU L. HARA K. KATOH R. TACHIYA M. Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO_2 Nanoparticles [J]. J. Am. Chem. Soc., 2007, 129: 14852-14853.
    [16] BOND G C. THOMPSON D T. Catalysis by Gold, Catalysis. [J]. Catal. Rev. Sci. Eng., 1999, 41: 319-388.
    [17] VALDEN M. LAI X. GOODMAN D W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties [J]. Science, 1998, 281: 1647-1650.
    [18] MEIER D C. GOODMAN D W. The Influence of Metal Cluster Size on Adsorption Energies: CO Adsorbed on Au Clusters Supported on TiO_2 [J]. J. Am. Chem. Soc., 2004, 126: 1892-1899.
    [19] BOCCUZZI F. CHIORINO A. MANZOLI M. LU P. AKITA T. ICHIKAWA S. HARUTA M. Au/TiO_2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation [J]. J. Catal., 2001, 202: 256-267.
    [20] LEE S. FAN C. WU T. ANDERSON S L. CO Oxidation on Aun/TiO_2 Catalysts Produced by Size-Selected Cluster Deposition [J]. J. Am. Chem. Soc., 2004, 126: 5682-5683.
    [21] YANG J H. HENAO J D. RAPHULU M C. WANG Y. CAPUTO T. GROSZEK A J. KUNG M C. SCURRELL M S. MILLER J T. KUNG H H. Activation of Au/TiO_2 Catalyst for CO Oxidation [J]. J. Phys. Chem. B., 2005, 109: 10319-10326.
    [22] LI H. BIAN Z. ZHU J. HUO Y. LI H. LU Y. Mesoporous Au/TiO_2 Nanocomposites with Enhanced Photocatalytic Activity [J]. J. Am. Chem. Soc., 2007, 129: 4538-4539.
    [23] LI X Z. LI F B. Study of Au/Au3+-TiO_2 Photocatalysts toward VisiblePhotooxidation for Water and Wastewater Treatment [J]. Environ. Sci. Technol., 2001, 35: 2381-2387.
    [24] LI J. ZENG H C. Preparation of Monodisperse Au/TiO_2 Nanocatalysts via Self-Assembly [J]. Chem. Mater., 2006, 18: 4270-4277.
    [25] CHEN X. ZHU H Y. ZHAO J C. ZHENG Z F. GAO X P. Visible-Light-Driven Oxidation of Organic Contaminants in Air with Gold Nanoparticle Catalysts on Oxide Supports [J]. Angew. Chem. Int. Ed., 2008, 47: 5353-5356.
    [26] MOTTET C. TREGLIA G. LEGRAND B. Electronic structure of Pd clusters in the tight-binding approximation: influence of spd-hybridization [J]. Surf. Sci., 1996, 352-354: 675-679.
    [27] ARABATZIS I M. STERGIOPOULOS T. ANDREEVA D. KITOVA S. NEOPHYTIDES S G. FALARAS P. Characterization and photocatalytic activity of Au/TiO_2 thin films for azo-dye degradation [J]. J. Catal., 2003, 220: 127-135.
    [28] CHOI W Y. HOFFMANN M R. The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. J. Phys. Chem., 1994, 98: 13669-13679.
    [29] MOULDER J F. STICKLE W F. SOBOL P E. BOMBEN K D. In Handbook of X-ray Photoelectron Spectroscopy Chamstain, J., Ed, [M]. Perkin-Elmer Corporation: Eden Prairie, MN, 1992.
    [30] YANG H G. ZENG H C. Preparation of Hollow Anatase TiO_2 Nanospheres via Ostwald Ripening [J]. J. Phys. Chem. B 2004, 108: 3492-3495.
    [31] KREIBIG U. VOLLMER M. Optical Properties of Metal Clusters [M]. Springer-Verlag: Berlin, 1995.
    [32] WANG P. WANG D. LI H. XIE T. WANG H. DU Z. A facile solution-phase synthesis of high quality water-soluble anatase TiO_2 nanocrystals [J]. J. Colloid Interface Sci., 2007, 314: 337-340.
    [33] KRONIK L. SHAPIRA Y. Surface photovoltage phenomena: theory, experiment, and applications [J]. Surf. Sci. Rep., 1999, 37: 1-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700