用户名: 密码: 验证码:
通过细乳液聚合和原子转移自由基聚合制备杂化纳米粒子及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过细乳液聚合和原子转移自由基聚合技术制备氧化锌/聚苯乙烯(ZnO/PS)、聚苯撑乙烯/聚苯乙烯(MEH-PPV/PS)、四氧化三铁-聚2-二甲基丙烯酸乙酯(Fe3O4-PDMAEMA)和蛋白-聚2-二甲基丙烯酸乙酯(蛋白-PDMAEMA)杂化纳米粒子。对于ZnO/PS杂化纳米粒子,通过改性共聚单体MPS的修饰调整ZnO纳米粒子表面的亲疏水性,得到了两种不同结构的ZnO纳米粒子包覆PS和PS包覆ZnO纳米粒子的杂化粒子。杂化粒子既保留了ZnO的光致发光性质又具有有机聚合物的柔韧性、易加工性,在光学材料、光电器件等方面具有一定的应用潜能。通过调整细乳液聚合体系中偶氮二异丁氰(AIBN)引发剂的加入量控制MEH-PPV的共轭长度,得到了具有不同发射波长的MEH-PPV/PS荧光纳米粒子。进一步加入共聚单体丙烯酸(AA),我们可以得到表面带有羧基功能基团的P(S-co-AA)/MEH-PPV荧光纳米粒子。这种高亮度,不同发射光,具有功能基团的荧光纳米粒子将在光学和生物学领域里具有很好的应用前景。对于Fe3O4-PDMAEMA杂化纳米粒子,通过原位原子转移自由基聚合的方法在Fe3O4纳米粒子表面接枝水溶性聚合物PDMAEMA,再使用甲基碘对PDMAEMA进行季铵化,提高Fe3O4-PDMAEMA杂化纳米粒子的表面电荷和水相中的分散性。这种在水相中稳定分散并带有正电荷的杂化纳米粒子可以作为蛋白载体,并在外磁场的作用下将蛋白运载入人体Hela细胞内,是一种有应用前景的工业催化和生物医学材料。通过控制原子转移自由基聚合的时间和引发剂的修饰度可以得到不同尺寸的牛血清蛋白(BSA)-PDMAEMA和核糖核酸酶(BP-RNase A)-PDMAEMA杂化纳米粒子。由于PDMAEMA的存在,杂化粒子表面带有较高的正电荷,具有高效的细胞质膜穿透性,同时线性的PDMAEMA降低了对BP-RNase A大分子底物核糖核酸(RNA)的位阻作用,使BP-RNase A-PDMAEMA杂化纳米粒子仍具有优良的表观酶活性。BP-RNase A表面的PDMAEMA又可以抵抗Hela细胞内的RNase抑制剂,使其展示出对Hela细胞高效的细胞毒性,这将使这种杂化纳米粒子成为一种在生物医学领域内具有潜在应用价值的抗癌药物。
Hybrid nanoparticles are a hotspot in materials science. Combining the properties of organic and inorganic components, this kind of hybrid materials has excellent and special capability as compared to its components. The hybrid materials can show synergistic effects of its components effectively by adjusting the proportion of its components, for example, the thermal stability, mechanical intensity and optical properties of polymer can be improved by adding of the inorganic components and the elasticity and film-formation-ability of the inorganic materials can be improved by adding of the organic components, thus the novel hybrid materials with the whole properties of its organic and inorganic components can be obtained. The inorganic or organic/polymer core-shell hybrid materials have novel capability which was endowed by the multifarious shell, so such materials have been widely used in chemistry-surface- modify, catalysis, optics and magnetics.
     Miniemulsion polymerization is a novel polymerization method, the size and component of the oil drops don’t change during the course of polymerization, the oil drops can be seen as minireactors and such sub-microdrops become the site of inducement and nucleation by using co-surfactant and miniemulsion. Owing to atom transfer radical polymerization (ATRP) is very compatible with most of functional group, thus it is a kind of important method to synthesize novel functional material of polymer. ATRP possesses monomer function, initiator function and terminal group function of polymer. Besides, synthesized polymer contains narrow distribution of molecule weight and line-structure by ATRP, which can extend the field of application of polymer. Therefore, ATRP has had great popularity in synthesized field of polymer as a novel method.
     ZnO is not only an important semiconductor nano-material but also serves widely as catalyst for chemical reactions, photocatalysts, photoelectric conversion, and photoluminescent materials. Compare with cadium (Cd) compound nano-material, such as CdTe, CdSe and CdS, ZnO possesses advantages, such as nontoxicity, easy synthesis and so on. Poly(p-phenylene vinylene) (PPV) and its derivatives have attracted a great deal of attention in recent years because of their interesting electroluminescent (EL) properties and potential applications as the active emitting layer in light-emitting diodes. Polymeric EL materials offer a number of advantages over inorganic EL materials, such as low operating voltages, full-color displays, fast response time, high luminescent efficiency, high-quality displays and easy device processability with semiconductor technologies. In recent years, these polymers have also been developed for use in photovoltaic diodes, light-emitting electrochemical cells, photodetectors and image sensors. Superparamagnetic nanoparticles of Fe3O4 have attracted much attention for therapeutic and diagnostic applications, such as magnetic resonance imaging (MRI) contrast agent, tissue repair, immunoassay, targetable drug/gene/protein carries, and cell separation. As one kind of catalyzer enzyme has a number of advantages such as highly efficient, exact selectivity of substrate. In recent years, with the development of the biomedicine a number of enzyme which possesses biotherapy were discovered and extensive investigated.
     We have demonstrated that MPS-modified ZnO colloid particles with different surface properties can be gained by adjusting the amount of added MPS and ZnO-coated PS and PS-encapsulated ZnO hybrid nanoparticles can also be prepared with miniemulsion polymerization. The prepared two types of hybrid nanoparticles with different core–shell structures not only retain their photoluminescent properties, but also display the flexibility and easy processing of polymer, which give promise to potential applications in the fields of optical materials, photoconducting devices, and so on. The prepared two types of hybrid nanoparticles with different core–shell structures not only retain their photoluminescent properties, but also display the flexibility and easy processing of polymer, which give promise to potential applications in the fields of optical materials, photoconducting devices, and so on. We synthesized PS/MEH-PPV fluorescence hybrid nanoparticles by miniemulsion polymerization. A series of fluorescence microspheres with different emitting wavelength was obtained by controlling quality of initiator azobisisobutyronitrile (AIBN) to adjust emitting wavelength of microspheres. In further, acrylic acid monomer was added into polymerization system, after polymerization fluorescence hybrid nanoparticles with carboxyl group on the surface of nanoparticles was obtained, and these fluorescence hybrid nanoparticles give promise to potential applications in the fields of optical materials and biology.
     Fe3O4-PDMAEMA, BSA-PDMAEMA and BP-RNase A-PDMAEMA hybrid nanoparticles was prepared with atom transfer radical polymerization. In order to increase surface positive charge of hybrid nanopartiles and dispersibility in aqueous solution, Fe3O4-PDMAEMA nanoparticles was quaternized by CH3I. Fe3O4-PDMAEMA-q hybrid nanoparticles containing positive charge have a ability to attach protein via electrostatic effect, and efficiently deliver protein into Hela cells with magnetic field. Our research results depict these Fe3O4-PDMAEMA hybrid nanoparticles are as efficient protein carrier to apply in the field of industrial catalysis and biomedicine. By controlling initiator amount and polymerization time BSA-PDMAEMA and BP-RNase A-PDMAEMA hybrid nanoparticles of various size was gained. Positive charge PDMAEMA endowed BSA and BP-RNase A with a ability that can efficiently penetrate cellular membrane into cells. Line-structure PDMAEMA also endowed BP-RNase A with excellent substrate permeability of macromolecule substrate and a new function to effectively reduce interaction of BP-RNase A with inhibitor to contribute to their cytotoxicity for Hela cells. BP-RNase A-PDMAEMA hybrid nanoparticles show cytotoxicity can make it as a anticancer drug to apply in biomedicine field.
     In summary, we prepared ZnO/PS, MEH-PPV/PS, Fe3O4-PDMAEMA, BSA-PDMAEMA and BP-RNase A-PDMAEMA hybrid nanoparticles with miniemulsion polymerization and atom transfer radical polymerization, and attempted to apply these various hybrid nanoparticles in research field and received significant results.
引文
[1]张贻瑞,王建,基础材料与新材料[M].天津大学出版社, 1994.
    [2]李旭华,袁荞龙,王得宁,应圣康,功能高分子学报, 2000, 13: 211.
    [3] Tiarks F, Landfester K, Antonietti M, Silica Nanoparticles as Surfactants and Fillers for Latexes Made by Miniemulsion Polymerization [J] Langmuir, 2001, 17: 5775.
    [4] Fleming M. S, Mandal T. K, Walt D. R, Nanosphere?Microsphere Assembly: Methods for Core?Shell Materials Preparation [J] Chem. Mater., 2001, 13: 2210.
    [5] Caruso F, Lichtenfeld H, Donath E, Investigation of Electrostatic Interactions in Polyelectrolyte Multilayer Films: Binding of Anionic Fluorescent Probes to Layers Assembled onto Colloids [J] Macromolecules, 1999, 32: 2317.
    [6] Caruso F, Hollow Capsule Processing through Colloidal Templating and Self-Assembly [J] Chem. Eur. J., 2000, 6: 413.
    [7] Caruso F, Schüler C, Kurth D. G, Core?Shell Particles and Hollow Shells Containing Metallo-Supramolecular Components [J] Chem. Mater., 1999, 11: 3394.
    [8] Caruso F, Trau D, M?hwald H, Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules [J] Langmuir, 2000, 16: 1485.
    [9] Caruso F, Lichtenfeld H, Giersig M, Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles [J] J. Am. Chem. Soc., 1998, 120: 8523.
    [10] Caruso F, M?hwald H, Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids [J] Langmuir, 1999, 15: 8276.
    [11] Caruso F, Susha A. S, Giersig M, Preparation of Magnetite Multilayers on Polymer Latex Microspheres [J] Adv. Mater., 1999, 11: 950.
    [12] Caruso R. A, Susha A, Caruso F, Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres [J] Chem. Mater., 2001, 13: 400.
    [13] Ji T, Lirtsman V. G, Avny Y, Preparation, Characterization, and Application of Au-Shell/Polystyrene Beads and Au-Shell/Magnetic Beads [J] Adv. Mater., 2001, 13: 1253.
    [14] Caruso F, Nanoengineering of Particle Surfaces [J] Adv. Mater., 2001, 13: 11.
    [15] Caruso F, M?hwald H, Preparation and Characterization of Ordered Nanoparticle and Polymer Composite Multilayers on Colloids [J] Langmuir, 1999, 15: 8276.
    [16] Wang D. Y, Caruso R. A, Caruso F, Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal SpheresA Novel Route to Tune Pore Morphology [J] Chem. Mater., 2001, 13: 364.
    [17]黄琨,向明,周德惠,胡文军,化工新型材料, 2002, 30: 8.
    [18] Qiu X. P, Winnik F, Chinese Journal of Polymer Science, 2000, 18: 535.
    [19]施卫贤,杨俊,王亭杰,物理化学学报, 2001, 17: 507.
    [20]官建国,邓惠勇,王维,任平,化学进展, 2004, 16: 327.
    [21] Percy M. J, Barthet C, Lobb J. C, Synthesis and Characterization of Vinyl Polymer?Silica Colloidal Nanocomposites [J] Langmuir, 2000, 16: 6913.
    [22] Oyama H. T, Sprycha R, Xie Y, Coating of Uniform Inorganic Particles with Polymers [J] J. Colloid Interface Sci., 1993, 160: 298.
    [23] Bourgeat L. E, Lang J, Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media: 1. Silica Nanoparticles Encapsulated by Polystyrene [J] J. Colloid Interface Sci., 1998, 197: 293.
    [24] Partch R, Gangolli S. G, Matijevic E, Conducting polymer composites : I. Surface-induced polymerization of pyrrole on iron(III) and cerium(IV) oxide particles [J] J.Colliod Interface Sci., 1991, 144: 27.
    [25] Huang C. L, Matijevic E, J. Mater. Res., 1995, 10: 1327.
    [26] Mandal T. K, Fleming M. S, Walt D. R, Preparation of Polymer Coated Gold Nanoparticles by Surface-Confined Living Radical Polymerization at Ambient Temperature [J] Nano. Letter., 2002, 2: 3.
    [27]刘润静,邹海魁,郭奋,材料研究学报, 2001, 15: 61.
    [28]程彬,朱玉瑞,江万权,化学物理学报, 2000, 13: 359.
    [29]臧丽坤,陈运,吴镇江,功能材料, 2002, 33: 548.
    [30] Ocana M, Gonzale E. A. R, Colloidsand Surfaces A: Physico chemical and Engineeing Aspects, 1999, 157: 315.
    [31] Imhof A, Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells [J] Langmuir, 2001, 17: 3579.
    [32] Guo H. X, Zhao X. P, Synthesis of Ni/Polystyrene/TiO2 Multiply Coated Microspheres [J] Langmuir, 2003, 19: 4884.
    [33] Marinakos S. M, Shultz D. A, Feldheim D. L, Gold Nanoparticles as Templates for the Synthesis of Hollow Nanometer-Sized Conductive Polymer Capsules [J] Adv. Mater., 1999, 11: 34-37.
    [34] Song C, Hu Z. S, Preparation and characterization of silver/TiO2 composite hollow spheres [J] Journal of Colloid and Interface Science, 2004, 272: 340.
    [35] Kawaguchi H, Fujimoto K, Nakazawa Y, Colloids Surface A, 1996, 109, 147.
    [36] Bamnolker H, Nitzan B, Gura S, J. Mater. Sci. Lett., 1997, 16: 1412.
    [37]周海梦,王洪睿,蛋白质化学修饰,北京:清华大学, 1998.
    [38] Greg T. H, Bioconjugate techniques [J] San Diego: Academic Press, 1996.
    [39] Chilkoti A, Chen G, Stayton P. S, Hoffman A. S, Site-specific conjugation of a temperature-sensitive polymer to a geneticallyengineered protein [J] Bioconjugate Chem, 1994, 5: 504.
    [40] Hershfield M. S, Chaffee S, Koro-Johnson L, Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol [J] Proc. Proc. Natl. Acad. Sci. USA, 1991, 88: 7185.
    [41] Schlick T. L, Ding Z. B, Kovacs E. W, Francis M. B, Dual-Surface Modification of the Tobacco Mosaic Virus [J] J. Am. Chem. Soc., 2005, 127: 3718.
    [42] Kochendoerfer G. G, Chen S. Y, Mao F, Cressman S, Traviglia S, Shao H Y, Hunter C. L, Low D. W, Cagle E. N, Carnevali M, Design and Chemical Synthesis of a Homogeneous Polymer-Modified Erythropoiesis Protein [J] Science, 2003, 299: 884.
    [43] Shao H, Crnogorac M. M, Kong T, Chen S. Y, Williams J. M, Tack J. M,Gueriguian V, Cagle E. N, Carnevali M, Tumelty D, Paliard X, Miranda L. P, Bradburne J. A, Kochendoerfer G. G, Site-Specific Polymer Attachment to a CCL-5 (RANTES) Analogue by Oxime Exchange [J] J. Am. Chem. Soc., 2005, 127: 1350.
    [44] Hamachi I, Nagase T, Shinkai S, Saccharide-Biosensors Based on a Lectin [J] J. Am. Chem. Soc., 2000, 122: 12065.
    [45] Nakata E, Koshi Y, Koga E, Katayama Y, Hamachi I, Double-Modification of Lectin Using Two Distinct Chemistries for Fluorescent Ratiometric Sensing and Imaging Saccharides in Test Tube or in Cell [J] J. Am. Chem. Soc., 2005, 127: 13253.
    [46] Takaoka Y, Tsutsumi H, Kasagi N, Nakata E, Hamachi I, Hamachi I One-Pot and Sequential Organic Chemistry on an Enzyme Surface to Tether a Fluorescent Probe at the Proximity of the Active Site with Restoring Enzyme Activity [J] J. Am. Chem. Soc., 2006, 128: 3273.
    [47] Tilley S. D, Francis M. B, Tyrosine-Selective Protein Alkylation Using-Allylpalladium Complexes [J] J. Am. Chem. Soc., 2006, 128: 1080.
    [48] Joshi N. S, Whitaker L. R, Francis M. B, A three-component Mannich-type reaction for selective tyrosine bioconjugation [J] J. Am. Chem. Soc., 2004, 126: 10256.
    [49] Veronese F. M, Pasut G, PEGylation, successful approach to drug delivery Drug discovery today [J] Drug Discovery Today, 2005, 10: 1451.
    [50] Pasut G, Veronese F. M, PEGylation of Proteins as Tailored Chemistryfor Optimized Bioconjugates [J] Adv Polym Sci., 2006, 192: 95.
    [51] Qiu J, Charleux B , Matyjaszewski K, Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems [J] Prog Polym Sci., 2001, 26: 2083.
    [52] Muriel L, Farcet C, Charleux B, Vairon J. P, Pirri R, Controlled free-radical miniemulsion polymerization of styrene using degenerative transfer [J]Macromolecules, 1999, 32: 7354.
    [53] Donovan M. S, Lowc A. B, McCormick C. L, Polym Pre, 1999, 40: 281.
    [54] Wang J. S, Matyjasewski K, Controlled/“living”radical polymerization atom transfer radical polymerization in the presence of transition-metal complexes [J] J. Am. Chem. Soc., 1995, 117: 5614.
    [55] Kynclova E, Elsner E, Kopf A, Hawa G, Schalkhammer T, Pittner F, Novel method for coupling of poly (ethylene glycol) to carboxylic acid moieties of proteins [J] J. Mol. Recognit., 1996, 9: 644.
    [56] Tao L, Mantovani G, Lecolley F, Haddleton D. M, r-Aldehyde Terminally Functional Methacrylic Polymers from Living Radical Polymerization: Application in Protein Conjugation“Pegylation”[J] J. Am. Chem. Soc., 2004, 126: 13220.
    [57] Mantovani G, Lecolley F, Tao L, Haddleton D. M, Clerx J, Cornelissen J. J. L. M, Velonia K, Design and Synthesis of N-Maleimido-Functionalized Hydrophilic Polymers via Copper-Mediated Living Radical Polymerization: A Suitable Alternative to PEGylation Chemistry [J] J. Am. Chem. Soc., 2005, 127: 2966.
    [58] Debora B, Karina L. H, Benjamin A. F, Heather D. M, Cysteine-Reactive Polymers Synthesized by Atom Transfer Radical Polymerization for Conjugation to Proteins [J] J. Am. Chem. Soc., 2004, 126: 15372.
    [59] Matsushima A, Kodera Y, Hiroto M, Nishimura H, Inada Y, Bioconjugates of proteins and polyethylene glycol: potent tools in biotechnological processes [J] Journal of Molecular Catalysis B: Enzymatic, 1996 2: 1.
    [60] Fischer L, Peiuker F, A covalent two-step immobilization technique using itaconic anhydride [J] Appl Microbiol Biotechnol., 1998, 49: 129.
    [61] Ito Y, Fujii H, Imanishi Y, Modification of Lipase with Various Synthetic Polymers and Their Catalytic Activities in Organic Solvent [J] Biotechnol. Prog., 1994, 10: 398.
    [62] Bontempo D, Maynard H. D, Streptavidin as a Macroinitiator for Polymerization:In Situ Protein-Polymer Conjugate Formation [J] J. Am. Chem. Soc., 2005, 127: 6508.
    [63] Lele B. S, Murata H, Matyjaszewski K, Russell A. J, Synthesis of Uniform Protein-Polymer Conjugates [J] Biomacromolecules, 2005. 6: 3380.
    [64] Mei Y, Beers K. L, Michelle H. C, VanderHart D. L, Washburn N. R, Solid-Phase ATRP Synthesis of Peptide-Polymer Hybrids [J] J. Am. Chem. Soc., 2004, 126: 3472.
    [65] Zhu J. M, Li P, Synthesis and Characterization of Poly(methyl methacrylate)/Casein Nanoparticles with a Well-Defined Core-Shell Structure [J] Journal of Polymer Science: Part A: Polymer Chemistry, 2003 41: 3346.
    [66] Kim J, Grate J. W, Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network [J] Nano. Letters., 2003, 3: 1219.
    [67] Drevon G. F, Hartleib J, Scharff E, Rueterjans H, Russell A. J, Thermoinactivation of Diisopropylfluorophosphatase-Containing Polyurethane Polymers [J] Biomacromolecules, 2001, 2: 664.
    [68] Drevon G. F, Russell A. J, Irreversible immobilization of diisopropylfluorophosphatase in polyurethane polymers [J] Biomacromolecules, 2000, 1: 571.
    [69] Russell A. J, Biocatalytic materials for chemical defense [J] Kobunshi, 2000, 49: 843.
    [70] Dravis B. C, LeJeune K. E, Hetro A. D, Russell A. J, Enzymatic dehalogenation of gas phase substrates with haloalkane dehalogenase [J] Biotechnology and Bioengineering, 2000, 69: 235.
    [71] Dravis B. C, Swanson P. E, Russell A. J, Haloalkane hydrolysis with an immobilized haloalkane dehalogenase [J] Biotechnology and Bioengineering, 2001, 75: 416.
    [72] Kim J, Grate J. W, Wang P, Nanostructures for enzyme stabilization [J] Chemical Engineering Science, 2006, 61: 1017.
    [73] Demers N, Agostinelli E, Averill-Bates D. A, Fortier G, Immobilization of native and poly(ethylene glycol)-treated bovine serum amine oxidase into a biocompatible hydrogel [J] Biotechnol Appl Biochem, 2001, 33: 201.
    [74] Betancor L, Hidalgo A, Mateo C, Fernandez-Lafuente R, Guisan J. M, Preparation of a stable biocatalyst of bovine liver catalase using immobilization and post immobilization techniques [J] Biotechnol Progr, 2003, 33: 7938.
    [75] Betancor L, Lopez-Gallego F, Hidalgo A, Alonso-Morales N, Fuentes M, Fernandez-Lafuente R, Guisan J. M, Prevention of interfacial inactivation of enzymes by coating the enzyme surface with dextran-aldehyde [J] J Biotechnol., 2004, 110: 201.
    [76] Wang P, Sergueeva M. S, Lim L, Biocatalytic plastics as active and stable materials for biotransformations [J] Nature Biotechnology, 1997, 15: 789.
    [77] Zhu G. Y, Wang P, Polymer-enzyme conjugates can self-assemble at oil/water interfaces and effect interfacial biotransformations [J] J. Am. Chem. Soc., 2004, 126: 11132.
    [78] Wang L, Zhu G. Y, Wang P, Self-assembling of polymer-enzyme conjugates at oil/water interfaces [J] Biotechnol Prog, 2005, 21: 1321.
    [79] Zhu G. Y, Wang P, Novel interface binding chloroperoxidase for interfacial epoxidation of styrene [J] J Biotechnol, 2005, 117: 195.
    [80] Hoffman A. S, Stayton P. S, Macromolecular Symposia, 2004, 207, 139.
    [81] Ray I, Sharma S, Gupt M. N, Smart Biocatalysts: Design and Applications [J] Adv Biochem Engin/Biotechnol., 2004, 86: 159.
    [82] Ding Z, Chen G, Hoffman A. S, Synthesis and Purification of Thermally Sensitive Oligomer-Enzyme Conjugates of Poly(N-isopropylacrylamide)-Trypsin [J] Bioconjugate Chem., 1996, 7: 121.
    [83] Ding Z. L, Chen G. H, Hoffman A. S, Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly (N-isopropylacrylamide) [J] J. Biomed. Mater. Res., 1998, 39: 498.
    [84] Stayton P. S, Shimoboji T, Long C, Chilkoti A, Chen G. H, Harris J. M, Hoffman A. S, Control of protein–ligand recognition using a stimuli-responsive polymer [J] Nature, 1995, 378: 472.
    [85] Sharma S, Kaur P, Jain A, Rajeswari M. R, Gupta M. N, A Smart Bioconjugate of Chymotrypsin [J] Biomacromolecules, 2003, 4: 330.
    [86] Ito Y, Sugimura N, Kwon O. H, Imanishi Y, Enzyme modification by polymers with solubilities that change in response to photoirradiation in organic media [J] Nature Biotechnology, 1999, 17: 73.
    [87] Ito Y, Kotoura M, Chung D. J, Imanishi Y, Trypsin Modification by Vinyl Polymers with Variable Solubilities in Response to External Signals [J] Bioconlugate Chem., 1993, 4: 358.
    [88] Kater N. V, Immunogenicity of recombinant IL-2 modified by covalent attachment of polyethylene glycol [J] J Immunol, 1990, 144: 209.
    [89] Katre N. V, Knauf M. J, Laird W. J, Chemical modification of recombinant interleukin-2 by polyethylene glycol increases its potency in the murine Meth A sarcoma model [J] Proc Natl Acad Sci USA, 1987, 84: 1487.
    [90] Hannink J. M, Cornelissen J. J. L. M, Farrera J. A, Foubert P, De Schryver F. C, Sommerdijk N. A. J. M, Nolte R. J. M, Protein-Polymer Hybrid Amphiphiles [J] Angew. Chem. Int. Ed., 2001, 40: 4732-4734.
    [91] Velonia K, Rowan A. E, Nolte R. J. M, Lipase Polystyrene Giant Amphiphiles [J] J. Am. Chem. Soc., 2002, 124: 4224-4225.
    [92] Boerakker M. J, Hannink J. M, Bomans P. H. H, Frederik P. M, Nolte R. J. M, Meijer E. M, Sommerdijk N. J. M, Giant Amphiphiles by Cofactor Reconstitution [J] Angew. Chem. Int. Ed., 2002, 41: 4239.
    [93]谭必恩,胡芳,李建宗,高分子材料科学与工程, 2001, 17: 80.
    [94] Candau F, Philadelphia: Gordon &Breach, 1992, 215.
    [95] Antonietti M, Macromol Chem Phys, 1995, 196: 441.
    [96] Candau R, Collid S. A, Physicochem Engng Asp, 1999, 153: 47.
    [97] Antonietti M, Landfester K, Prog. Polym. Sci., 2002, 27: 689.
    [98] Bechthold N, Tiarks F, Willert M, Macromol. Symp., 2000, 151: 549.
    [99] Tiarks F, Landfester K, Antonietti M, Macromol. Chem. Phys., 2001, 202: 51.
    [100] Hoffmann D, Landfester K, Antonietti M, Magnetohydrodynamics, 2001, 37: 217.
    [101] Zhang S. W, Wu L. M, Synthesis of SiO2/Polystyrene Nanocomposite Particles via Miniemulsion Polymerization [J] Langmuir, 2005, 21: 2124.
    [102] Tiarks F, Landfester K, Antonietti M, Silica Nanoparticles as Surfactants and Fillers for Latexes Made by Miniemulsion Polymerization [J] Langmuir, 2001, 17: 5775.
    [103] Wang J. S, Matyjaszewski K, Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes [J] J. Am. Chem. Soc., 1995, 117: 5614.
    [104] Otsu T, Yoshida M, Die. Macromol. Chem. Rapid Commun., 1982, 3, 127.
    [105] Coessens V, Pintauer T, Matyjaszewski K, Prog. Polym. Sci., 2001, 26, 337.
    [106] Wang J. S, Matyjaszewski K, Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process [J] Macromolecules, 1995, 28: 7901.
    [107] Percec V, Barboiu B, "Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl [J] Macromolecules, 1995, 28: 7970.
    [108] Matyjaszewski K, Xia J. H, Atom Transfer Radical Polymerization [J] Chem. Rev., 2001, 101: 2921.
    [109] Coca S, Jasieczek C. B, Beers K. L, Matyjaszewski K, Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2-hydroxyethyl acrylate [J] J. Polym. Sci. Part A: Polym. Chem., 1998, 36, 1417.
    [110] Mühlebach A, Gaynor S. G, Matyjaszewski K, Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP) [J]Macromolecules, 1998, 31: 6046.
    [111] Zhang X, Matyjaszewski K, Synthesis of Functional Polystyrenes by Atom Transfer Radical Polymerization Using Protected and Unprotected Carboxylic Acid Initiators [J] Macromolecules, 1999, 32: 7349.
    [112] Kotani Y, Kato M, Kamigaito M, Sawamoto M, Macromolecules, 1996, 29, 6979.
    [113] Mandal T. K, Fleming M. S, Walt D. R, Preparation of Polymer Coated Gold Nanoparticles by Surface-Confined Living Radical Polymerization at Ambient Temperature [J] Nano Lett, 2002, 2: 3.
    [114] Zhou L. L, Yuan W. Z, Yuan J. Y, Hong X. Y, Materials Letters, 2008, 62: 1372.
    [115] Farmer S. C, Patten T. E, Photoluminescent Polymer/Quantum Dot Composite Nanoparticles [J] Chem. Mater., 2001, 13: 3920.
    [116] Fan Q. L, Neoh K. G, Kang E. T, Shuter B, Wang S. C, Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: Synthesis, characterization and cellular uptake [J] Biomaterials, 2007, 28: 5426.
    [117] Heredia K, Bontempo D, Ly T, Byers J, T, Halstenberg S, Maynard H. D, In Situ Preparation of Protein?“Smart”Polymer Conjugates with Retention of Bioactivity [J] J. Am. Chem. Soc., 2005, 127: 16955.
    [118] Bontempo D, Maynard H. D, Streptavidin as a Macroinitiator for Polymerization: In Situ Protein?Polymer Conjugate Formation [J] J. Am. Chem. Soc., 2005, 127: 6508.
    [119] Heredia K. L, Maynard H. D, Synthesis of protein–polymer conjugates [J] Org. Biomol. Chem., 2007, 5, 45.
    [1] Zhang H, Cui Z, Wang Y, Zhang K, Ji X, LüC, Yang B, Gao M, From Water-Soluble CdTe Nanocrystals to Fluorescent Nanocrystal-Polymer Transparent Composites Using Polymerizable Surfactants [J] Adv. Mater., 2003, 15: 777.
    [2] Li J, Hong X, Liu Y, Li D, Wang Y, Li J, Bai Y, Li T, Highly Photoluminescent CdTe/Poly(N-isopropylacrylamide) Temperature-Sensitive Gels [J] Adv. Mater., 2005, 17: 163.
    [3] Beek W. J. E, Wienk M. M, Janssen R. A. J, Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer [J] Adv. Mater., 2003, 16: 1009.
    [4] Shenhar R, Norsten T. B, Rotello V. M, Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications [J] Adv. Mater., 2005, 17: 657.
    [5] Li H, Qi W, Li W, Sun H, Bu W, Wu L, A Highly Transparent and Luminescent Hybrid Based on the Copolymerization of Surfactant-Encapsulated Polyoxometalate and Methyl Methacrylate [J] Adv. Mater., 2005, 17: 2688.
    [6] Zhang M, Gao G, Zhao D, Li Z, Liu F, Crystallization and Photovoltaic Properties of Titania-Coated Polystyrene Hybrid Microspheres and Their Photocatalytic Activity [J] J. Phys. Chem. B, 2005, 109: 9411.
    [7] Gómez D E, Pastoriza-Santos I, Mulvaney P, Tunable Whispering Gallery Mode Emission from Quantum-Dot-Doped Microspheres [J] Small, 2005, 1: 238.
    [8] Fleischhaker F, Zentel R, Photonic Crystals from Core-Shell Colloids with Incorporated Highly Fluorescent Quantum Dots [J] Chem. Mater., 2005, 17: 1346.
    [9] Liu X, Guan Y, Ma Z, Liu H, Surface Modification and Characterization of Magnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization [J] Langmuir, 2004, 20: 10278.
    [10] Cui T, Zhang J, Wang J, Cui F, Chen W, Xu F, Wang Z, Zhang K, Yang B, CdS-Nanoparticle/Polymer Composite Shells Grown on Silica Nanospheres by Atom-Transfer Radical Polymerization [J] Adv. Funct. Mater., 2005, 15: 481.
    [11] LüC, Guan C, Liu Y, Cheng Y, Yang B, PbS/Polymer Nanocomposite Optical Materials with High Refractive Index [J] Chem. Mater., 2005, 17: 2448.
    [12] Tiarks F, Landfester K, Antonietti M, Silica Nanoparticles as Surfactants and Fillers for Latexes Made by Miniemulsion Polymerization [J] Langmuir, 2001, 17: 5775.
    [13] Zhang S, Zhou S, Weng Y, Wu L, Synthesis of SiO2/Polystyrene Nanocomposite Particles via Miniemulsion Polymerization [J] Langmuir, 2005, 21: 2124.
    [14] Maclachlan M. J, Manners I, Ozin G. A, New (Inter)Faces: Polymers and Inorganic Materials [J] Adv. Mater., 2000, 12: 675.
    [15] Percy M. J, Barthet C, Lobb J. C, Khan M. A, Lascelles S. F, Vamvakaki M, Armes S. P, Synthesis and Characterization of Vinyl Polymer?Silica Colloidal Nanocomposites [J] Langmuir, 2000, 16: 6913.
    [16] Tissot I, Reymond J. P, Lefebvre F, Bourgeat-Lami E, SiOH-Functionalized Polystyrene Latexes. A Step toward the Synthesis of Hollow Silica Nanoparticles [J] Chem. Mater., 2002, 14: 1325.
    [17] Zhang K, Chen X, Chen Z, Cui Z, B Yang, Macromol. Mater. Eng., 2003, 288, 380.
    [18] Zhang M, Gao G, Li C, Liu F, Titania-Coated Polystyrene Hybrid Microballs Prepared with Miniemulsion Polymerization [J] Langmuir, 2004, 20: 1420.
    [19] Hung C, Whang W, Effect of surface stabilization of nanoparticles on luminescent characteristics in ZnO/poly(hydroxyethyl methacrylate) nanohybrid films [J] J. Mater. Chem., 2005, 15: 267.
    [20] Xiong H, Liu D, Xia Y, Chen J, Polyether-Grafted ZnO Nanoparticles with Tunable and Stable Photoluminescence at Room Temperature [J] Chem. Mater., 2005, 17: 3062.
    [21] Abdullah M, Lenggoro I.W, Okuyama K, In Situ Synthesis of Polymer Nanocomposite Electrolytes Emitting a High Luminescence with a Tunable Wavelength [J] J. Phys. Chem. B., 2003, 107: 1957.
    [22] Sakohara S, Tickanen L. D, Anderson M. A, J. Phys. Chem., 1992, 96: 11086.
    [23] Monticone S, Tufeu R, Kanaev A. V, Complex Nature of the UV and VisibleFluorescence of Colloidal ZnO Nanoparticles [J] J. Phys. Chem. B, 1998, 102: 2854.
    [24] Sakohara S, Ishida M, Visible Luminescence and Surface Properties of Nanosized ZnO Colloids Prepared by Hydrolyzing Zinc Acetate [J] J. Phys. Chem. B, 1998, 102: 10169.
    [25] Hsu S, Whang W, Hung C, Chiang P, Hsiao Y, Macromol. Chem. Phys., 2005, 206: 291.
    [26] Spanhel L, Anderson M. A, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids [J] J. Am. Chem. Soc., 1991, 113: 2826.
    [1] Burroughes J. H, Bradley D. D. C, Brown A. R, Marks R. N, Friend R. H, Burns P. L, Holmes A. B, Nature, 1990, 347: 539.
    [2] Braun D, Heeger A, J. Visible light emission from semiconducting polymer diodes [J] Appl. Phys. Lett., 1991, 58: 1982.
    [3] Kraft A, Grimsdale A. C, Holmes A. B, Electroluminescent Conjugated Polymers - Seeing Polymers in a New Light [J] Angew. Chem. Int. Ed., 1998, 37: 402.
    [4] Yu G, Wang J, McElvain J, Heeger A. J, Large-Area, Full-Color Image Sensors Made with Semiconducting Polymers [J] Adv. Mater., 1998, 10: 1431.
    [5] Jin S, Kang S, Yeom I, Kim J, Park S, Lee K, Gal Y, Cho H, Color-Tunable Electroluminescent Polymers by Substitutents on the Poly(p-phenylenevinylene) Derivatives for Light-Emitting Diodes [J] Chem. Mater., 2002, 14: 5090.
    [6] Ananthakrishnan N, Padmanaban G, Ramakrishnan S, Reynolds J. R, Tuning Polymer Light-Emitting Device Emission Colors in Ternary Blends Composed of Conjugated and Nonconjugated Polymers [J] Macromolecules, 2005, 38: 7660.
    [7] Tang R. P, Tan Z. A, Cheng C. X, Li Y. F, Synthesis, electroluminescence, and photovoltaic properties of dendronized poly(p-phenylene vinylene) derivatives [J] Polymer, 2005, 46: 5341.
    [8] Sariciftci N. S, Smilowitz L, Heeger A. J, Wull F, Science, 1992, 258: 1474.
    [9] Chen Y, Midorikawu T, Bai JR, Liu Y, Araki Y, Tto O, Synthesis and photophysical properties of a charm-bracelet type C60-grafted PPV derivative [J] Polymer, 2005, 46: 9803.
    [10] Huang F, Wang H. L, Feldstein M, MacDiarmid A. G, Hsieh B. R, Epstein A. J, Application of thin films of conjugated polymers in electrochemical and conventional light-emitting devices and in related photovoltaic devices [J] Synth.Met., 1997, 85: 1283.
    [11] Yu G, Pakbaz K, Heeger A. J, Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity [J] Appl. Phys. Lett., 1994, 64: 3422.
    [12] Yu G, Heeger A. J, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions [J] J. Appl. Phys., 1995, 78: 4510.
    [13] Yu G, Wang J, McElvain J, Heeger A. J, Full-Color Image Sensors Made with Semiconducting Polymers [J] Adv. Mater., 1998, 10: 1431.
    [14] Shaheen S. E, Brabec C. J, Sariciftci N. S, Padinger F, Fromherz T, Hummelen J. C, 2.5% efficient organic plastic solar cells [J] Appl.Phys.Lett., 2001, 78: 841.
    [15] Brown A. R, Burn P. L, Bradley D. D. C, Friend R. H, Kraft A, Holmes A. B, Mol. Cryst. Liq. Cryst., 1992, 216: 111.
    [16] Braun D, Staring E. G. J, Demandt R. C. J. E, Rikken G. L. J, Kessener Y. A. R. R, Venhuizen A. H. J, Photo- and electroluminescence efficiency in poly(dialkoxy-p-phenylenevinylene) [J] Synth. Met., 1994, 66: 75.
    [17] Zhang C, Braun D, Heeger A. J, Light-emitting diodes from partially conjugated poly(p-phenylene vinylene) [J] J. Appl. Phys., 1993, 73: 5177.
    [18] Burn P. L, Holmes A. B, Kraft A, Bradley D. D. C, Brown A. R, Friend R. H, Gymer R. W, Nature, 1992, 47: 356.
    [19] Gowri R, Mandal D, Shivkumar B, Ramakrishnan S, Synthesis of Novel Poly[(2,5-dimethoxy-p-phenylene)vinylene] Precursors Having Two Eliminatable Groups: An Approach for the Control of Conjugation Length [J] Macromolecules, 1998, 31: 1819.
    [20] Gowri R, Padmanaban G, Ramakrishnan S, An approach for the control of conjugation length in ppv derivatives [J] Synth. Met., 1999, 101: 166.
    [21] Padmanaban G, Ramakrishnan S, Conjugation Length Control in SolublePoly[2-methoxy-5-((2‘-ethylhexyl)oxy)-1,4-phenylenevinylene] (MEHPPV): Synthesis, Optical Properties, and Energy Transfer [J] J. Am. Chem. Soc., 2000, 122: 2244.
    [22] Ahn T, Jang M. S, Shim H. K, Blue Electroluminescent Polymers: Control of Conjugation Length by Kink Linkages and Substituents in the Poly(p-phenylenevinylene)-Related Copolymers [J] Macromolecules, 1999, 32: 3279.
    [23] Li Y, Vamvounis G, Holdcroft S, Control of Conjugation Length and Enhancement of Fluorescence Efficiency of Poly(p-phenylenevinylene)s via Post-halogenation [J] Chem. Mater., 2002, 14: 1424.
    [24] Neef C. J, Ferraris J. P, MEH-PPV: Improved Synthetic Procedure and Molecular Weight Control [J] Macromolecules, 2000, 33: 2311.
    [25] Parekh B. P, Tangonan A. A, Newaz S. S, Sanduja S. K, Ashraf A. Q, Krishnamoorti R, Lee T. R, Use of DMF as Solvent Allows for the Facile Synthesis of Soluble MEH?PPV [J] Macromolecules, 2004, 37: 8883.
    [26] Chou H, Lin K, Fan Y, Wang D, Friction and wear mechanisms of polyamide 66/high density polyethylene blends [J] J. Polym. Sci. Part B: Polym Phys., 2005, 43: 2520.
    [27] Fan Y, Lin K, Synthesis and characterization of novel nano size electroactive poly 4,4-diaminodiphenyl sulphone [J] J. Polym. Sci. Part A: Polym Chem., 2005, 43: 1705.
    [28] Madhugiri S, Dalton A, Gutierrez J, Ferraris J. P, Balkus Jr K. J, Electrospun MEH-PPV/SBA-15 Composite Nanofibers Using a Dual Syringe Method [J] J. Am. Chem. Soc., 2003, 125: 14531.
    [1] Fleischhaker F, Zentel R, Photonic Crystals from Core-Shell Colloids with Incorporated Highly Fluorescent Quantum Dots [J] Chem. Mater., 2005, 17: 1346.
    [2] Clark H. A, Hoyer M, Philbert M. A, Kopelman R, Optical Nanosensors for Chemical Analysis inside Single Living Cells. 1. Fabrication, Characterization, and Methods for Intracellular Delivery of PEBBLE Sensors [J] Anal. Chem., 1999, 71: 4831.
    [3] Xu H, Aylott J. W, Kopelman R, Miller T. J, Philbert M. A, A Real-Time Ratiometric Method for the Determination of Molecular Oxygen Inside Living Cells Using Sol?Gel-Based Spherical Optical Nanosensors with Applications to Rat C6 Glioma [J] Anal. Chem., 2001, 73: 4124.
    [4] Clark H. A, Kopelman R, Tjalkens R, Philbert M. A, Optical Nanosensors for Chemical Analysis inside Single Living Cells. 2. Sensors for pH and Calcium and the Intracellular Application of PEBBLE Sensors [J] Anal. Chem., 1999, 71: 4837.
    [5] Ji J, Rosenzweig N, Griffin C, Rosenzweig Z, Synthesis and Application of Submicrometer Fluorescence Sensing Particles for Lysosomal pH Measurements in Murine Macrophages [J] Anal. Chem., 2000, 72: 3497.
    [6] Brasuel Murphy, Kopelman R, Miller T. J, Tjalkens R, Philbert M. A, Fluorescent Nanosensors for Intracellular Chemical Analysis: Decyl Methacrylate Liquid Polymer Matrix and Ion-Exchange-Based Potassium PEBBLE Sensors with Real-Time Application to Viable Rat C6 Glioma Cells [J] Anal. Chem., 2001, 73: 2221.
    [7] McNamara K. P, Nguyen T, Dumitrascu G, Ji L, Rosenzweig N, Rosenzweig Z, Synthesis, Characterization, and Application of Fluorescence Sensing Lipobeads for Intracellular pH Measurements [J] Anal. Chem., 2001, 73: 3240.
    [8] Bhalgat M. K, Haugland R. P, Pollack J. S, Swan S, Haugland R. P, Journal of Immunological Methods, 1998, 219: 57.
    [9] O’Brien P, Cummins S. S, Darcy D, Dearden A, Masala O, Pickett N. L, Ryley S, Sutherland A. J, Quantum dot-labelled polymer beads by suspension polymerization [J] Chem. Commun., 2003, 2532.
    [10] Li Y, Li E. C. Y, Pickett N, Skabara P. J, Cummins S. S, Ryley S, Sutherland A. J, O’Brien P, Synthesis and characterization of CdS quantum dots in polystyrene microbeads [J] J. Mater. Chem., 2005, 15: 1238.
    [11] Yang X, Zhang Y, Encapsulation of Quantum Nanodots in Polystyrene and Silica Micro-/Nanoparticles [J] Langmuir, 2004, 20: 6071.
    [12] Burroughes J. H, Bradley D. D. C, Brown A. R, Marks R. N, Friend R. H, Burns P. L, Holmes A. B, Nature 1990, 347: 539.
    [13] Yu G, Wang J, McElvain J, Heeger A. J, Large-Area, Full-Color Image Sensors Made with Semiconducting Polymers [J] Adv. Mater., 1998, 10: 1431.
    [14] Ananthakrishnan N, Padmanaban G, Ramakrishnan S, Reynolds J. R, Tuning Polymer Light-Emitting Device Emission Colors in Ternary Blends Composed of Conjugated and Nonconjugated Polymers [J] Macromolecules, 2005, 38: 7660.
    [15] Padmanaban G, Ramakrishnan S, Conjugation Length Control in Soluble Poly[2-methoxy-5-((2‘-ethylhexyl)oxy)-1,4-phenylenevinylene] (MEHPPV): Synthesis, Optical Properties, and Energy Transfer [J] J. Am. Chem. Soc., 2000, 122: 2244.
    [16] Ahn T, Jang M. S, Shim H. K, Blue Electroluminescent Polymers: Control of Conjugation Length by Kink Linkages and Substituents in the Poly(p-phenylenevinylene)-Related Copolymers [J] Macromolecules, 1999, 32: 3279.
    [17] Li Y, Vamvounis G, Holdcroft S, Control of Conjugation Length and Enhancement of Fluorescence Efficiency of Poly(p-phenylenevinylene)s via Post-halogenation [J] Chem. Mater., 2002, 14: 1424.
    [18] Liu X, Guan Y, Ma Z, Liu H, Surface Modification and Characterization ofMagnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization [J] Langmuir, 2004, 20: 10278.
    [19] Tiarks F, Landfester K, Antonietti M, Silica Nanoparticles as Surfactants and Fillers for Latexes Made by Miniemulsion Polymerization [J] Langmuir, 2001, 17: 5775.
    [20] Zhang S, Zhou S, Weng Y, Wu L, Synthesis of SiO2/Polystyrene Nanocomposite Particles via Miniemulsion Polymerization [J] Langmuir, 2005, 21: 2124.
    [21] Zhang M, Gao G, Li C, Liu F, Titania-Coated Polystyrene Hybrid Microballs Prepared with Miniemulsion Polymerization [J] Langmuir, 2004, 20: 1420.
    [22] Joumaa, N.; Lansalot, M.; Théretz A.; Elaissari, A. Langmuir 2006, 22, 1810.
    [23] Yang Y, Wen Z, Dong Y, Gao M, Incorporating CdTe Nanocrystals into Polystyrene Microspheres: Towards Robust Fluorescent Beads [J] Small, 2006, 2: 898.
    [24] Ando K, Kawaguchi H, High-performance fluorescent particles prepared via miniemulsion polymerization [J] Journal of Colloid and Interface Science, 2005, 285: 619.
    [25] Tronc F, Li M, Lu J, Winnik M. A, Kaul B. L, Graciet J. C, Fluorescent polymer particles by emulsion and miniemulsion polymerization [J] Journal of Polymer Science: Part A: Polymer Chemistry, 2003, 41: 766.
    [26] Zhang J, Gao G, Zhang M, Zhang D, Wang C, Zhao D, Liu F, ZnO/PS core–shell hybrid microspheres prepared with miniemulsion polymerization [J] Journal of Colloid and Interface Science, 2006, 301: 78.
    [27] Zhang J, Gao G, Dong W, Zhao D, Liu F, Polychromatic light-emitting conjugated polymer prepared by controlling its structure through active free radical addition [J] Polymer International, 2008, 57: 921.
    [28] Holzapfel V, Musyanovych A, Landfester K, Lorenz M. R, Mail?nder V, Macromol. Chem. Phys., 2005, 206: 2440.
    [29] Neef C. J, Ferraris J. P, MEH-PPV: Improved Synthetic Procedure and Molecular Weight Control [J] Macromolecules, 2000, 33: 2311.
    [30] Parekh B. P, Tangonan A. A, Newaz S. S, Sanduja S. K, Ashraf A. Q, Krishnamoorti R, Lee T. R, Use of DMF as Solvent Allows for the Facile Synthesis of Soluble MEH?PPV [J] Macromolecules, 2004, 37: 8883.
    [1] Lee H, Lee E, Kim D. K, Jang N. K, Jeong Y. Y, Jon S, Antibiofouling Polymer-Coated Superparamagnetic Iron Oxide Nanoparticles as Potential Magnetic Resonance Contrast Agents for in Vivo Cancer Imaging [J] J. Am. Chem. Soc., 2006, 128: 7383.
    [2] Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Prog Solid State Chem, 2006, 34: 237.
    [3] Thorek L. J. D, Chen A. K, Czupryna J, Tsourkas A, Ann Biomed Eng, 2006, 34: 23.
    [4] Ito A, Ino K, Kobayashi T, Honda H, The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting [J] Biomaterials, 2005, 26: 6185.
    [5] Sincai M, Ganga D, Ganga M, Argherie D, Bica D, Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma [J] J Magn Magn Mater, 2005, 293: 438.
    [6] Morishita N, Nakagami H, Morishita R, Biochem Biophys Res Commun, 2005, 334: 1121.
    [7] Neuberger T, Schopf B, Hofmann H, Hofmann M, Rechenberg B. V, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system [J] J Magn Magn Mater, 2005, 293: 483.
    [8] Berry C. C, Curtis A. S. G, Functionalisation of magnetic nanoparticles for applications in biomedicine [J] J Phys D Appl Phys, 2003, 36: R198.
    [9] Makhluf S. B. D, Abu-Mukh R, Rubinstein S, Breitbart H, Gedanken A, Modified PVA-Fe3O4 Nanoparticles as Protein Carriers into Sperm Cells [J] Small, 2008, 4: 1453.
    [10] Lee J, Lee Y, Youn J. K, Na H. B, Yu T, Kim H, Lee S. M, Koo Y. M, Kwak J. H, Park H. G, Chang H. N, Hwang M, Park J. G, Kim J, Hyeon T, Simple Synthesis of Functionalized Superparamagnetic Magnetite/Silica Core/ShellNanoparticles and their Application as Magnetically Separable High-Performance Biocatalysts [J] Small, 2008, 4: 143.
    [11] Dyal A, Loos K, Noto M, Chang S. W, Spagnoli C, Shafi K. V. P. M, Ulman A, Cowman M, Gross R. A, Activity of Candida rugosa Lipase Immobilized onγ-Fe2O3 Magnetic Nanoparticles [J] J. Am. Chem. Soc., 2003, 125: 1684.
    [12] Guedes M. H. A, Sadeghiani N, Peixoto D. L. G, Effects of AC magnetic field and carboxymethyldextran-coated magnetite nanoparticles on mice peritoneal cells [J] J Magn Magn Mater, 2005, 293: 283.
    [13] Zeng H, Li J, Zhong L, Sun S, Nature, 2002, 420: 395.
    [14] Sun S, Zeng H, Robinson D. B, Raoux S, Rice P. M, Wang S. X, Li G, Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles [J] J. Am. Chem. Soc., 2004, 126: 273.
    [15] Jana N. R, Chen Y, Peng X, Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach [J] Chem. Mater., 2004, 16: 3931.
    [16] Kim D, Park J, An K, Yang N. K, Park J. G, Hyeon T, Synthesis of Hollow Iron Nanoframes [J] J. Am. Chem. Soc., 2007, 129: 5812.
    [17] Park J, An K, Hwang Y, Park J. G, Noh H. J, Kim J. Y, Park J. H, Hwang N. M, Hyeon T, Nat. Mater., 2004, 3: 891.
    [18] Rockenberger J, Scher E. C, Alivisatos A. P, A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides [J] J. Am. Chem. Soc., 1999, 121: 11595.
    [19] Puntes V. F, Krishnan K. M, Alivisatos A. P, Science, 2001, 291: 2115.
    [20] Wang Y, Wong J. F, Teng X. W, Lin X. Z, Yang H,“Pulling”Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions ofα-Cyclodextrin [J] Nano. Lett., 2003, 3: 1555.
    [21] Liong M, Lu J, Kovochich M, Xia T, Ruehm S. G, Nel A. E, Tamanoi F, Zink J. I, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery [J] ACS Nano., 2008, 2: 889.
    [22] Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach A. L, Keller S, Ra1dler J, Natile G, Parak W. J, Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals [J] Nano. Lett., 2004, 4: 703.
    [23] Kohler N, Fryxell G. E, Zhang M. Q, A Bifunctional Poly(ethylene glycol) Silane Immobilized on Metallic Oxide-Based Nanoparticles for Conjugation with Cell Targeting Agents [J] J. Am. Chem. Soc., 2004, 126: 7206.
    [24] Xie J, Xu C. J, Kohler N, Hou Y. L, Sun S. H, Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells [J] Adv. Mater., 2007, 19: 3163.
    [25] Fana Q. L, Neohb K. G, Kangb E. T, Shutera B, Wang S. C, Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: Synthesis, characterization and cellular uptake [J] Biomaterials, 2007, 28: 5426.
    [26] Li Z, Sun Q, Gao M, Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4 [J] Angew. Chem. Int. Ed., 2005, 44: 123.
    [27] Hu F, Wei L, Zhou Z, Ran Y, Li Z, Gao M, Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer [J] Adv. Mater., 2006, 18: 2553.
    [28] Li Z, Wei L, Gao M, Lei H, One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles [J] Adv. Mater., 2005, 17: 1001.
    [29] Vestal C, Zhang Z. J, Atom Transfer Radical Polymerization Synthesis and Magnetic Characterization of MnFe2O4/Polystyrene Core/Shell Nanoparticles [J] J. Am. Chem. Soc., 2002, 124: 14312.
    [30] Wang Y, Teng X, Wang J. S, Yang H, Solvent-Free Atom Transfer Radical Polymerization in the Synthesis of Fe2O3@Polystyrene Core?Shell Nanoparticles [J] Nano. Lett., 2003, 3: 789.
    [31] Li G, Fan J, Jiang R, Gao Y, Cross-linking the Linear Polymeric Chains in the ATRP Synthesis of Iron Oxide/Polystyrene Core/Shell Nanoparticles [J] Chem.Mater., 2004, 16: 1835.
    [32] Gravano S. M, Dumas R, Liu K, Patten T. E, Methods for the surface functionalization of Fe2O3 nanoparticles with initiators for atom transfer radical polymerization and the formation of core-shell inorganic-polymer structures [J] J Polym Sci Part A: Polym Chem, 2005, 43: 3675.
    [33] Lattuada M, Hatton T. A, Functionalization of Monodisperse Magnetic Nanoparticles [J] Langmuir, 2007, 23: 2158.
    [34] Sun S. H, Zeng H, Size-Controlled Synthesis of Magnetite Nanoparticles [J] J. Am. Chem. Soc., 2002, 124: 8204.
    [35] Kalra B, Kumar A, Gross R, Polymer Synthesis by In Vitro Enzyme Catalysis [J] Chem. ReV., 2001, 101: 2097.
    [36] Rao M, Alving C. R, Delivery of lipids and liposomal proteins to the cytoplasm and Golgi of antigen-presenting cells [J] Adv. Drug. Deliv. Rev., 2000, 41: 171.
    [37] Stewart K. M, Horton K. L, Kelley S. O, Org. Biomol. Chem., 2008, 6: 2242.
    [38] Futami J, Kitazoe M, Maeda T, Nukui E, Sakaguchi M, Kosaka J, Miyazaki M, Yamada H, Intracellular delivery of proteins into mammalian living cells by polyethylenimine-cationization [J] Journal of Bioscience and Bioengineering, 2005, 99: 95.
    [1] Duncan R, The dawning era of polymer therapeutics [J] Nat. ReV. Drug. Discovery., 2003, 2: 347.
    [2] Kater N. V, J Immunol, 1990, 144: 209.
    [3] Katre N. V, Knauf M. J, Laird W. J, Proc Natl Acad Sci USA, 1987, 84: 1487.
    [4] Velonia K, Rowan A. E, Nolte R. J, Lipase Polystyrene Giant Amphiphiles [J] J. Am. Chem. Soc., 2002, 124: 4224.
    [5] Hannink J. M, Cornelissen J. J, Farrera J. A, Foubert P, De Schryver F. C, Sommerdijk N. A, Nolte R. J, Design and Synthesis of a Peptide That Binds Specific DNA Sequences through Simultaneous Interaction in the Major and in the Minor Groove [J] Angew. Chem. Int. Ed., 2001, 40: 4732.
    [6] Hannink J. M, Cornelissen J. J. L. M, Farrera J. A, Foubert P, De Schryver F. C, Sommerdijk N. A. J. M, Nolte R. J. M, Design and Synthesis of a Peptide That Binds Specific DNA Sequences through Simultaneous Interaction in the Major and in the Minor Groove [J] Angew. Chem. Int. Ed., 2001, 40: 4732.
    [7] Velonia K, Rowan A. E, Nolte R. J. M, Lipase Polystyrene Giant Amphiphiles [J] J. Am. Chem. Soc., 2002, 124: 4224.
    [8] Boerakker M. J, Hannink J. M, Bomans P. H. H, Frederik P. M, Nolte R. J. M, Meijer E. M, Sommerdijk N. J. M, Giant Amphiphiles by Cofactor Reconstitution [J] Angew. Chem. Int. Ed., 2002, 41: 4239.
    [9] Ding Z, Fong R. B, Long C. J, Stayton P. S, Hoffman A. S, Nature 2001, 411, 59.
    [10] Kim J, Grate J. W, Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network [J] Nano. Letters., 2003, 3: 1219.
    [11] Drevon G. F, Hartleib J, Scharff E, Rueterjans H, Russell A. J, Thermoinactivation of Diisopropylfluorophosphatase-Containing Polyurethane Polymers [J] Biomacromolecules, 2001, 2: 664.
    [12] Dravis B. C, Swanson P. E, Russell A J, Haloalkane hydrolysis with an immobilized haloalkane dehalogenase [J] Biotechnology and Bioengineering,2001, 75: 416.
    [13] Kim J, Grate J. W, Wang P, Nanostructures for enzyme stabilization [J] Chemical Engineering Science, 2006, 61: 1017.
    [14] Demers N, Agostinelli E, Averill-Bates D. A, Fortier G, Immobilization of native and poly(ethylene glycol)-treated ('PEGylated') bovine serum amine oxidase into a biocompatible hydrogel [J] Biotechnol Appl Biochem, 2001, 33: 201.
    [15] Betancor L, Hidalgo A, Mateo C, Fernandez-Lafuente R, Guisan J. M, Biotechnol Progr, 2003, 33: 7938.
    [16] Betancor L, Lopez-Gallego F, Hidalgo A, Alonso-Morales N, Fuentes M, Fernandez-Lafuente R, Guisan J. M, Prevention of interfacial inactivation of enzymes by coating the enzyme surface with dextran-aldehyde [J] J Biotechnol, 2004, 110: 201.
    [17] Wang P, Sergueeva M. S, Lim L, Biocatalytic plastics as active and stable materials for biotransformations [J] Nature Biotechnology, 1997, 15: 789.
    [18] Zhu G. Y, Wang P, Polymer?Enzyme Conjugates Can Self-Assemble at Oil/Water Interfaces and Effect Interfacial Biotransformations [J] J. Am. Chem. Soc., 2004, 126: 11132.
    [19] Wang L, Zhu G. Y, Wang P, Self-Assembling of Polymer-Enzyme Conjugates at Oil/WaterInterfaces [J] Biotechnol Prog, 2005, 21: 1321.
    [20] Zhu G. Y, Wang P, Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene [J] Biotechnol, 2005, 117: 195.
    [21] Veronese F. M, Pasut G, PEGylation, successful approach to drug delivery [J] Drug Discovery Today, 2005, 10: 1451.
    [22] Pasut G, Veronese F. M, PEGylation of proteins as tailored chemistry for optimized bioconjugates [J] Adv Polym Sci, 2006, 192: 95.
    [23] Fischer L, Peiuker F, Appl Microbiol Biotechnol, 1998, 49: 129.
    [24] Ito Y, Fujii H, Imanishi Y, Modification of Lipase with Various Synthetic Polymers and Their Catalytic Activities in Organic Solvent [J] Biotechnol. Prog., 1994, 10: 398.
    [25] Bontempo D, Maynard H. D, Streptavidin as a Macroinitiator for Polymerization: In Situ Protein?Polymer Conjugate Formation [J] J. Am. Chem. Soc., 2005, 127: 6508.
    [26] Lele B. S, Murata H, Matyjaszewski K, Russell A. J, Synthesis of Uniform Protein?Polymer Conjugates [J] Biomacromolecules, 2005, 6: 3380.
    [27] Mei Y, Beers K. L, Michelle H. C, VanderHart D. L, Washburn N. R, Solid-Phase ATRP Synthesis of Peptide?Polymer Hybrids [J] J. Am. Chem. Soc., 2004, 126: 3472.
    [28] Zhu J. M, Li P, Synthesis and characterization of poly(methyl methacrylate)/casein nanoparticles with a well-defined core-shell structure [J] Journal of Polymer Science: Part A: Polymer Chemistry, 2003 41: 3346.
    [29] Kim J, Grate J. W, Single-Enzyme Nanoparticles Armored by a Nanometer-Scale Organic/Inorganic Network [J] Nano. Letters., 2003, 3: 1219.
    [30] Kunitz, M, A SPECTROPHOTOMETRIC METHOD FOR THE MEASUREMENT OF RIBONUCLEASE ACTIVITY [J] J. Biol. Chem., 1946, 164: 563.
    [31] Jens K, Renate U. H, pH-Stat Titration Allows the Continuous Determination of Ribonuclease A Activity toward Cytidine 2′,3′-Cyclic Monophosphate at High Substrate Concentrations [J] Analytical Biochemistry, 2002, 305: 281.
    [32] Sui X. F, Yuan J. Y, Zhou M, Zhang J, Yang H. J, Yuan W. Z, Wei Y, Pan C. Y, Synthesis of Cellulose-graft-Poly(N,N-dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media [J] Biomacromolecules, 2008, 9: 2615.
    [33] Yan M, Ge J, Liu Z, Ouyang P, Encapsulation of Single Enzyme in Nanogel with Enhanced Biocatalytic Activity and Stability [J] J. Am. Chem. Soc., 2006, 128: 11008.
    [34] Futami J, Maeda T, Kitazoe M, Nukui E, Tada H, Seno M, Kosaka M, Yamada H, Preparation of Potent Cytotoxic Ribonucleases by Cationization: Enhanced Cellular Uptake and Decreased Interaction with Ribonuclease Inhibitor byChemical Modification of Carboxyl Groups [J] Biochemistry, 2001, 40: 7518.
    [35] Futami J, Kitazoe M, Maeda T, Nukui E, Sakaguchi M, Kosaka J, Miyazaki M, Yamada H, Intracellular delivery of proteins into mammalian living cells by polyethylenimine-cationization [J] Journal of Bioscience and Bioengineering, 2004, 99: 95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700