用户名: 密码: 验证码:
山西省繁峙县义兴寨金矿床成因矿物学研究与成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山西省繁峙县义兴寨金矿经十多年开采,探明储量已近枯竭。本文依托全国危机矿山项目《山西省繁峙县义兴寨金矿矿产预测》(No.200714009),对该矿床的成因矿物学进行了深入研究,以期为矿区外围及深部远景预测提供依据。
     该矿床处于山西陆台与燕山沉降带间构造岩浆活动带上,区内构造、岩浆活动频繁,脉岩发育,与成矿关系密切的燕山期岩浆岩为孙庄岩体。金矿体赋存于恒山杂岩中,受NW向断裂控制,产出类型以石英脉型为主,兼有石英脉-构造蚀变岩型和隐爆角砾岩型。
     本文以成因矿物学为纲,分别以孙庄岩体、隐爆角砾岩和含金石英脉中的锆石、石榴子石、绿帘石、石英和黄铁矿进行形态、成分、结构以及物理性质、谱学性质的研究探讨矿床形成的物质、能量来源、矿床形成过程以及成矿预测。
     对孙庄闪长岩体锆石群形态、成分及年代学研究表明,该岩体为富水、富碱质深源侵入岩,形成于中生代晚期,属早期相对氧化、晚期相对还原的结晶环境。
     隐爆角砾岩体矽卡岩化过程中形成了钙铝榴石-钙铁榴石、绿帘石-斜黝帘石两个分别代表干、湿矽卡岩阶段的矿物系列。石榴子石和绿帘石环带结构是角砾岩筒中T、P、Eh、pH等物理化学条件发生过多次变化,岩浆-热液多次聚集能量-隐蔽爆破过程的体现。
     石英流体包裹体研究表明,成矿流体为CO2-H2O体系,液相成分主要为Na+和Cl-,均一温度介于130~380℃之间,pH:6.24~6.45、Eh:-0.8~-1.3、盐度:9.01~20.96、密度:0.84~0.87、成矿深度1.57~2.64km;晶胞参数随矿化强度的增大而增大、随成矿深度增加而降低,主成矿阶段石英热释光曲线呈双峰型、峰位集中在238~258℃和310~324℃、红外光谱结晶指数介于2~4之间, 1085cm-1半高宽值30~60cm-1, 800cm-1、780cm-1吸收强度6%~10%。
     1070m~830m中段黄铁矿晶形以五角十二面体和立方体的复杂聚形为主,S/Fe >2为富铁亏硫型,微量元素以富集Co、Ni、Cu、Pb、Zn、Mo为主要特点;主成矿阶段晶胞参数a0较大并与构造差应力对应性较好;热电系数值为0~﹣200μV·℃﹣1、N型比例70%以上,热电性标尺计算成矿温度143.3~323.3℃,与主成矿期石英的流体包裹体均一温度170~230℃、爆裂温度140~280℃相近。
     稳定同位素显示,该矿床成矿热液主要为岩浆水,后期有大气水的混入,成矿物质主要来自上地幔与下地壳。结合成矿流体性质,认为义兴寨金矿床属于中低温岩浆热液型矿床。根据构造控矿规律、矿物标型研究、矿物学填图,提出义兴寨金矿区深部与近外围远景预测靶区13处(重点靶区3处),其中2处已得到实际钻孔工程验证——5#脉以南验证孔见金矿体厚度达近1米,金品位4.99g/t;河湾岩体附近验证孔见9~15m厚的钼矿体,钼品位0.05%~0.1%。
After being explored for twenty years, the proved reserve of Yi Xingzhai gold deposit is close to exhausted. Supported by t“Mineral prediction of Yi Xingzhai gold deposit in Fan Shan county, Shan Xi province”(No. 200714009), this thesis focus on genetic mineralogy in order to supply the scientific evidence for the prospective prognosis in depth and periphery.
     This mine is located in the northern part of medium zone of north china craton, where tectonic movement and magmatic activities are active. The Sun Zhuang rock mass, in the south of the deposit, is related to the ore-forming genetically. The auriferous ore bodies which are controlled by the Northern west fault, are in the complex of Heng Shan Mountain. The ore type is composed by quartz vein, structural altered rock type and crypto-explosive breccia type.
     The results of the morphologies, elemental components and geochronology of zircons show that Sun Zhuang body mass are water-rich, alkali deep source intrusive rock.
     The hessonite-demantoid and epidote-clinozoisite represent two stages of skarnized process respectively. The zonal structure of garnet and epidote indicates that the T, P, Eh, pH et., in the crypto-explosive breccia pipe have changed with the energy accumulation or release of the magma and hydrothermal fluid.
     The component in the quartz fluid inclusions is composed of CO2, H2O, Na+and Cl-.The homogeneous temperature is between 130~380℃. pH:6.24~6.45, Eh:-0.8~ -1.3, salinity: 9.01~20.96, density: 0.84~0.87 and mineralization depth: 1.57~2.64km. The cell parameters of quartz are correlated with mineralization intensity positively and with metallogenic depth negatively. The curves shape of thermoluminescence of major metallogenic stages are two-peak pattern. The curve peak locations are between 238~258℃and 310~324℃. FTIR index of quartz powder is between 2~4, the half-width of the asymmetric stretching vibrational band 1085 cm-1 and the absorption intensity of symmetric stretching vibrational band 800cm-1、780cm-1 are at the range of 30~60cm-1 and 6~10%.
     The morphological characteristic of pyrite is the combination form of pentagonal dodecahedron and cube. The ratio of S/Fe is over 2 and the concentration of Co, Ni, Pb, Zn and Mo is high in pyrite. The rations of Zr/Hf, Nb/Ta are stable in pyrite of the quartz vein while unstable in the crypt-breccia pipe. The cell parameters of pyrite are correlated positively with tectonic difference stress in the main mineralization stages. The pyrelectric coefficient is at the range of 0~﹣200μV·℃﹣1, over 70% are N type. According to the computation of the thermoelectric, the mineralization temperature is 143.3~323.3℃, wihich is consistent with the fluid inclusion of quartz and shock temperature of pyrite. The fluid inclusion in pyrite are abundant, the temperature interval of explosive is between 210~282℃.
     The result of stable isotope shows that the ore-forming hydrothermal fluid of the deposit is magmatic fluid at early stage and incorporated some meteoric water in late. The matallogenic material comes from the border between the upper mantle and lower crust. Considering the characteristics of ore forming fluid, it is attributed to hypabyssal-medium-low temperature– magmatic hydrothermal deposit. Based on the tectonic regularity, mineralogy typmorphic characteristics, and mineralogical mapping, thirteen predicting target areas (three of them were in the first list) were proposed in depth and peripheral. Among the first list, there are 2 targets have been verified by drilling hole in field. in the south of 5#.One auferious body is approach to 1m and the gold grade is about 4.99g/t. The other verified target is a porphyritic Molybdenm near the He Wan crypto-explosive breccia pipe, and the result of explored Molybdenm mass body is that the thickness is about 9~15m, the molybdenum grade is 0.05~0.1%
引文
[1] Bajwah Z U , Seccombe P K and Offler R. Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit , New South Wales , Australia [J] . Mineralium Deposita , 1987,22 :292-303.
    [2] Barbey P, AlléP, Brouand M, Albarède F Rare-earth patterns in zircons from the Manaslu granite and Tibetan Slab migmatites (Himalaya): insights in the origin and evolution of a crustally-derived granite magma. Chem Geol, 1995,125:1-17.
    [3] Belousova EA, Griffin WL, Pearson NJ Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral Mag, 1998,62:355-366.
    [4] Brill,B A.Trace element contents and partitioning of elements in ore mineral from the CSA Cu-Pb-Zn deposit, Australia[J]. Can. Mineral.,1989,27:263-274.
    [5] Chen Guangyuan, Sun Daisheng, Shao Wei, et al., Atals of Mineralogical Mapping in East Jiaodong Gold Province[M]. Beijing: Geological Publishing House. 1996: 73-95, 119-125.
    [6] David B. Forster; PHILIP K. SECCOMBE. Controls on Skarn Mineralization and Alteration at the Cadia Deposits,New South Wales, Australia. Economic Geology.2004, 99: 761-788.
    [7] Diamond L W. Introduction to phase relations of CO2-H2O fluid inclusions 2003.In De Vivo B, et al.(eds). Fluid inclusionsin minerals: methods and applications 2003.IMA Short Course Volume, 1994,131-158.
    [8] Gerhard Franz, Axel liebscher.Physical and Chemical Properties of the Epidote Minerals. Reviews in Mineralogy &Geochemistry.2004,56: 171-195.
    [9] Heaman LM, Bowins R, Crocket J The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta, 1990,54:1597-1607.
    [10] Hinton RW, Meyer C. Ion probe analysis of zircon and yttrobetafite in a lunar granite. Lunar Planet Sci, 1991, 22:575-576.
    [11] Hoskin P W O, Ireland T R.Rare earth element chemistry of zircon and its use as a provenance indicator.Geology, 2000,28:627-630.
    [12] Hoskin P W O, Kinny P D, Wyborn D.Chemistry of hydrothermal zircon: investigating timing and nature of water-rock interaction. In Water-RockInteraction, WRI-9. Arehart GB, Hulston JR (eds) AA Balkema, Rotterdam, 1998,:545-548.
    [13] Kerrich R, Wyman D A. Geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes [J]. Geology, 1990,18:882-885.
    [14] McDonough, W.F. and Sun, S. Composition of the Earth. Chemical Geology 1995,120: 223-253.
    [15] Middlemost EAK.Naming materials in the magma/igneous rock system. Earth-Science Review,1994,37,215-224.
    [16] Murali AV, Parthasarathy R, Mahadevan TM, Sankar Das M.Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments—A case study on Indian zircons. Geochim Cosmochim Acta, 1983,47:2047-2052.
    [17] Peck W H, Valley J W, Wilde S A, Graham C M.Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for highδ18O continental crust and oceans in the Early Archean. Geochim Cosmochim Acta, 2001,65:4215-4229.
    [18] Pupin J P Magmatic zoning of Hercynian granitoids in France based on zircon typology. Switzerland: Minerd. petrograph.Mitt, 1985,65:29-36.
    [19] Pupin J P. Zircon and granite petrology, Contrib[J].Mineral.Petrol, 1980,73: 207-220.
    [20] Sano Y, Terada K, Fukuoka T. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency[J]. Chem Geol, 2002,184:217-230.
    [21] Snyder G A, Taylor L A, Crozaz G Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14: an ion probe study of evolved rocks on the Moon[J]. Geochim Cosmochim Acta,1993,57:1143-1149.
    [22] Stefano Poli,Max W. Schmidt.Exoerimental Subsolidus Studies on Epidote Minerals.Reviews in Mineralogy & Geochemistry.2004, 56:1-82.
    [23] Wyborn D.Fractionation processes in the Boggy Plain zoned pluton. PhD Thesis,1983
    [24] Zhao G C,Wilde S A, Cawood P A,et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution[J].Precambrian Research,2001,107:45-73.
    [25] V.C.法默.矿物的红外光谱[M].北京:科学出版社,1982.
    [26]Ярцев.А.Л.金矿床黄铁矿的地球化学特征(以哈萨克为例)[J].地质地球化学,1988,(9).
    [27]毕献武,胡瑞忠,彭建堂,吴开兴.黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J].2004,(1):1-4.
    [28]陈道公,汪相,李彬贤等.北大别辉石岩成因:锆石微区年龄和化学组成[J].科学通报,2001,46(7):586-590.
    [29]陈光远,邵伟,孙岱生.胶东金矿成因矿物学与找矿[M].重庆:重庆出版社, 1989,125-234.
    [30]陈光远,孙岱生,殷辉安.成因矿物学与找矿矿物学[M].重庆:重庆出版社,1984:11-32.
    [31]陈光远,孙岱生,周珣若等.胶东郭家岭花岗闪长岩成因矿物学与金矿化.武汉:中国地质大学出版社[M], 1993,155-164.
    [32]程裕淇.中国区域地质概论[M].北京:地质出版社,1994,1-517.
    [33]樊文苓,王声远,田弋夫.金在碱性富硅热液中溶解和迁移的实验研究[J].矿物学报,1995,15(2):176-183.
    [34]侯贵廷,张臣,钱祥麟,张宝兴.华北克拉通中元古代基性岩墙群形成机制及构造应力场[J].地质论评,1998,44(3):309-314.
    [35]华仁民.成矿过程中由流体混合而导致金属沉淀的研究[J].地球科学进展,1994,9(4):15-21.
    [36]黄振恒.湖南两金矿石英含金性红外光谱判别[J].矿物岩石,1990,10(4): 89-96.
    [37]姜绍飞,杜振国,刘之洋.义兴寨金矿黄铁矿的标型特征及成因意义[J].矿产与地质,1995, 47(9):203-207.
    [38]蒋先明.简明红外光谱识谱法[M].南宁:广西师范大学出版社,1992:1-25.
    [39]景淑慧.繁峙义兴寨金矿的成矿条件[J].山西地质,1992,7(1):51-64.
    [40]景淑慧.山西省繁峙县义兴寨金矿床成矿地质条件及成矿规律的研究.山西省地质矿产局211地质队,1985年.1-286.
    [41]李秉伦,石岗.矿物中包裹体气体成分的物理化学参数图解[J].地球化学,1986, (2):126-137.
    [42]李和平,张振儒,陈梦熊.矿物类质同象的红外光谱研究[J].桂林冶金地质学院学报,1994,14(1):31-40.
    [43]李红兵,曾凡治.金矿中的黄铁矿标型特征[J].地质找矿论丛,2005,20(3): 199-203.
    [44]李江海,钱祥麟.恒山变质岩区晚太古宙地质事件序列及其地壳演化意义[J].中国区域地质,1995,1: 36-43.
    [45]李胜荣.胶东乳山金矿田成因矿物学[M].北京:地质出版社,1996. 1-111.
    [46]李胜荣.结晶学与矿物学[M].北京:地质出版社,2008.
    [47]李胜荣.以隐爆角砾岩型为主的金矿床系列模式[J].有色金属矿产与勘探,1995,4(5):272-277.
    [48]李双保,李俊建.山西恒山义兴寨脉金矿田成矿地球化学特征[J].前寒武纪研究进展,1997, 20(2): 1-21.
    [49]梁祥济.钙铝一钙铁系列石榴子石的特征及其交代机理[J].岩石矿物学杂志,1994,13(4):342-351.
    [50]刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352.
    [51]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999,1-290.
    [52]刘凤岐,真允庆.晋东北“金三角”地区金、银矿床成矿构造环境[J].地质找矿论丛,1994,9(1):27-38.
    [53]刘英俊,马东升.金的地球化学[M].北京:地质出版社,1991.
    [54]潘兆橹.结晶学与矿物学[M].北京:地质出版社,1994.114.
    [55]彭大明.晋东北地区金矿类型及找矿方向[J]..贵金属地质, 1995, 4(4): 263-268.
    [56]任纪舜等.中国大地构造及其演化[M].北京:科学出版社,1983.
    [57]邵洁涟.金矿找矿矿物学[M].湖北,中国地质大学出版社,1988.
    [58]邵伟,陈光远,孙岱生.黄铁矿热电性研究方法及其在胶东金矿的应用[J].现代地质,1990,4(1):46-57.
    [59]宋彪,张玉海,万渝生.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评, 2002,5(增刊): 26-30.
    [60]汤艳杰,张宏福,英基丰,等.太行山地区中、新生代玄武质岩浆的源区特征与时空演化[J].岩石学报,2006,22(6):1657-1664.
    [61]田永清,梁英芳,范嗣昆,朱炳泉,陈毓蔚.恒山杂岩的年代学和铷同位素演化[J].地球化学,1992,(3):255-263.
    [62]田永清,王安建,余克忍,许文良.山西省五台山—恒山地区脉状金矿成矿的地球动力学[J].华北地质矿产杂志,1998,13(4):301-456.
    [63]田永清.五台山-恒山绿岩带地质及金的成矿作用[M].山西:山西科学出版社,1991,69.
    [64]王安建,马志红,周永娴,李明泽.晋东北地区义兴寨金矿综合找矿模型.地质找矿论丛,1993.6,8(2):1-14.
    [65]王仁民,陈珍珍,陈飞.恒山灰色片麻岩和高压麻粒岩包体及其地质意义[J].岩石学报,1991,(4):36-44.
    [66]王晓燕,毕于润.晋东北两个金矿床的矿物特征[J].地质与勘探,1993(29)5: 29-32, 49.
    [67]王玉荣,胡受奚.钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例[J].中国科学(D辑),2000,30(5):499-509.
    [68]魏明秀.黄铁矿成因特征的研究[J].矿产地质研究院学报,1984, (3):1-10.
    [69]闻铬.矿物红外光谱学[M].重庆:重庆大学出版社,1989:1-190.
    [70]吴春明.五台山区义兴寨岩体、车厂-北台岩体地球化学和变质作用及其大地构造意义:[博士学位论文].北京:中国科学院地质与地球物理研究所,1999.
    [71]席斌斌,张德会,周利敏,张文淮,王成.江西省全南县大吉山钨矿成矿流体演化特征[J].地质学报,2008,82(7):956-966.
    [72]谢广东.Au的迁移形式及沉淀机制研究的某些进展[J].现代地质,1994,8(3):375-363.
    [73]颜文,龙江平.海南二甲金矿石英粉末红外光谱特征及其理论分析[J].贵州工学院学报,1993,22(4):1-7.
    [74]颜文,杨元根.海南二甲金矿糜棱岩(石英)含矿性的构造动力分析及谱学评价[J].地质找矿论丛,1993,8(9): 28-41.
    [75]杨红英,王建国,周军.山西义兴寨金矿流体包裹体的特征及意义[J].贵金属地质,1995(4)3: 177-183.
    [76]叶荣,涂光炽,马喆生,赵伦山.热液矿床矿物微形貌与晶体生长环境研究[J].地学前缘,2005,12(2):240-246.
    [77]叶荣,涂光炽,赵伦山,沈镛立,罗丽.山西义兴寨金矿床金矿物颗粒的产出及其成矿动力学意义[J].2002,(21)3: 278-303.
    [78]叶荣,赵伦山,沈镛立,王振海,诸惠燕.义兴寨金矿成矿作用地质地球化学动力学研究[J].现代地质,1997,(11)1: 58-65.
    [79]叶荣,赵伦山,沈镛立.山西义兴寨金矿床地球化学研究[J].现代地质,1999,(13)4: 15-418.
    [80]余学东,李应桂,杨少平,任天祥.山西孙家庄中酸性杂岩体及其邻近地区的找矿远景评价[J].1998,物探与化探,1998,22(5):379-383.
    [81]张保民.红外光谱方法在找金中的应用综述[J].地质科技情报,1994,13(4):98-102.
    [82]张京俊,贾琇明,陈平,田永清.山西省矿床成矿系列特征及成矿模式[M].北京:煤炭工业出版社,2003,1-265.
    [83]章增凤.隐爆角砾岩的特征及其形成机制[J].地质科技情报.1991.10(4):1-5.
    [84]赵一鸣,张轶男,林文蔚.我国夕卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系[J].矿床地质,1997,16(4):318-328.
    [85]真允庆.五台山-恒山一带金、银多金属矿床同位素地球化学及其成矿模型[J].桂林工学院学报, 2004(24)2: 127-137.
    [86]周少平,王凯怡,郝杰.山西五台山-恒山地区金矿化类型及矿化特征[J].1995,228-300.
    [87]周绍芝.晋东北地区银(金)矿成矿特征及远景浅析[J].地质与勘探,1999,35(3):5-8,23.
    [88]周学武,李胜荣,鲁力,等.辽宁丹东五龙矿区石英脉型金矿床的黄铁矿标型特征研究[J].现代地质,2005.6,19(2):231-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700