用户名: 密码: 验证码:
脱水污泥的环境与工程性质及其填埋处置方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脱水污泥的填埋处理是比较符合中国国情的处置方式。本文从环境岩土工程的角度,采用试验研究、理论分析和数值模拟的方法,对脱水污泥的环境与工程性质进行了系统的研究,并以粉煤灰、粉质粘土和石灰等作为固化材料,对脱水污泥的填埋特性进行了改良,内容如下:
     对当前国内外脱水污泥的处置方法进行了比较研究,总结了各种处置方法的优缺点,提出污泥填埋是比较适合中国国情的处置途径。针对污泥填埋存在的技术难题,提出用固化材料改良脱水污泥的填埋特性,进行单独填埋。
     石灰、粉质粘土和粉煤灰的加入,改良了污泥的填埋特性。经过一定时间的养护,固化污泥强度完全可以达到填埋处理标准。通过对体积安定性观察,发现石灰的加入对于提高试样的体积安定性有利。通过正交试验,发现在本研究中,质量相同的粉质粘土的固化效果优于粉煤灰,原因可能是粉煤灰的活性在污泥这种特殊的环境下没有被激发出来。
     微观结构的研究表明,固化材料的加入提高了污泥密实度。土颗粒面积和土颗粒周长是两个可以有效应用与土体微观结构研究定量研究的参数。土体的密实度评价可以通过土体微观结构中的面积参数来实现,较大的面积参数对应着土体较大的密实度,土颗粒周长可以用来对土颗粒之间的联系进行定量的描述,周长小的土体联结更紧密。
     不同的固化材料对渗滤液影响的差异较大。添加石灰的填埋柱的渗透性最大,渗滤液的产生量最大,PH值最高,渗滤液的COD值远高于其它污泥填埋柱。石灰一方面使固化污泥中的Cu离子趋于不稳定;另一方面,对污泥中的Zn离子具有固化作用。而粉煤灰和粉质粘土对渗滤液的影响则相对较小。
     对不同地质条件下污染物的运移规律进行了数值模拟。研究表明,吸附函数、渗透系数和水力梯度对污染物的运移具有显著的影响。在常见水力梯度条件下,当渗透系数较小时,污染物的运移以弥散为主,污染晕接近圆形,污染晕半径较小。当渗透系数增大达到1×10~(-4)m/s,流速较大,对流在运移过程中居于主要地位,污染晕显著扩大。
     为了使填埋场的纳污量最大化,提高填埋场的使用寿命,运用多种边坡稳定分析方法,对特定填埋场的边坡坡比进行了优化计算。计算结果表明,在满足稳定性要求的条件下,当采用坡比在1:4~1:5左右时,填埋场的容量可以达到最大。
Landfill is a kind of suitable sludge disposal method for China. In the methods of laboratory tests, theoretical analysis and numerical simulations, researches were conducted on environment and engineering properties of sludge. Then, fly ash, silty clay and lime were utilized to improved the landfill properties of sludge.
     Different kinds of sludge disposal method at present were compared firstly. Then both advantages and disadvantages of these methods were summarized. In order to solve the technical problems in landfill of sludge for China, a method, in which the sludge will be disposed by monofill after its landfill properties was improved, was put forward in this paper.
     Landfill properties improved by the adding of the consolidation materials. Significant increases in sludge strength and permeability was achieved to match suitability for monofill. The adding of lime can improve the volume stability and permeability of solidified sludge. Based on orthogonal experiment, the solidifying effectiveness of silty clay was found to be more notable than fly ash. This can be resulted from the special environment of sludge in which the activities of fly ash was not excited.
     Freeze-drying technology and scanning electron microscope were utilized to study the microstructure of solidified sludge. It was found density of sludge was improved after solidification. The hydration effect of solidifying materials and sludge can be the reason of improvement in strength and complication in microstructure. Perimeter and area of soil grain can be effective parameters to describe the microsturcture of soil.
     The column fill with lime and sludge performs the highest permeability, the largest mount of leachate, the highest PH and the highest COD because of the adding of lime. Lime performed a double influence on heavy metals in sludge. It can cause the instability of copper ion in sludge but make the zinc ion more stable. The influence of silty clay and fly ash was not significant.
     Transport of contaminant from sludge was studied with numerical simulation in varied geological conditions. It was revealed that adsorption function, permeability and hydraulic gradient play the key role in the transport of contaminant. For normal hydraulic gradient and low permeability stratum, dispersion controls the transport. While the permeability was improved to 1×10~(-4)m/s, convection controls the transport and the contaminated area was expanded significantly.
     Life expectancy is an important design parameter of landfill. To improve the capacity and life expectancy of landfill, the slope ratio of landfill was optimized with different computation methods of slope stability. It was revealed that, when the slope ratio of 1:4~1:5 was adopted, the capacities of landfill can reach the maximum value as the stability of slope can be satisfied at the same time.
引文
[1]杨国清,固体废物处理工程,北京:科学出版社,2001
    [2]袁守军,朱苑华,合肥市污水处理厂污泥处置途径探讨,合肥工业大学学报(自然科学版),2001,24(4):538-542
    [3]周少奇,城市污泥处理处置与资源化,广州:华南理工大学出版社, 2002
    [4] J. Werther , T. Ogada, Sewage sludge combustion, Progress In Energy and Combustion Sciences, 1999, 25, 55-116
    [5] G.Y.S. Chan, L.M.Chu, M.H.Wong, Effects of leachate recirculation on biogas production from landfill co-disposal of municipal solid waste, Sewage Sludge and Marine Sediment, Enviromental Polluction , 2002, 118,393-399
    [6] C.W. Chu, C.S.Poon and R.Y.H. Cheung, Characterization of raw sludge, Chemically modified sludge and anaerobically digested sludge in Hong Kong. Wat. Sci. Tech., 1998, 38(2), 25-32
    [7] Y.S.G. Chan, L.M. Chu, M.H.Wong, Disposal Of Municipal Refuse, Sewage sludge and marine dredgings for methane production. Environmental Pollution, 1999, 106, 123-128
    [8] Harro Bode and Klaus R.Imhoff, Current and planned disposal of sewage sludge and other waste products from the Ruhrverband wastewater treatment, Wat. Sci. Tech., 1996, 33(12), 219-228
    [9] Jeremy, E.HALL, Anna Zmyslowska, Developments of sludge treatment and disposal strategies for large conurbations. Wat. Sci. Tech., 1997, 36(11), 291-298
    [10]吴健波,刘振鸿,陈季华,剩余污泥处置的减量化发展方向,中国给水排水, 2001,17(11):24-26
    [11]杨朝晖,杨霞,污水处理厂的污泥处置,环境科学与技术,1995,71(4):40-42
    [12] L. Boersma, I. Murarka, solid waste from treatment of municipal wastewater, CRC Press, Inc., Boca Raton, Florida, 1987
    [13] R. Otte-Witte, Influence on The mechanical properties of sewage sludge for disposal to landfill. European Water Pollution Control Association, 1990
    [14]首期污泥处理与处置技术研修班培训资料,中德城市污水处理培训中心,中国上海,2002
    [15]邓晓林,王国华,任鹤云,上海城市污水处理厂的污泥处置途径探讨,中国给水排水,2000,16(5),19-22
    [16] Reimar Leschber, Ludovico Spinosa, Developments in sludge characterisation in Europe, Wat. Sci. Tech., 1998, 38(2), 1-7
    [17] Jack A.Borchardt Willam J. Redman etc, Sludge and its ultimate disposal, Ann Arbor Science Publishers Inc/ The Butterworth Group, 1981
    [18]陈绍伟,曹萍等,城市垃圾和污水脱水污泥、排水管污泥混合堆肥工艺研究,四川环境,2001,20(4):10-12
    [19]彭绪亚,黄维文等,城市生活垃圾填埋产沼的模拟实验,城市换季与城市生态,2003,16(3): 5-7
    [20]陈鸣,城市污水处理厂污泥最终处置方式的探讨,中国给水排水,2000,16(8):23-24
    [21]姚刚,德国的污泥利用和处置(Ⅱ)],城市环境与城市生态,2000,13(2):24-26
    [22] A. Koening, J.N.Kay and I.M. Wan, Physical properties of dewatered wastewater sludge for landfilling, Wat. Sci. Tech., 1996, 34(3-4), 533-540
    [23] Knut Wichmann and Andreas Riehl, Mechanical properties of waterwork sludges–shear strength, Wat. Sci. Tech., 1997, 36(11),43-50
    [24] J. Chu, T, T. Lim, and M. H. Goi, Potential use of stabilized sewage sludge for land reclamation, Journal of The Institution of Engineers, Singapore, 2002, 42(6): 36-42
    [25]中华人民共和国水利部,土工试验方法标准,北京:中国计划出版社,1999
    [26]管宗甫,杨久俊,碱对粉煤灰活性激发的研究,粉煤灰综合利用,1996,(1): 22-24
    [27]宋普绥,张凤兰,腾英耀等,粉煤灰活性激发剂的研制,内蒙古工业大学学报,1998,17(4):64-68
    [28]李东旭,陈益民,沈锦林,温度和碱对低钙粉煤灰的活化和结构的影响,硅酸盐学报,2000,28(6):523-528
    [29]殷素红,樊粤明,文梓芸等,粉煤灰的活化,华南理工大学学报(自然科学版),1998,26(12):95-100
    [30]苏晓薇,张晓辉,粉状速溶硅酸钠激发粉煤灰活性,吉林水利,2003,(1): 27-29
    [31]蔡正泳,王足献,正交设计在混凝土中的应用,北京:中国建筑工业出版社,1985
    [32]张旭辉,徐日庆,龚晓南,圆弧条分法边坡稳定计算参数的重要性分析,岩土力学,2002,23(3):372-374
    [33]《正交试验法》编写组,正交试验法,北京:国防工业出版社,1976
    [34]郑秀华,葛勇等,采用正交设计配制聚苯乙烯混凝土,混凝土,2004,(7): 45-48
    [35]施斌,粘性土微观结构研究回顾与展望,工程地质学报,1996,4(1),39-44
    [36]高国瑞,黄土显微结构分类与湿陷性,中国科学,1980(12):1203~1208
    [37]谭罗荣,土的微观结构概况和发展,岩土力学,1983,4(1):73-86
    [38]高国瑞,兰州黄土显微结构与湿陷机理探讨,兰州大学学报,1979(2):123~134
    [39]高国瑞,中国黄土的微结构,科学通报,1980(24):945~948
    [40]廖朝气,乾初等,扫描电镜原理及应用技术,北京:冶金工业出版社,1990
    [41]李时平,文玲,五号桩油田沙三下湖相浊积扇砂体的扫描电镜研究,电子显微学报, 2003,22(6),614-615
    [42] Xie Xuejun,Gap Chengzhi, SEM observation on adaptation of glass ionomer silver reinforced restorative to the teeth, Journal of Modern Stomatology ,2003, 17(6), 539-541
    [43] Pyek, Krinsley D H, Petrographic examination of sedimentary rocks in the SEM using back-scattered electron detectors, J of Sed Petr, 1984, 54: 877~888
    [44]王银梅,韩文峰等,SH固沙机理的微观探讨,岩土力学,2005,26(4): 650-654
    [45]刘秀忠,邹增大等,锌基合金钎焊界面区的微观组织形态及相组成,材料科学与工艺,2005,13(6):323-325
    [46]刘军,徐成海,窦新生,真空冷冻干燥法制备纳米氧化铝陶瓷粉的实验研究,真空,2004,41(4):80-83
    [47]黎先发,真空冷冻干燥技术在生物材料制备中的应用与进展,西南科技大学学报,2004,19(2):117-121
    [48]徐成海,王德喜等,真空冷冻干燥技术在若干高新科技领域中的应用与发展,真空科学与技术,2002,22(12):30-32,43
    [49]孔凡真,真空冷冻干燥食品的技术与设备,食品研究与开发,2004,25(4): 90-91
    [50] B.B.Mandelbrot, The fractal geometry of nature, New York: W H Freeman, 1982: 361~366
    [51]施斌,粘性土击实过程微观结构的定量评价,岩土工程学报,1996,18(4): 57~62
    [52] Bix X、Smart P, Change in microstructure of Kailin in consolidation and undrained shear, Geotechnique, 1997, 47(5): 1009-1017
    [53]谢定义、齐吉琳,土结构性及其定量化参数研究的新途径,岩土工程学报,1999,21(6):651~656
    [54] Xie Heping, Chen Zhida, Fractal geometry and fracture of rock, Acta Mechanical Sinica, 1988, 4(3): 255~264
    [55] Xie Heping, Fractal characteristics in geological material mechanics, Applied Mechanics, Int. Academic Publishers, Pergamon Press, 1989: 1255~1260
    [56] Xie Heping, Studies on fractal models of the microfracture of marble, Chinese Science Bulletin, 1989, 34(15): 1292~1296
    [57]谢和平、陈至达,断口定量分析的分形几何方法,工程力学,1989,6(4):1~8
    [58]谢和平,陈至达,岩石类材料裂纹分叉非规则性几何的分形效应,力学学报,1989,21(5):613~618
    [59] Xie Heping, The fractal effect of irregularity of crack branching on the fracture toughness of brittle material, Int J of Fracture, 1989, 41(4): 267~274
    [60] Brown S R, Fluid Flow through Rock Joints: The effects of surface roughness, J of Geophys Res, 1987, 92, B2: 1337~1347
    [61] Noite DD, Pyrak-Noite L J, Cook N G W, The Fractal geometry of the flow paths in natural fractures in rock and the approach to percolation, PAGEOPH, 1987, 8(19)
    [62] La-Pointe P R, Fractal analysis of fracture density and connectivity in rock mass, Int J Rock Mech Min Sci & Geomech Abstr, 1988, 25(6): 421~429
    [63]刘松玉,方磊,陈浩东,论我国特殊土粒度分布的分形结构,岩土工程学报,1993,15(1):23~30
    [64] Moore C A, Krepfl M, Using fractals to model soil fabric, Geotechnique, 1991, 41(1): 123~134
    [65] Moore C A, Donaldso C F, Quantifying soil microstructure using fractals, Geotechnique, 1995, 45(1): 105~116
    [66]王清、王剑平,土孔隙的分形几何研究,岩土工程学报,2000,22(4):496~498.
    [67]徐永福,非饱和膨胀土结构模型和力学性质的研究:[博士学位论文],南京:河海大学,1997
    [68]徐永福,非饱和膨胀土的结构性强度的研究,河海大学学报,1999,27(2):86~89
    [69]王宝军,施斌,刘志彬,蔡奕,基于GIS的黏性土微观结构的分形研究,岩土工程学报,2004,26(2):244-247
    [70] Luis E Vallejo, Fractal analysis of the fabric changes in a consolidating clay, Engineering Geology, 1996, (43): 281-290
    [71] Voss R F, Laibowitz R B, Alessandrini E I, Fractal geometry of percolation in thin gold films, In scaling phenomena in disordered systems (eds r.pynn & A Skjeltorp), 1985, 279-288
    [72]夏德深,傅德胜,现代图像处理技术与应用,南京:东南大学出版社,1997
    [73]徐飞,施晓红,MATLAB应用图像处理,西安:西安电子科技大学出版社,2002
    [74]杨秀敏,张桂梅,城市垃圾渗滤液对地下水的污染及防治对策,山西水利科技,2005(1):39-40,54
    [75]蔡金傍,段祥宝,朱亮,含铬废渣填埋场渗滤液污染地下水问题实例分析,安全与环境工程,2004,11(1):12-14,18
    [76]张红梅,速宝玉,垃圾填埋场渗滤液及对地下水污染研究进展水文地质工程地质,2003,30(6):110-115
    [77]李建萍,李绪谦,王存政,垃圾填埋场对地下水污染的模拟研究,环境污染治理技术与设备,2004,5(11):60-64
    [78]王翊虹,赵勇胜,北京北天堂地区城市垃圾填埋对地下水的污染,水文地质工程地质,2002,29(6):45-47,63
    [79] Keith Loague, Robert H. Abrams, Stanley N. Davis, A case study simulation of DBCP groundwater contamination in Fresno County, California, Journal of Contamination Hydrology, 1998, 29: 137-163
    [80]朱长军,张娟,李文耀,地下水污染的混合有限分析法数值模拟河北建筑科技学院学报,2004,21(3):12-13,24
    [81]李功胜,王孝勤,高希报,地下水污染强度反演的数值方法地下水,2004,26(2):101-102,122
    [82]杜丽惠,付清潭,陈铖,江春波,邢秀英,渗流及地下水污染二维预测模型,水力发电,2003,29(4):19-23
    [83]薛强,梁冰,地下水溶质运移定解问题差分格式的稳定性分析,辽宁工程技术大学学报(自然科学版),2001,20(3):288-291
    [84]董军,地下水污染的广义差分法数值模拟,昆明理工大学学报,2000,25(3),98-101
    [85]王焕,水污染问题特征有限差分方法的数值计算及理论分析,山东大学学报:理学版,2003,38(3),53-60
    [86]薛强,梁冰,刘晓丽,陈贺,土壤水环境中有机污染物运移环境预测模型的研究,水利学报,2003(6),48-55
    [87]许秀元,陈同斌,土壤中溶质运移模拟的理论与应用,地理研究,1998,17(1):99-106
    [88]孙讷正,地下水流的数学模型和数值方法,北京:地质出版社,1981
    [89]薛禹群,朱学愚,地下水动力学,北京:地质出版社,1979
    [90]李俊亭,王愈吉,地下水动力学,北京:地质出版社,1987
    [91]孙讷正,地下水污染-数学模型和数值方法,北京:地质出版社,1989
    [92] Hussein Maged, Schwartz Franklin W., Modeling of flow and contaminant transport in coupled stream–aquifer systems, Journal of Contaminant Hydrology, 2003, 65, 41-64
    [93] Van de Weerd H., Leijnse A., Van Riemsdijk W.H., Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions, Journal of Contaminant Hydrology, 1998, 32, 313-331
    [94] Jogensen, Peter R., Helstrup Tina, Urup Johanne, Seifert Dorte, Modeling of non-reactive solute transport in fractured clayey till during variable flow rate and time, Journal of Contaminant Hydrology, 2004, 68, 193-216
    [95]杨明亮,骆行文等,金口垃圾填埋场内大型建筑物地基基础及安全性研究,岩石力学与工程学报,2005,24(4):628-637
    [96]张志红,饶为国,填埋场垃圾体的安全稳定性分析,中国安全科学学报,2005,15(6):108-112
    [97]王协群,邹维列等,渗流作用下垃圾填埋场封盖土坡稳定的极限平衡分析,岩石力学与工程学报,2004,23(11):1939-1943
    [98]刘君,孔宪京,卫生填埋场复合边坡地震稳定性和永久变形分析,岩土力学,2004,25(5):778-782
    [99]胡志毅,深圳下坪垃圾填埋场滑坡成因分析及综合治理,有色冶金设计与研究,2002,23(4):68-72
    [100]孙继军,曾照明,城市垃圾填埋场安全稳定性分析,重庆环境科学,2003,25(12):30-32
    [101] Mitchell J K,Seed R B,Seed H B.Waste landfill slope failure I:Linear system properties,Journal of Geotechnical and Geoenvironlnental Engineering,1991,116(4):647-668
    [102] Eid H T,Stark T D,Evans W D,et a1,Municipal solid waste slope failure,I : waste and foundation soil properties , Journal of Geotechnical and Geoenvironmental Engineering,2000,126(5):397-407
    [103] Kavazangians S Jr,Matasovic N,Bonaparte R,Sehmertmann C R,Evaluation of MSW properties for seismic analysis,Proceedings of GeoEnvironment 2000, Geotechnical Special Publication, No46.New Odeans,LA:ASCE,1995:24-26
    [104] Wartman J,Physical model studies of seismically induced deformation in slope [Ph.D thesis D],Berkley:Department of Civil Engineering,University of California at Berkley,l999
    [105] Koerner R M, Kwu B L,Stability and tension considerations regarding cover soil on geomembrane lined slopes,Geotextiles and Geomembranes,1991,10(4):335-355
    [106] Fellenius,W,Erdstatische berechnungen mit reibung and kohasion,Ernst,Berlin,1927,(in German)
    [107] Fellenius,W,Calculation of the stability of earth dams,Proceedings of The Second Congress of Large Dams,1936,(4):445-463
    [108] Bishop,A.W.,The use of the slip circle in the stability analysis of slopes,Geotechnique,1955,V(1):7-17
    [109] Janbu, N.,Bjerrum, L. and Kjaernsli,B.,Stabilitestsbere Bning for Fyllinger Skjaeringer Ognaturlige Skraninger,Oslo, Norwegian Geotechnical Publication,1956,16
    [110] Morgenstern,N.,and Price V.E.,The Analysis of The Stability of General Slip Surfaces,Geotechnique,1965,XV(1):79-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700