账户: 密码:
白垩纪大洋红层时代、类型及环境
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
白垩纪大洋红层(CORB)及其所代表的深水大洋氧化作用自提出以来一直广受关注,现已上升为白垩纪研究新的热点问题之一。对于全球性海洋事件而言,CORB的时空分布与演化规律是认识白垩纪古海洋演化的基础。目前,CORB时空演化研究主要集中于特提斯域,对其它地区的CORB分布状况还存在较大范围的盲区。同时CORB所代表的氧化程度究竟如何,仍然需要作进一步深入研究。因此,本文通过对CORB大洋钻探岩芯以及陆地露头资料进行综合整理,概括了CORB的时空分布及其在不同区域之间的共性与差异。并以西藏南部江孜盆地为例,分析了CORB在东特提斯地区的时代、岩性与沉积环境。结合地球化学手段,研究CORB所代表的氧化程度,重建白垩纪东特提斯深水大洋长周期演化特征。
     CORB在大洋钻探岩芯中的颜色以棕色为主,包括棕色,红棕色,黄棕色及浅棕色等,偶见红色、浅红色、黄色或橙色等,且常混有灰色或绿色夹层。岩性主要为(半)远洋粘土、软泥和白垩,亦见有泥岩、灰岩、页岩和白云岩等,偶见火山碎屑沉积物夹层。而在陆地露头中,CORB主要为浅红色、红色或紫红色灰岩和页岩。CORB的沉积古水深一般为半深海至深海,即200 m以下直至数千米,主要沉积环境为斜坡和深水洋盆,也可沉积于水深较浅的陆棚地区,CCD面之下或之上均可。沉积速率通常在几至10 mm/kyr之间,而在有浊积岩夹层存在时,沉积速率可高达30 mm/kyr。CORB的形成可能部分由于低沉积速率所致。
     CORB最广泛出露的时代是晚白垩世,从陆地露头来看,集中分布于Turonian早期—Santonian期,在大洋钻探岩芯中,以Campanian早期—Maastrichtian期为最广泛分布。CORB演化可划分为三个阶段,逐步由零星分布演化为区域性分布,最终达到全球分布,其启动时间分别是早Aptian晚期、Turonian早期和Campanian早期,分别紧随白垩纪大洋缺氧事件OAE1a,OAE2和OAE3。因此推断大洋缺氧事件可能为CORB沉积的重要诱因。结合古地理演化格局,晚白垩世时期,原环非洲海道打开形成南大西洋和印度洋,各大洋之间的联通性增强,本文认为,这一古地理条件促进了CORB的全球性分布。
     通过对江孜盆地CORB的区域对比,认为CORB在江孜地区的时代主要为Campanian期,其中南部可能略早于北部,整个盆地CORB的初始沉积具穿时性。岩性主要由红色页岩和浊积泥灰岩薄层以及杂色滑塌/滑动成因灰岩组成。稀少的底栖有孔虫种类指示其沉积古水深为半深海至深海,钙质含量较低表明其沉积于CCD面与碳酸盐溶跃面之间或紧邻CCD面之下。江孜盆地CORB的岩相组合主要为页岩与泥灰岩夹层、滑塌或滑动成因灰岩以及颗粒支撑砾岩组成。碳酸盐岩有八种微相类型:微晶灰岩、含有孔虫微晶灰岩、含有孔虫及内碎屑微晶灰岩、有孔虫微晶灰岩、微晶有孔虫灰岩、微晶内碎屑灰岩、有孔虫颗粒灰岩以及角砾岩。其主要可与标准微相3对应,即浮游生物微晶灰岩,据此推断本区CORB的沉积环境为斜坡坡脚裙的外裙至盆地环境。
     江孜地区海相白垩系从黑层至红层的地球化学特征,揭示了黑-红转变过程中东特提斯地区深水大洋的演化特征:黑层代表底层水和表层松散沉积物孔隙水均为缺氧状态,对应于暖湿的古气候条件。白层沉积时期大洋底层水为次氧化-氧化状态,而松散沉积物中的孔隙水主要为缺氧状态,对应暖湿与干冷交替的古气候状况,风成作用加强。红层沉积时期,底层水和沉积物孔隙水主要为氧化状态,然而在松散沉积物底部可能保有还原水膜,古气候趋于干冷,风成作用进一步加强。根据江孜地区白垩纪古海洋学演化特征,认为红层代表的氧化程度明显高于传统意义上的氧化沉积——白层,因此有必要红层代表的大洋底层水状态从氧化的大洋中区别出来,建议将其将命名为过氧化状态(hyperoxic)。
     本文最后部分,研究了沉积物色度对同位素事件的响应,认为红绿色度a*值与δ13C事件有着良好的一一对应关系,δ13C正偏事件常对应于a*值的负偏,即沉积物颜色偏绿,反之δ13C负偏事件常对应于a*值的正偏,颜色偏红。因此本文认为沉积物色度不仅对于CaCO3和TOC含量,铁矿物类型等古海洋指标有很好的指示作用,对于地球系统的碳循环也有很好的响应。由于CORB常沉积于CCD面之下,难以获得高分辨率δ13C记录,因此利用其色度值进行区域对比,不失为一种可行的途径。这一方法仍处于尝试阶段,还需要更多的事例的验证。
Cretaceous Oceanic Red Bed (CORB) deposition has been one of the most attractive topics in Cretaceous research in the last several years, because it has a significant implication on paleoceanography evolution. As a globally distributed sedimentary succession, CORBs need to be correlated globally for their age ranges, lithologies and depositional environments. However, the temporal and spatial evolution of CORBs is not clearly documented except those in Tethyal realm. In this dissertation, to correlate CORBs globally, the author compiled the data of CORBs recovered from the DSDP and ODP sites and the cropped out in the Tethyan realm, Boreal realm and New Zealand. Nonetheless, the characteristics of CORBs cropped out in a typical area, Gyangze Basin were correlated in detail. The ages, lithofacies and depositional environments of CORBs in Gyangze Basin were described as well. The geochemical approaches were used to study the condition of bottom water during the CORB deposition as well as the paleoceanography evolution of eastern Tethyan Ocean.
     CORBs in DSDP and ODP sites mainly consist of clay(stones), oozes and chalks with a few exceptions of mudstones, limestones, shales or dolomites. Volcanogenetic debris could also be intercalated in the CORB sediments. Colors are mainly brown hues including brown, reddish brown, yellowish brown and pale brown, although the red, reddish, orange hues are found in some of the sites. In some cases, CORB color is characterized by alternation of different colors. However, CORB outcrops are generally composed of red, reddish or purple shales and limestones. CORBs were deposited at bathyal to abyssal depth, i.e. 200 m to thousands of meters, below or above CCD. The depositional environments are mainly slpoes to abyssal plains. Sedimentation rates vary from a few to 10 mm/kyr in most of sites, while the average rate can reach 30 mm/kyr with the tubidite intercalations. We suggest that the low sedimentation rate is a potential controlling factor of the CORB deposition.
     The common age of CORB is late Cretaceous, i.e. between Turonian and Maastrichtian. In oceanic drilling sites, CORBs are spread widest during early Campanian-Maastrichtian. In the outcrops, CORBs are mainly aged early Turonian-Santonian. The tempo evolution of CORB can be divided into 3 stages: sporadic occurrence, regional distribution, and global widespreading. The onsets of each stages are early late Aptian, early Turonian, and Campanian, which follow respectively the OAE1a, OAE2, and OAE3. It is suggested that the OAEs are the trigger of CORB deposition, because the significant increasing of oxygen content as well as the decreasing of carbon dioxic followed the burial of organism during the OAEs. Paleogeographically, in late Cretaceous South Atlantic Ocean and Indian Ocean were formed and resuled from the opening of circum-Africa Seaway, which extended from the western Tethys region through the North and South Atlantic into the juvenile Indian Ocean in early Cretaceous. This pattern increased the connection between oceans; therefore, we suggest that the formation of South Atlantic Ocean and Indian Ocean is one of the important contributing factors of CORB distribution.
     In Gyangze Basin, CORB successions share the general features described above, but they are differentiated from the others with the re-deposition of carbonate rocks. They are mainly Campanian in age. The occurrence of CORB in south is earlier than in the north basin. CORBs are composed of red shales interbedded with thin tubiditic marls bands, and variegated slide or slump limestones. Very few benthic foraminifera found in the limestones indicate that the paleodepth of CORB is bathyal to abyssal, i.e. below 200 m. The calcic carbonate is quite low in the red beds, which indicates that CORBs were deposited between CCD and lysocline, or immediately below the CCD. Eight microfacies types were identified in the limestones, which mainly belong to the standard microfacies 3 of Wilson indicating a basin or deeper shelf margin environment. According to the correlation of the facies between Gyangze CORB and Bahama slope, we suggest that the depositional environment is out slope-base-apron to basin.
     The Cretaceous marine sediments in Gyangze Basin were spectacularly expressed by black, white to red succession. The geochemistry of each unit was discussed in the dissertation to study the redox condition and paleoceanography evolution of deep eastern Tethyan Ocean. The black unit was deposited under an anoxic to dysoxic environment with a warm and humid climate. The white unit stands for the suboxic to oxic bottom water, but the pore water of sediments was dysoxic. Therefore, the Mn was enriched in the sediments immediately below the redox boundary that is close to the sediment-water interface. An increased eolation is suggested. The red unit was deposited under a more oxic condition, which is significantly differentiated from the white unit by the relative position of redox boundary. In the period of red unit deposition, the redox boundary is verge on the bottom of the soft sediments so that the Mn enriched as Mn-Ca under the boundary while a small portion of Fe is reduced to Fe(Ⅱ). More eolian sediments input to the basin. The Mg/Al and K/Al ratios indicate that the paleoclimate changed from the alternation of cold and warm of white unit into relative cold and dry in the red beds. The thesis suggests hyperoxic to newly name the bottom water condition of red beds, because it is distinctly more oxic than normal oxic state of the whit unit’s.
     In addition, the dissertation studied the relationship of color and isotope event. The red-green chromaticness a* is controlled by the content of Fe(Ⅱ) and MnCO3 in the dark gray shales and pale brownish white limestones of studied section. The yellow-blue chromaticness b* is controlled by the content of goethite. The positive excursions ofδ13C correlate to the negative excursions of a* curve. It is interpreted that the positive excursions ofδ13C is caused by the anoxic event, that represent the reduce state of the basin. Therefore, the iron presents mainly as Fe(Ⅱ) in the sediments, which in turn leads to the decrease of a* value. Otherwise, the Fe(Ⅲ) minerals, goethite or hematite lead the increase of b* or a* value. I suggest that the curve of chromaticness can be a useful tool of stratigraphic correlation, especially for the carbonate free sediments like CORBs in southern Tibet.
引文
曹珂,李祥辉,王成善. 2008.四川盆地白垩系粘土矿物特征及古气候探讨.地质学报. 82(1): 115-123.
    陈曦,王成善,李祥辉等. 2005.阿尔卑斯-喀尔巴阡上白垩统大洋红层特征与对比.地学前缘, 12(2): 61-68.
    陈曦. 2005.藏南江孜地区海相白垩系化学地层学.学位论文:成都:成都理工大学. 1-100.
    陈曦,王成善,胡修棉,黄永建. 2008.西藏江孜地区海相白垩系铁赋存状态及古海洋意义.地质学报, 82(1): 77-84.
    陈曦,王成善,胡修棉,黄永建等. 2008.西藏南部江孜盆地上侏罗统至古近系沉积岩石学特征与盆地演化.岩石学报. 24(3): 616-624.
    韩洪斗. 2008.藏南田巴地区白垩纪微体生物地层学研究.学位论文,北京:中国地质大学. 1-54.
    胡修棉,王成善,李祥辉, Jansa L.藏南上白垩统深水海相红层:岩石类型、沉积环境与颜色成因.中国科学(D辑:地球科学),2006, 36: 811-821。
    胡修棉,王成善,李祥辉. 2001.藏南海相白垩纪碳酸盐碳稳定同位素演化与古海洋溶解氧事件. 自然科学进展, 2001, 11 (7): 721-728.
    胡修棉. 2002.藏南白垩系沉积地质与上白垩统海相红层.学位论文,成都:成都理工大学. 1-216.
    黄永建,王成善,陈曦. 2007.藏南白垩纪黑色页岩和大洋红层的活性铁埋藏记录及其古海洋意义.矿物岩石地球化学通报. 26增刊: 543.
    黄永建,王成善,顾建等. 2008.白垩纪大洋缺氧事件:研究进展与未来展望.地质学报. 82(1): 21-30.
    李国彪,万晓樵,丁林等. 2004.藏南古近纪前陆盆地演化过程及其沉积响应.沉积学报, 22(3): 455-464.
    李金高,周祖翼,王全海等. 2001.西藏江孜盆地的层序地层分析与沉积充填演化.沉积学报, 19(4): 488-492.
    李思田,解习农,王华,等. 2004.沉积盆地分析基础与应用.北京:高等教育出版. 1-410.
    李祥辉,王成善,胡修棉. 2000.深海相中的砂质碎屑流沉积——以西藏特提斯喜马拉雅侏罗-白垩系为例.矿物岩石, 20(1): 45-51.
    李祥辉,王成善,万晓樵等,1999,藏南江孜县床得剖面侏罗-白垩纪地层层序及地层划分,地层学杂志,23(4): 303~309.
    李祥辉,胡修棉,黄永建等. 2004.白垩纪古海洋气候变化及主要问题.地球科学进展, 19: 83-92.
    刘宝珺,余光明等编. 1990.岩相古地理学教程.成都:成都电脑激光印书公司, 206.
    刘志飞,王成善,李祥辉. 2000.西藏南部雅鲁藏布缝合带的沉积-构造演化.同济大学学报, 28(5): 537-541.
    马宗晋,杜品仁,卢苗安.地球多圈层的相互作用.地学前缘. 2001. 8(1): 3-8.
    彭勇民,李金高,刘家铎,姚鹏. 2001.西藏南部江孜盆地的演化特征.沉积学报, 19(3): 345-350.
    史瑞萍,朱日祥.白垩纪地球物理场异常与地球深部动力学.地球物理学进展. 2002. 17(2): 295-300.
    万晓樵,高莲凤,李国彪,陈文,张彦. 2005.西藏江孜-浪卡子一带的侏罗-白垩纪界线地层. 现代地质, 19(4): 479-487.
    王成善,李祥辉,万晓樵,陶然. 2000.西藏南部江孜地区白垩系的厘定.地质学报, 74(2): 97-107.
    王成善,李祥辉. 2003.沉积盆地分析原理与方法.北京:高等教育出版社. 1-378.
    王成善,胡修棉. 2005.白垩纪世界与大洋红层.地学前缘, 12(2): 11-21.
    王成善. 2006.白垩纪地球表层系统重大地质事件与温室气候变化研究——从重大地质事件探寻地球表层系统耦合.地球科学进展, 21(7): 838-842.
    汪品先.深海研究和新世纪的地球科学.见:路甬祥主编.百年科技回顾与展望――中外著名学者学术报告.上海:上海教育出版社, 2000. 191-211.
    王义刚,孙东立,何国雄. 1980.喜马拉雅地区(我国境内)地层研究的新认识.地层学杂志, 4(1): 55-59.
    魏玉帅. 2005.西藏南部江孜地区古近系甲查拉组沉积地质初探.学位论文,成都:成都理工大学. 1-68.
    魏玉帅,王成善. 2005.土耳其-高加索-喜马拉雅一线白垩纪大洋红层对比.地学前缘, 12(2): 51~59.
    魏玉帅,王成善,李祥辉,曹珂. 2006.藏南古近纪甲查拉组物源分析及其对印度欧亚大陆碰撞启动时间的约束.矿物岩石, 26(3): 46-55.
    吴浩若,王东安,王连城, 1977.西藏南部拉孜-江孜一带的白垩系.地质科学, 3: 250~261.
    吴浩若,李红生. 1982.藏南宗卓组滑塌堆积中的放射虫化石.古生物学报, 21: 64~71.
    杨遵仪,吴顺宝, 1964.西藏南部晚侏罗世的若干箭石.古生物学报, 12(2): 187~216.
    尹观,王成善. 1998.西藏南部中白垩世黑色页岩的碳氧同位素组成及大洋缺氧事件的讨论.矿物岩石. 18 (1): 96-102.
    余光明,王成善. 1990.西藏特提斯沉积地质.北京:地质出版社. 47-49.
    曾允孚,夏文杰主编. 1986.沉积岩石学.北京:地质出版社, 274.
    赵锡奎,雍自权,李国蓉,等. 2007.残留被动大陆边缘盆地——一种被忽略的盆地类型.石油与天然气地质, 28(1): 121-128.
    Andrews, J.E., Eade, J.V., Holdsworth, B.K., et al., 1975a. Site 288. In: Andrews, J.E., Packham, G., et al. (ed), Initial reports of the Deep Sea Drilling Project, 30. Washington, U.S. Government Printing Office. 175-230.
    Andrews, J.E., Eade, J.V., Holdsworth, B.K., et al., 1975b. Site 289. In: Andrews, J.E., Packham, G., et al. (ed), Initial reports of the Deep Sea Drilling Project, 30. Washington, U.S. Government Printing Office. 231-398.
    Arthur, M.A., Fischer, A.G., 1977. Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy, I. Lithostratigraphy and sedimentology. Geological Society of America, Bulletin 88, 367–371.
    Arthur, M.A., Schlanger, S.O., Jenkyns, H.C. 1987. The Cenomanian/Turonian Oceanic Anoxic Event, II: Palaeoceanographic controls on organic matter production and preservation. Geological Society of London, Special Publication no. 26: 401–20.
    Arthur, M.A., Dean, W. E. , Pratt, L. M. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335: 714-717.
    Arthur, M.A., Sageman, B.B., 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth planet. Sci., 22: 499~551.
    Bak, K., 1998. Planktonic foraminiferal biostratigraphy, Upper Cretaceous red pelagic deposits, Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica, 111: 7–92.
    Bak, K., 2000a. Biostratigraphy of deep-water agglutinated foraminifera in Scaglia Rossa-type deposits of the Pieniny Klippen Belt, Carpathians, Poland. In: Hart, M.B., Kaminski, M.A., Smart, C.W. (ed), Proceedings of the Fifth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation, Special Publication 7: 15–41.
    Bak, M., 2000b. Radiolaria from the upper Cenomanian–lower Turonian deposits of the Silesian Unit (Polish Flysch Carpathians). Geologica Carpathica, 51: 309–324.
    Balsam, W.L., Deaton, B.C., Damuth, J.E. 1999. Evaluating optical lightness as a proxy for carbonate content in marine sediment cores. Marine Geology, 161: 141-153.
    Barker, P., Dalziel, I.W.D., Dinkelman, M.G., et al., 1976a. Site 328. In: Barker, P., Dalziel, I.W.D., et al. (ed), Initial reports of the Deep Sea Drilling Project, 36. Washington: U.S. Government Printing Office, 87-142.
    Barker, P., Dalziel, I.W.D., Dinkelman, M.G., et al., 1976b. Site 330. In: Barker, P., Dalziel, I.W.D., et al. (ed), Initial reports of the Deep Sea Drilling Project, 36. Washington: U.S. Government Printing Office, 207-258.
    Barrera E. and Johnson C.C., 1999. Evolution of the Cretaceous Ocean-Climate system. Boulder Colorado. Geological Society of America Special Paper, 332, 1-445.
    Bathia, M.R., 1983. Plate Tectonics and Geochemical Compostion of Sandstones. The Journal of Geology, 91(6): 611-627.
    Benson, W.E., Sheridan, R.E., Enos, P., et al., 1978a. Sites 389 and 390: North Rim of Blake Nose. In: Benson, W.E., Sheridan, R.E., et al. (ed), Initial reports of the Deep Sea Drilling Project, 44. Washington: U.S. Government Printing Office, 69-152.
    Benson, W.E., Sheridan, R.E., Enos, P., et al., 1978b. Sites 391: Blake-Bahama Basin. In: Benson, W.E., Sheridan, R.E., et al. (ed), Initial reports of the Deep Sea Drilling Project, 44. Washington: U.S. Government Printing Office, 159-336.
    Benitez-Nelson, C.R., 2000. The biogeochemical cycling of phosphorus in marine systems. Earth-Sci. Rev. 51: 109–135.
    Berner, R.A. 2004. The Phanerozoic Carbon Cycle: CO2 and O2.Oxford University Press, United Kingdom, 150.
    Bertrand, P., Shimmield, G., Martinez, P., et al., 1996. The glacial ocean productivity hypothesis: the importance of regional temporal and spatial studies. Mar. Geol. 130: 1-9.
    Birkenmajer, K., 1977. Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 45: 1–159.
    Boillot, G., Winterer, E.L., Meyer, A.W., et al., 1987a. Site 640. In: Boillot, G., Winterer, E.L., Meyer, A.W., et al. (ed), Initial reports (part A) of the Ocean Drilling Program, 103. 533-570.
    Boillot, G., Winterer, E.L., Meyer, A.W., et al., 1987b. Site 641. In: Boillot, G., Winterer, E.L., Meyer, A.W., et al. (ed), Initial reports (part A) of the Ocean Drilling Program, 103. 571-652.
    Bolli, H.M., Ryan, W.B.F., Foresman, J.B., et al., 1978a. Cape basin continental rise—sites 360 and 361. In: Bolli, H.M., Ryan, W.B.F., et al. (ed), Initial reports of the Deep Sea Drilling Project, 40. Washington: U.S. Government Printing Office, 29-182.
    Bolli, H.M., Ryan, W.B.F., Foresman, J.B., et al., 1978b. Angola continental margins—sites 364 and 365. In: Bolli, H.M., Ryan, W.B.F., et al. (ed), Initial reports of the Deep Sea Drilling Project, 40. Washington: U.S. Government Printing Office, 357-456.
    Bralower, T.J., Premoli Silva, I., Malone, M.J., et al., 2002. Leg 198 summary. In Bralower, T.J., Premoli Silva, I., Malone, M.J., et al. (ed), Proc. ODP, Init. Rept., 198. College Station TX (Ocean Drlling Program), 1-148.
    Bralower T J, Srthur M A, Leckie R M, et al., 1994, Timing and paleoceanography of oceanic dysoxia/anoxic in the late Barremian to Early Aptian. Palaios, 9: 335-369.
    Brumsack, H.J., 1986. The inorganic geochemistry of Cretaceous black shales (DSDP leg 41) in comparison to modern upwelling sediments from the Gulf of California. In: Summerhayes, C.P., Shackleton, N.J. (Eds.), North Atlantic Palaeoceanography. Geol. Soc. Spec. Publ., 21: 447–462.
    Brumsack, H.J., 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geol. Rundsch. 78: 851–882.
    Butt, A., 1981. Depositional environments of the Upper Cretaceous rocks in the northern part of the Eastern Alps. Cushman Foundation for Foraminiferal Research, Special Publication 20: 1–81.
    Calvert, S.E., Pedersen, T.F., 1993. Geochemistry of recent oxic and anoxic sediments: implications for the geological record. Mar. Geol. 113, 67–88.
    Calvert, S.E., Pedersen, T.F., 1996. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ. Geol. 91: 36–47.
    Carter, R.M., McCave, I.N., Richter, C., et al., 1999. Leg 181 summary: Southwest Pacific paleoceanography. In: Carter, R.M., McCave, I.N., Richter, C., et al. (ed), Proc. ODP, Init. Rept., 181. College Station TX (Ocean Drlling Program), 1-80.
    Canfield, D. E., Thamdrump, B., Hansen, J. W., 1993. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction and sulphate reduction. Geochim. Cosmochim. Acta, 57: 3867-3883.
    Chamley H. 1989. Clay sedimentology. Springer-Verlag , Heidelberg.
    Charles D. Hollister, John I Ewing, Daniel Habib, et al., 1972. Site 105: Lower continental rise hills.In Hollister, C. D., Ewing, J. I., et al. (ed), Initial reports of the Deep Sea Drilling Project, 16. Washington: U.S. Government Printing Office. 1077.
    Chen, X., Wang, C.S., Huang, Y.J. 2006. Cretaceous, one of the most remarkable epoch: based on classifying the articles in GeoRef database. In: Hu, X.M., Wang, Y.D., and Huang, Y.J., eds. Programme and abstracts. International Symposium on Cretaceous Major Geological Events and Earth System-Workshop on Cretaceous Oceanic Red Beds: Palaeoclimate, Palaeoceanography, and Ocean - Land Interaction (IGCP) 463 & 494. Beijing. 30-32.
    Chen, X., Wang, C.S., Hu, X.M., Huang, Y.J., et al. 2007. Cretaceous Oceanic Red Beds: Distribution, Lithostratigraphy and Paleoenvironments. ACTA GEOLOGICA SINICA-ENGLISH EDITION. 81(6): 1070-1086.
    Cronin M, Tauxe L, Constable C, et al., 2001, Noise in the quite zone. Earth Planet Sci Lett, 190:13-30.
    Coffin, M.F., Frey, F.A., Wallace, P.J., et al., 2000. Leg 183 summary: Kerguelen Plateau-Broken Ridge-A large igneous province. In: Coffin, M.F., Frey, F.A., Wallace, P.J., et al. (ed), Proc. ODP, Init. Rept., 183. College Station TX (Ocean Drlling Program), 1-101.
    Condie, K.C., 1997. Plate Tectonics and Crustal Evolution. Oxford: Reed Educational and Professional Publishing Ltd.
    Crampton, J.S., 1997. The Cretaceous stratigraphy of the Southern Hawke’s Bay - Wairarapa region: Institute of Geological and Nuclear Sciences science report, 97/08: 96.
    Crampton, J.S., Raine, I., Strong, P., Wilson, G., 2001, Integrated biostratigraphy of the Raukumara Series (Cenomanian-Coniacian) at Mangaotane stream, Raukumara Peninsula, New Zealand: New Zealand Journal of Geology and Geophysics, 44: 365-389.
    Deaton, B. C., Balsam, W. L., 1991. Visible spectroscopy—a rapid method for determining hematite and goethite concentration in geological materials. J. Sedim. Petrol., 61: 628~632
    Dickinson, W.R., 1980. Plate tectonics and key petrologic associations. Geological Association of Canada Special Paper, 20: 341-360.
    Donnelly, T.W., Francheteau, J., Bleil, U., et al., 1979a. Site 417. In: Donnelly, T.W., Francheteau, J., Bryan, W., et al (ed), Initial reports of the Deep Sea Drilling Project, v. 51, 52, 53, Part 1. Washington: U.S. Government Printing Office, 23-350.
    Donnelly, T.W., Francheteau, J., Bleil, U., et al., 1979b. Site 418. In: Donnelly, T.W., Francheteau, J., Bryan, W., et al (ed), Initial reports of the Deep Sea Drilling Project, v. 51, 52, 53, Part 1. Washington: U.S. Government Printing Office, 351-626.
    Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture. In: Ham, W. E. (ed.), Classification of carbonate rocks: American Association of Petroleum Geologists Memoir, p. 108-121.
    Edgar, N.T., Saunders, J.B., Bolli, H.M., et al., 1973. Site 150. In: Edgar, N.T., Saunders, J.B., et al. (ed), Initial reports of the Deep Sea Drilling Project, 15. Washington: U.S. Government Printing Office, 277-308.
    Erbacher, J., Mosher, D.C., Malone, M.J., et al., 2004. Leg 207 summary. In Erbacher, J., Mosher, D.C., Malone, M.J., et al. (ed), Proc. ODP, Init. Rept., 181. College Station TX (Ocean Drlling Program), 1-89.
    Filippelli, G.M., 1997. Controls on P concentrations and accumulation in oceanic sediments. Mar. Geol. 139: 231–240.
    Filippelli, G.M., 2001. Carbon and phosphorus cycling in anoxic sediments of the Saanich Inlet, British Columbia. Mar. Geol. 174: 307–321.
    Folk, R.L., 1962, Spectral subdivision of limestone types, in Ham, W.E., ed., Classification of Carbonate Rocks-A Symposium: American Association of Petroleum Geologists Memoir 1, p. 62-84.
    Foreman, H. P., 1971. Cretaceous Radiolaria, Leg 7, DSDP. In Winterer, E. L. et al. (ed), Initial Reports of the Deep Sea Drilling Project, 7: Washington (U. S. Government Printing Office), 1673-1693.
    Froelich, P.N., Klinkhammer, G.P., Bender, M.L., et al., 1979. Early oxidation of organic matter in pemagic sediments of the eastern Equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim.Acta, 43: 1075–1090.
    G?rür, N., Tuysuz, O., Aykol, A., Sakinc, M., Yigitbas, E., Akkok, R., 1993. Cretaceous red pelagic carbonates of northern Turkey; their place in the opening history of the Black Sea. Eclogae Geologicae Helvetiae, 86, 819–838.
    Graciansky, P.C., Poag, C.W., Cunningham, R., et al., 1985a. Site 548. In: Graciansky, P.C., Poag, C.W., et al. (ed), Initial reports of the Deep Sea Drilling Project, 80. Washington: U.S. Government Printing Office, 33-122.
    Graciansky, P.C., Poag, C.W., Cunningham, R., et al., 1985b. Site 549. In: Graciansky, P.C., Poag, C.W., et al. (ed), Initial reports of the Deep Sea Drilling Project, 80. Washington: U.S. Government Printing Office, 123-250.
    Graciansky, P.C., Poag, C.W., Cunningham, R., et al., 1985c. Site 550. In: Graciansky, P.C., Poag, C.W., et al. (ed), Initial reports of the Deep Sea Drilling Project, 80. Washington: U.S. Government Printing Office, 251-356.
    Graham, S.A., Dickinson, W.R., Ingersoll, R.V., 1975. Himalayan-Bengal model for flysch dispersal in the Apopalachian-Ouachita system.Geological Society of America Bulletin, 86: 273-286.
    Gromet, L.P., Dymek, R.F, Haskin, L.A., et al., 1984. The“North American shale composite”: Its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48: 2469-2482.
    Grosheny, D., Beaudoin, B., Morel, L., Desmares D. 2006. High-resolution biotratigraphy and chemostratigraphy of the Cenomanian/Turonian boundary event in the Vocontian Basin, southeast France. Cretaceous Research, 27: 629-640.
    Gümbel, C.W., 1861. Geognostische Beschreibung des bayerischen Alpengebirges und seines Vorlandes. J. Perthes, Gotha, 950.
    Haq, B.U., von Rad, U., O’Connell, S., et al., 1990. Site 762. In: Haq, B.U., von Rad, U., O’Connell, S., et al. (ed), Proc. ODP, Init. Repts., 122. College Station, TX, (Ocean Drilling Program), 213-288.
    Haq, B.U., Hardenbol, J. and Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156-1167.
    Hardenbol, I., Thierry, J., Farley, M. B., et al., 1998, Mesozoic and Cenozoic sequence chronostratigraphic framework of European Basins. In: Degraciansky, P. C., Hardenbol, J, Jacquin, Th., et al., eds, Mesozoic and Cenozoic sequence stratigraphy of European Basins, SEPM Special Publication, 60.
    Hay, W. W., Deconto, R. M., 1999, A comparison of modern and late Cretaceous meridional energy transport and oceanology. In: Barrera, E., Johnson, C. C., eds, Evolution of the Cretaceous Ocean-Climate System. Geological Society of America Special Paper, 332: 283-300.
    Hayes, D.E., Pimm, A.C. Beckmann, J.P., et al., 1972a, site 136, in Hayes D. E., Pimm, A. C., et al., 1972, Initial reports of the Deep Sea Drilling Project, 14. Washington, U.S. Government Printing Office. 975.
    Hayes, D.E., Pimm, A.C. Beckmann, J.P., et al., 1972b, site 137, in Hayes D. E., Pimm, A. C., et al. (ed), 1972, Initial reports of the Deep Sea Drilling Project, 14. Washington, U.S. Government Printing Office. 975.
    Hayes, D.E., Pimm, A.C. Beckmann, J.P., et al., 1972c, site 138, in Hayes D. E., Pimm, A. C., et al. (ed), Initial reports of the Deep Sea Drilling Project, 14. Washington, U.S. Government Printing Office. 975.
    Heath, G.R., Burckle, L.H., Bleil. U., et al., 1985. Site 576. In: Heath, G.R., Burckle, L.H., et al. (ed), Initial reports of the Deep Sea Drilling Project, 86. Washington, U.S. Government Printing Office. 51-90.
    Heezen, B.C., Foreman, H.P., Hekel, Z.H., et al., 1973. Pliocene Volcanogenic sediments and Mesozoic chalks southeast of Japan: DSDP Site 196. In: Heezen, B.C., MacGregor, I.D., et al. (ed), Initial reports of the Deep Sea Drilling Project, 14. Washington, U.S. Government Printing Office. 33-44.
    Heirtzler, J.R., Veevers, J.J., Bolli, H.M., et al., 1974a. Site 259. In: Veevers, J.J., Heirtzler, J.R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 27. Washington, U.S. Government PrintingOffice. 15-88.
    Heirtzler, J.R., Veevers, J.J., Bolli, H.M., et al., 1974b. Site 260. In: Veevers, J.J., Heirtzler, J.R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 27. Washington, U.S. Government Printing Office. 89-128.
    Heirtzler, J.R., Veevers, J.J., Bolli, H.M., et al., 1974c. Site 261. In: Veevers, J.J., Heirtzler, J.R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 27. Washington, U.S. Government Printing Office. 129-192.
    Hikuroa, D.C.H., Crampton, J., Cretaceous Oceanic Red beds in New Zealand, SEPM special publication, in press.
    Helsley C E, Steniner M B., 1969, Evidence for long intervals of normal polarity during the Cretaceous period. Earth Planet Sci Lett, 5: 325-332.
    Hoppie, B., Garrison, R.E., 2001. Miocene phosphate accumulation in the Cuyama Basin, southern California. Mar. Geol. 177: 353–380.
    Hsü, K.J., LaBrecque, J.L., Carman, M.F., Jr., et al., 1984. Site 524. In: Hsü, K.J., LaBrecque, J.L., et al. (ed), Initial reports of the Deep Sea Drilling Project, 73. Washington, U.S. Government Printing Office, 323-386.
    Hu, X.M., 2002. Sedimentary geology of Cretaceous in southern Tibet, and the Upper Cretaceous oceanic red beds. Unpublished PhD Thesis, Chengdu University of Technology, China, 216.
    Hu, X.M., Wang, C.S., Li, X.H., Jansa, L., 2006. Upper Cretaceous oceanic red beds in southern Tibet: Lithofacies, environments and colour origin. Science in China Series D-Earth Sciences, 49(8): 785-795.
    Hu, X.M., Luba, J., Sarti, M., et al., 2006b. Mid-Cretaceous oceanic red beds in the Umbria–Marche Basin, central Italy: Constraints on paleoceanography and paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 233: 163– 186
    Hu, X.M., Luba, J., Wang, C.S., et al., 2005. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research, 26: 3-20.
    Hu, X.M., Jansa, L. and Wang, C.S., 2008, Upper Jurassic–Lower Cretaceous stratigraphy in south-eastern Tibet: a comparison with the western Himalayas. Cretaceous Research, 29(2): 301-315.
    Huang, Y.J., Wang, C.S., Hu, X.M., Chen, X., 2007. Burial records of reactive iron in Cretaceous black shales and oceanic red beds from southern Tibet. ACTA GEOLOGICA SINICA-ENGLISH EDITION. 81(3): 463-469.
    Huang, Y.J.,Wang, C.S., Chen, X. 2007. Response of reactive phosphorus burial to the sedimentary transition from Cretaceous black shales to oceanic red beds in Southern Tibet. ACTA GEOLOGICA SINICA-ENGLISH EDITION. 81(6): 1012-1018.
    Huber, B.T., 1990. Maastrichtian planktonic foraminifer biostratigraphy of the Maud Rise (Weddell Sea, Antarctica): ODP Leg 113 Holes 689B and 690C. In Barker, P.F., Kennett, J.P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 489–513.
    Huber, B.T., Norris R.D., MacLeod, K.G., 2002. Deep-sea paleotemperature record of extreme warmth during t he Cretaceous. Geology, 30: 123-126.
    Hughen, K.A., Overpeck, J.T. et al., 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature, 391: 65-58.
    Ingall, E., Bustin, R.M., Van Cappellen, P., 1993. Influence of watercolumn anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57: 303–316.
    Ingall, E., Jahnke, R., 1997. Influence of water-column anoxia on the elemental fractionation of C and P during sediment diagenesis. Mar. Geol. 139: 219–229.
    Ingersoll, R.V., 1988. Tectonics of sedimentary basins. GSA Bull., 100: 1704-1719.
    Ingersoll, R.V. and Busby, C.J., 1995. Tectonics of sedimentary basins. In: Ingersoll R V, Busby C J. Tectonics of sedimentary basins. Oxford: Blackwell Science.
    Jarvis, I., Burnett, W.C., Nathan, Y., et al., 1994. Phosphorite geochemistry: state of the art and environmental concerns. Eclogae Geol. Helv., 87: 643–700.
    Jarvis, I., Gale, A.S., Jenkyns, H.C., Pearce, M.A., 2006. Secular variation in Late Cretaceous carbonisotopes: a newδ13C carbonate reference curve for the Cenomanian-Campanian (99.6–70.6 Ma). Geol. Mag., 143 (5): 561-608.
    Jenkyns H.C., 1980. Cretaceous anoxic events: From continents to oceans. J Geol Soc London, 137:171-188.
    Jenkyns, H.C., Gale, A.S. and Corfield, R.M. 1994. Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geological Magazine, 131: 1–34.
    Jones C E, Jenkyns H C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci, 2001, 301: 112-149.
    Kim, D., Schuffert, J.D., Kastner, M., 1999. Francolite authigenesis in California continental slope sediments and its implication for marine P cycle. Geochim. Cosmochim. Acta, 63: 3477–3485.
    Krasheninnikov, V. A., 1973. Cretaceous benthonic foraminifera, Leg 20, Deep Sea Drilling Project. In Heezen, G. C , MacGregor, I. D., et al., Initial Reports of the Deep Sea Drilling Project, Volume 20: Washington (U.S. Government Printing Office), 205-219.
    Krauskopf K. B., 1959. The geochemistry of silica in sedimentary environments. In Silica in Sediments (ed. H. A. Ireland), Sot. Econ. Paleontol. Mineral. 4-19.
    Krenmayr, H.G., 1996. Hemipelagic and turbiditic mudstone facies associations in the Upper Cretaceous Gosau Group of the Northern Calcareous Alps (Austria). Sedimentary Geology, 101, 149–172.
    Kroon, D., Norris, R.D., Klaus, A., et al., 1998a. Site 1049. In: Norris, R.D., Kroon, D., Klaus, A., et al. (ed), Proc. ODP, Init. Repts., 171B. College Station, TX, 47-91.
    Kroon, D., Norris, R.D., Klaus, A., et al., 1998b. Site 1050. In: Norris, R.D., Kroon, D., Klaus, A., et al. (ed), Proc. ODP, Init. Repts., 171B. College Station, TX, 93-170.
    Kuypers, M.M.M., Pancost, R.D., Damste, J.S. 1999. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous time. Nature, 399: 342-345.
    Lancelot, Y.P., Seibold, E., ?epek, P., et al., 1977. Site 367: Cape Verde Basin. In, Lancelot, Y.P., Seibold, E., et al. (ed), Initial reports of the Deep Sea Drilling Project, 41. Washington: U.S. Government Printing Office, 163-232.
    Lancelot, Y.P., Larson, R., Fisher, A., et al., 1990. Site 801. In: Lancelot, Y.P., Larson, R., et al. (ed), Proc. ODP, Init. Rept., 129. College Station TX (Ocean Drlling Program), 303-416.
    Larson R L., 1991,Latest pulse of Earth: Evidence for a mid Cretaceous superplume. Geology, 19: 963-966.
    Larson, R.L., Moberly, R., Bukry, D., et al., 1975a. Site 310: Hess Rise. In: Larson, R.L., Moberly, R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 32. Washington, U.S. Government Printing Office. 295-310.
    Larson, R.L., Moberly, R., Bukry, D., et al., 1975b. Site 313: Mid-Pacific Mountains. In: Larson, R.L., Moberly, R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 33. Washington, U.S. Government Printing Office. 313-390.
    Leckie R M, Bralower T J, Cashman R, 2002. Oceanic anoxic events and plankon evolution: Biotic response to tectonic forcing during the mid-Cretaceous]. Paleoceanography. 17(3): 1-29.
    Lehner, B.L., Knappertsbusch, M.W., Heer, P.H., 1987. Biostratigraphy, lithostratigraphy and sedimentology of the Maiolica Lombarda and the Scaglia Lombarda on the west side of Lake Garda (northern Italy). Memorie di Scienze Geologiche, 39: 1–24.
    Li, G.B., Wan, X.Q., Liu, W.C., et al. 2005. Discovery of Paleogene marine stratum along the southern side of Yarlung-Zangbo suture zone and its implications in tectonics. Science in China, Ser. D. 48(5): 647-661.
    Li, X.H., Wang, C.S., Hu, X.M., 2005, Stratigraphy of deep-water Cretaceous deposits in Gyangze, southern Tibet, China. Cretaceous Research, 26: 33-41.
    Li, X.H., Jenkyns, H.C., Wang, C.S., et al., 2006. Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society, London, 163: 375–382.
    Liu, G. and Einsele, G., 1994. Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol Rundsch, 83: 32-61.
    Ludwig, W.J., Krasheninnikov, V.A., Basov, I.A., et al., 1983. Site 511. In Ludwig, W.J., Krasheninnikov, V.A., et al. (ed), Initial reports of the Deep Sea Drilling Project, 71. Washington: U.S. Government Printing Office, 21-110.
    Mackenzie, F.T., Ver, L.M., Sabine, C., et al., 1993. C, N, P, S global biogeochemical cycles and modelling of global change. In: Wollast, R., Mackenzie, F.T., Chou, L. (Eds.), Interactions of C, N, P and S, Biogeochemical Cycles and Global Changes. NATO ASI series, I 4: 1–61.
    Mahoney, J.J., Fitton, J.G., Wallace, P.J., et al., 2001. Leg 192 summary. In: Mahoney, J.J., Fitton, J.G., Wallace, P.J., et al. (ed), Proc. ODP, Init. Rept., 192. College Station TX (Ocean Drlling Program), 1-75.
    Maxwell, A.E., von Herzen, R.P., Andrews, J.E., et al., 1970a. Site 20. In: Maxwell, A.E., von Herzen, R.P.,, et al. (ed), Initial reports of the Deep Sea Drilling Project, 3. Washington: U.S. Government Printing Office, 319-366.
    Maxwell, A.E., von Herzen, R.P., Andrews, J.E., et al., 1970b. Site 21. In: Maxwell, A.E., von Herzen, R.P.,, et al. (ed), Initial reports of the Deep Sea Drilling Project, 3. Washington: U.S. Government Printing Office, 367-412.
    Melinte, M.C., 2002. Campanian–Maastrichtian marine red beds in the Romanian Carpathians. In: Hu, X., Sarti, M. (Eds.), Cretaceous Oceanic Red Beds (CORBs) in an Apennines-Alps-Carpathians Transect. Field Guidebook for Inaugural Workshop of IGCP 463, Ancona, Italy, 18.
    Michalik, J., Soták, J., Salaj, J., 2002. Cretaceous Oceanic Red Beds in the westernmost Carpathians in Slovakia. In: Hu, X., Sarti, M. (ed), Cretaceous Oceanic Red Beds (CORBs) in an Apennines- Alps-Carpathians Transect. Field Guidebook for Inaugural Workshop of IGCP 463, Ancona, Italy, 47–72.
    Middelburg, J.J., Comans, R.J.N., 1991. Sorption of cadmium on hydroxyapatite. Chem. Geol. 90: 45–53.
    Miller, K.G., Wight, J.K., Fairbanks, R.D., 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustacy, and margin erosion. J. Geophys. Res, 96:6829-6848.
    Mitchell, S.F., Paul, C.R.C. and Gale, A.S. 1996. Carbon isotopes and sequence stratigraphy. Geological Society of London, Special Publication, 104: 11–24.
    Montadert, L., Roberts, D.G., Auffret, G.A., et al., 1979a. Sites 399, 400, and hole 440A. In: Montadert, L., Roberts, D.G. (ed), Initial reports of the Deep Sea Drilling Project, 48. Washington: U.S. Government Printing Office, 35-72.
    Montadert, L., Roberts, D.G., Auffret, G.A., et al., 1979b. Site 401. In: Montadert, L., Roberts, D.G. (ed), Initial reports of the Deep Sea Drilling Project, 48. Washington: U.S. Government Printing Office, 73-124.
    Moore, T.C., Jr., Rabinowitz, P.D., Boersma, A., et al., 1984a. Site 525. In: Moore, T.C., Jr., Rabinowitz, P.D., et al. (ed), Initial reports of the Deep Sea Drilling Project, 74. Washington: U.S. Government Printing Office, 41-160.
    Moore, T.C., Jr., Rabinowitz, P.D., Boersma, A., et al., 1984b. Site 527. In: Moore, T.C., Jr., Rabinowitz, P.D., et al. (ed), Initial reports of the Deep Sea Drilling Project, 74. Washington: U.S. Government Printing Office, 237-306.
    Moore, T.C., Jr., Rabinowitz, P.D., Boersma, A., et al., 1984c. Site 528. In: Moore, T.C., Jr., Rabinowitz, P.D., et al. (ed), Initial reports of the Deep Sea Drilling Project, 74. Washington: U.S. Government Printing Office, 307-406.
    Morford, J.L., Russell, A.D., Emerson, S., 2001. Trace metal evidence for changes in the redox environment assocoated with the transition from terrigenous clay to diatomaceous sediments, Saanich Inlet, BC. Mar. Geol. 174: 355–369.
    Morkhoven, F.P.C.M. van, Berggern, W.A. and Edwards, A.S., 1986. Cenozoic cosmopolitan deep-water benthic foraminifera. Bull. Centres Rech. Explor. Prod. Elf-Aquitaine, Mem. 11. Pau. Mullins, H.T. and Cook, H.E., 1986. Carbonate apron models: alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration. Sedimentary Geology, 48: 37-79.
    Mullins, H.T. and Neumann, A.C., 1979. Deep carbonate bank margin structure and sedimentation in the northern Bahamas. Soc. Econ. Paleontol. Mineral., Spec. Publ., 27: 165-192.
    Murphy, A.E., Sageman, B.B., Hollander, D.J., 2000a. Eutrophication by decoupling of the marinebiogeochemical cycles of C, N and P: a mechanism for the Late Devonian mass extinction. Geology, 28: 427–430.
    Murphy, A.E., Sageman, B.B., Hollander, D.J., et al., 2000b. Black shale deposition and faunal overturn in Devonian Appalachian basin: clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography, 15: 280–291.
    Nagao, S. and Nakashima, S. 1992. The factors controlling vertical color variations of North Atlantic Madeira Abyssal Plain sediments. Marine Geology, 109: 83-94.
    Nederbragt, A.J., Dunbar, R.B., Osborn, A.T. et al., 2006. Sediment colour analysis from digital images and correlation with sediment composition. Geological Society, London, Special Publications. 267: 113-128.
    Neumann, P., Wagreich, M., CORBs from the Pindos Basin of Greece– long-term siliceous oxic deposition punctuated by anoxia. SEPM special publication, in press.
    Niebuhr B, 2005. Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl-limestone rhythmites (Lehrte West Syncline, northern Germany). Geol. Mag., 142 (1): 31-55.
    Paul, C.R.C., Lamolda, M.A., Mitchell, S.F. et al. 1999. The Cenomanian-Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Palaeogeography, Palaeoclimatology, Palaeoecology, 150: 83–121.
    Paul, C.R.C., Mitchell, S.F., Marshall, J.D. et al., 1994. Palaeoceanographic events in the Middle Cenomanian of Northwest Europe. Cretaceous Research, 15: 707–38.
    Pedersen, T.F., Price, N.B., 1982. The geochemistry of manganese carbonate in Panama Basin sediments. Geochim. Cosmochim. Acta, 46: 59–68.
    Perch-Nielsen, K., Supko, P.R., Boersma, A., et al., 1977a. Site 354. In: Supko, P.R., Perch-Nielsen, K., et al. (ed), Initial reports of the Deep Sea Drilling Project, 39. Washington: U.S. Government Printing Office, 45-100.
    Perch-Nielsen, K., Supko, P.R., Boersma, A., et al., 1977b. Site 355. In: Supko, P.R., Perch-Nielsen, K., et al. (ed), Initial reports of the Deep Sea Drilling Project, 39. Washington: U.S. Government Printing Office, 101-140.
    Perch-Nielsen, K., Supko, P.R., Boersma, A., et al., 1977c. Site 356. In: Supko, P.R., Perch-Nielsen, K., et al. (ed), Initial reports of the Deep Sea Drilling Project, 39. Washington: U.S. Government Printing Office, 141-230.
    Perch-Nielsen, K., Supko, P.R., Boersma, A., et al., 1977d. Site 357. In: Supko, P.R., Perch-Nielsen, K., et al. (ed), Initial reports of the Deep Sea Drilling Project, 39. Washington: U.S. Government Printing Office, 231-328.
    Perch-Nielsen, K., Supko, P.R., Boersma, A., et al., 1977e. Site 358. In: Supko, P.R., Perch-Nielsen, K., et al. (ed), Initial reports of the Deep Sea Drilling Project, 39. Washington: U.S. Government Printing Office, 329-372.
    Piper D.Z. and Isaacs C. M., 1995. Geochemistry of Minor elements in the Monterey Formation, California: Seawater Chemistry of Deposition, United States Government Printing Office, Washington, 1-41.
    Piper, D.Z., Perkins, R.B., 2004. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition. Chem. Geol. 206: 177–197.
    Premoli Silva, I., 1977. Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy, II. Biostratigraphy. Geological Society of America, Bulletin, 88: 371–374.
    Premoli Silva, I., Sliter, W.V., 1994. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio, Italy. Paleontologia Italica, 82: 1–89.
    Quilty, P.G., 1992. Upper Cretaceous planktonic foraminifers and biostratigraphy, Leg 120, southern Kerguelen Plateau. In Wise, S.W., Jr., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Station, TX (Ocean Drilling Program), 371–392.
    Rabinowitz, P. D., Labreque, J. L., 1979, The Mesozoic South Atlantic and the Evolution of iots continental margins. J. Geophys. Res., 84: 5973-6002.
    Rajendran, A., Dileepkumar, M., Bakker, J.F., 1992. Control on manganese and iron in Skagerraksediment (northeastern North-Sea). Chem. Geol. 98: 111–129.
    Reimers, C.E., Ruttenberg, K.C., Canfield, D.E., et al., 1996. Porewater pH and authigenic phases formed in the uppermost sediments of the Santa Barbara Basin. Geochim. Cosmochim. Acta, 60: 4037–4057.
    Robertson, A., Sharp, I., 1998. Mesozoic deep-water slope/rise sedimentation and volcanism along the North Indian passive margin: evidence from the Karamba Complex, Indus suture zone (western Ladakh Himalaya). Journal of Asian Earth Sciences 16: 195–215.
    Ryan, W.B.F., Sibuet, J.-C.,. Arthur, M.A., et al., 1979. Site 398. In: Sibuet, J.-C., Ryan, W.B.F., et al. (ed), Initial reports of the Deep Sea Drilling Project, V. 47, part 2. Washington: U.S. Government Printing Office, 25-234.
    Sannigrahi, P., Ingall, E., 2005. Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters: evidence from 31P NMR. Geochem. Trans. 6 (3): 52-59.
    Savrda, C.E. and Bottjer, D.J., 1986. Trace-fossil model for reconstruction of paleo-oxygenation of bottom waters. Geology, 14: 3-6.
    Schlanger, S.O., Jenkyns, H.C., 1976. Cretaceous oceanic anoxic events: cause and consequence. Geologie en Mijnbouw, 55: 179–184.
    Schlanger, S.O., Jackson, E.D., Boyce, R.E., et al., 1976a. Site 315. In: Schlanger, S.O., Jackson, E.D., et al. (ed), Initial reports of the Deep Sea Drilling Project, 33. Washington: U.S. Government Printing Office, 37-104.
    Schlanger, S.O., Jackson, E.D., Boyce, R.E., et al., 1976b. Site 316. In: Schlanger, S.O., Jackson, E.D., et al. (ed), Initial reports of the Deep Sea Drilling Project, 33. Washington: U.S. Government Printing Office, 105-160.
    Schlanger S O, Arthur M A, Jenkyns H C, Scholle P A, 1987. The Cenomanian-Turonian oceanic anoxic event, I. stratigraphy and distribution of organic carbon-rich beds and the marineδ13C excursion. In: Brooks J., Fleet A.J., eds., Marine petroleum source rocks. Geological Society Special Publication 26: 371~399.
    Scheibnerova, V., 1974. Aptian-Albian benthonic foraminifera from DSDP Leg 27, Sites 259, 260 and 263, Eastern Indian Ocean. In Veevers, J. J., Heirtzler, J. R., et al., Init. Repts. DSDP, 27: Washington (U.S. Govt. Printing Office), 697-741.
    Scherbinina, E.A., 2002. The Upper Cretaceous red beds of the northeastern Peri-Tetys. In: Hu, X., Sarti, M. (Eds.), Cretaceous Oceanic Red Beds (CORBs) in an Apennines-Alps-Carpathians Transect. Field Guidebook for Inaugural Workshop of IGCP 463, Ancona, Italy, 26–27.
    Scholl, D.W., Boyce, R.E., Echols, R.J., et al., 1973. Site 192. In:Creager, J.S., Scholl, D.W., et al. (ed), Initial reports of the Deep Sea Drilling Project, 19. Washington: U.S. Government Printing Office, 463-554.
    Scotese, C.R., 1991, Jurassic and cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 87 (1-4): 493-501
    Shanmugam, G., 1996. High-density turbidity currents: are they sandy debris flows?]. Journal of Sedimentary Research, 66: 2-10.
    Shanmugam, G., Lehtonen, L.R., et al. 1994. Slump s and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and northern North Seas (61~67N ) : Implications for sand distribution]. AAPG Bull, 78 (6) : 910~937.
    Simpson, E.S.W., Gieskes, J., Girdley, W.A., et al., 1974. Site 249. In Simpson, E.S.W., Schlich, R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 25. Washington: U.S. Government Printing Office, 287-348.
    Skeleton P W, Spicer R A, Simon P Kelley, et al., 2003. The Cretaceous world. Cambridge university press. 360.
    Sliter, V. W., 1977. Cretaceous foraminifers from the Southern Atlantic Ocean, Leg 36, DSDP. In Barker, P. F., Dalziel, I. W. D., et al., Init. Repts. DSDP, 36: Washington (U.S. Govt. Printing Office), 519-573.
    Slomp, C.P., Thomson, J., de Lange, G.J., 2003. Controls on phosphorus regeneration and burial during formation of eastern Mediterranean sapropels. Mar. Geol. 203: 141–159.
    Stoll, H.M. and Schrag, D.P., 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geological Society of America Bulletin, 112: 308-319.
    ?tur, D., 1860. Berichtüber die geologischeübersichts– Aufnahme d.Wassergebietes der Waag und Meutra. Jahrbuch der Geologischen Reichsanstalt, 11: 17–149.
    Thiede, J., Vallier, T.L., Adeseck, C. Jr., et al., 1981a. Site 463: Western Mid-Pacific Mountains. In Thiede, J., Vallier, T.L., et al. (ed), Initial reports of the Deep Sea Drilling Project, 62. Washington: U.S. Government Printing Office, 33-156.
    Thiede, J., Vallier, T.L., Adeseck, C. Jr., et al., 1981b. Site 464: Northern Hess Rise. In Thiede, J., Vallier, T.L., et al. (ed), Initial reports of the Deep Sea Drilling Project, 62. Washington: U.S. Government Printing Office, 157-198.
    Trappe, J., 1998. Phanerozoic phosphorite depositional systems. Lecture Notes in Earth Sciences, 76: 316.
    Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2): 12-32.
    Tricart, P. 1984. From passive margin to continental collision: A tectonic Scenario for the western Alps. American Journal of Science. 284: 97-120.
    Tucholke, B.E., Vogt, P.R., Dermars, K.R., et al., 1979a. Site 382: Nashville Seamount-volcanism along the Eastern New England Seamount Chain. In: Tucholke, B.E., Vogt, P.R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 43. Washington: U.S. Government Printing Office, 31-94.
    Tucholke, B.E., Vogt, P.R., Dermars, K.R., et al., 1979b. Site 384: The Cretaceous/Tertiary boundary, Aptian reefs, and the J-anomaly Ridge. In: Tucholke, B.E., Vogt, P.R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 43. Washington: U.S. Government Printing Office, 107-154.
    Tucholke, B.E., Vogt, P.R., Dermars, K.R., et al., 1979c. Site 385: Volcanism at Vogel seamount in the Central New England Seamount Chain. In: Tucholke, B.E., Vogt, P.R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 43. Washington: U.S. Government Printing Office, 155-194.
    Tucholke, B.E., Vogt, P.R., Dermars, K.R., et al., 1979d. Site 386: Fracture valley sedimentation in the central Bermuda Rise. In: Tucholke, B.E., Vogt, P.R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 43. Washington: U.S. Government Printing Office, 195-322.
    Tucholke, B.E., Vogt, P.R., Dermars, K.R., et al., 1979e. Site 387: Cretaceous to recent sedimentary evolution of the western Bermuda Rise. In: Tucholke, B.E., Vogt, P.R., et al. (ed), Initial reports of the Deep Sea Drilling Project, 43. Washington: U.S. Government Printing Office, 323-392.
    Tur, N.A., 2002. Red hemipelagic sequences in the Upper Cretaceous of north Tethys (N. Caucasus, Tuarkyr and W. Kopeth-Dag). In: Hu, X., Sarti, M. (Eds.), Cretaceous Oceanic Red Beds (CORBs) in an Apennines-Alps-Carpathians Transect. Field Guidebook for Inaugural Workshop of IGCP 463, Ancona, Italy, 29.
    Turgeon, S. and Brumsack, H-J., 2006. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian–Turonian Boundary Event (Cretaceous) in the Umbria–Marche Basin of central Italy. Chem. Geol. 234: 321-339.
    Tyson, R.V., Pearson, T.H., 1991. Modern and ancient continental shelf anoxia: an overview. In: Tyson, R.V., Pearson, T.H. (Eds.), Modern and Ancient Continental Shelf Anoxia. Geol. Soc. Spec. Publ., 58: 1-26.
    Van Cappellen, P., Ingall, E.D., 1994. Benthic phosphorus regeneration, net primary production and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9: 677–692.
    van Hinte, J.E., Wise, S.W., Biart, B.N.M., et al., 1987. Site 603. In: Van Hinte, J.E., Wise, S.W., et al. (ed), Initial reports of the Deep Sea Drilling Project, 93, Part 2. Washington: U.S. Government Printing Office, 25-276.
    van Andel, T.H., Heath, G.R., Benntee, R.H., et al., 1973. Site 163. In: van Andel, T.H., Heath, G.R., Benntee, R.H., et al. (ed), Initial reports of the Deep Sea Drilling Project, 16. Washington: U.S. Government Printing Office, 411-472.
    Vera, J.A., Molina, J.M., 1999. La Formacion Capas Rojas: caracterizacion y genesis. EstudiosGeologicos, 55: 45–66.
    Vink, S., Chambers, R.M., Smith, S.V., 1997. Distribution of phosphorus in sediments from Tomales Bay, California. Mar. Geol. 139: 157–179.
    Voigt, S. and Hilbrecht, H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology, 134: 39–59.
    von der Borch, C.C., Sclater, J.G., Gartner, S. Jr., et al., 1974a. Site 211. In von der Borch, C.C., Sclater, J.G., et al. (ed), Initial reports of the Deep Sea Drilling Project, 22. Washington: U.S. Government Printing Office, 13-36.
    von der Borch, C.C., Sclater, J.G., Gartner, S. Jr., et al., 1974b. Site 212. In von der Borch, C.C., Sclater, J.G., et al. (ed), Initial reports of the Deep Sea Drilling Project, 22. Washington: U.S. Government Printing Office, 37-84.
    von der Borch, C.C., Sclater, J.G., Gartner, S. Jr., et al., 1974c. Site 217. In von der Borch, C.C., Sclater, J.G., et al. (ed), Initial reports of the Deep Sea Drilling Project, 22. Washington: U.S. Government Printing Office, 267-324.
    Wagreich, M., 1995. Subduction tectonic erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria). Tectonophysics, 242: 63–78.
    Wagreich, M., 2002. Cretaceous Oceanic Red Beds in Austria Alps. In: Hu, X., Sarti, M. (Eds.), Cretaceous Oceanic Red Beds (CORBs) in an Apennines-Alps-Carpathians Transect. Field Guidebook for Inaugural Workshop of IGCP 463, Ancona, Italy, 30–46.
    Wagreich, M.,Krenmayr, H-G., 2005, Upper Cretaceous oceanic red beds (CORB) in the Northern Calcareous Alps (Nierental Formation, Austria): slope topography and clastic input as primary controlling factors. Cretaceous Research, 26(3): 57-64.
    Wang, C. S., Hu, X.M., Jansa, L., et al., 2001. The Cenomanian-Turonian anoxic event in southern Tibet. Cretaceous Research, 22:481~490.
    Wang Chengshan, Hu Xiumian, Massimo Sarti, et al., 2005. Upper Cretaceous oceanic red beds in southern Tibet: a major change from anoxic to oxic, deep-sea environments. Cretaceous Research, 26(3): 21-32.
    Wang, C.S., Hu, X.M., Huang Yongjian, et al., Overview of the Cretaceous Oceanic Red Beds (CORBs): a window on Global Oceanic/Climate Change. SEPM special publication, in press.
    Wedepohl K. H., 1971. Environmental influences on the chemical composition of shales and clays. Physics and Chemistry of the Earth, 8: 307-331.
    Wedepohl K. H., 1991. The Composition of the upper earth’s crust and the natural cycles of selected metals. Metals in natural raw material. Natural resources. Metals and their compounds in the environment. 3-17.
    Wendler, J., Wendler, I., Kuss, J., Early turonian shallow marine red beds on the Levant carbonate platform, southern Tethys. SEPM special publication, in press.
    Whitmarsh, R.B., Beslier, M.-O., Wallace, P.J., et al., 1998. Site 1070. In: Whitmarsh, R.B., Beslier, M.-O., Wallace, P.J., et (ed)al., Proc. ODP, Init. Repts., 173. College Station, TX.265-296
    Wiese, F., The S?hlde Formation (Cenomanian, Turonian; upper Cretaceous) of NW Germany: shallow marine pelagic red beds. SEPM special publication, in press.
    Wiese, F. 1999. Stable isotope data (δ13C,δ18O) from the Middle and Upper Turonian (Upper Cretaceous) of Liencres (Cantabria, northern Spain) with a comparison to northern Germany (S¨ohlde & Salzgitter-Salder). Newsletters on Stratigraphy, 37: 37–62.
    Wilson, J.L., 1975. Carbonate facies in geologic history, Berlin; New York: Springer-Verlag, 471. Wilson, T.J., 1993. Magmatism and the geodynamics of basin formationl. Sed. Geol., 86: 5-29.
    Winterer, E.L., Ewing, J.I., Douglas, R.G., et al., 1973a. Site 164. In: Winterer, E.L., Ewing, J.I., et al. (ed), Initial reports of the Deep Sea Drilling Project, 17. Washington: U.S. Government Printing Office, 17-46.
    Winterer, E.L., Ewing, J.I., Douglas, R.G., et al., 1973b. Site 167. In: Winterer, E.L., Ewing, J.I., et al. (ed), Initial reports of the Deep Sea Drilling Project, 17. Washington: U.S. Government Printing Office, 145-234.
    Winterer, E.L., Ewing, J.I., Douglas, R.G., et al., 1973c. Site 169. In: Winterer, E.L., Ewing, J.I., et al.(ed), Initial reports of the Deep Sea Drilling Project, 17. Washington: U.S. Government Printing Office, 247-262.
    Winterer, E.L., Ewing, J.I., Douglas, R.G., et al., 1973d. Site 170. In: Winterer, E.L., Ewing, J.I., et al. (ed), Initial reports of the Deep Sea Drilling Project, 17. Washington: U.S. Government Printing Office, 263-282.
    Worzel, J.L., Bryant, W., Arthur O. B., et al., 1973a. Site 86. In: Worzel, J. L., Bryant W., et al. (ed), Initial reports of the Deep Sea Drilling Project, 10. Washington: U.S. Government Printing Office, 748.
    Worzel, J. L., Bryant, W., Arthur O. B., et al., 1973b. Site 95. In: Worzel, J. L., Bryant W., et al. (ed), Initial reports of the Deep Sea Drilling Project, 10. Washington: U.S. Government Printing Office, 748.
    Yarincik, K.M., Murray, R.W., Peterson, L., 2000. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: results from Al/Ti and K/Al. Paleoceanography 15: 210–228.
    Zachos, J.C., Kroon, D., Blum, P., et al., 2004. Leg 208 summary. In: Zachos, J.C., Kroon, D., Blum, P., et al. (ed), Proc. ODP, Init. Rept., 208. College Station TX (Ocean Drlling Program), 1-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700