用户名: 密码: 验证码:
海洋电磁式可控震源关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文所研究的海洋电磁式可控震源是为满足海洋高分辨率地震勘探和野外轻便施工的要求而提出的一种新型震源。海洋震源系统工作频率高,需要能够完成相同扫描信号的多次重复性输出并使可控震源-海水耦合系统实现能量的优化传输。
     针对以上问题,本文主要进行了以下几方面的研究工作:
     首先,设计研制了包含振动控制单元、信号产生模块、功率放大器、电磁激振器、MEMS地震加速度计和数据采集单元等部件组成的海洋电磁式可控震源硬件系统。其次,为实现勘探过程中可控震源-水耦合最佳,对可控震源激振器-水耦合模型分析,分析激振器的非线性特性,研究激振器结构。再次,为使海洋电磁式可控震源工作在最佳方式,对可控震源的扫描方法进行研究,得到最适合于震源系统的短时分段扫描方法。最后,将采用上述方案的可控震源系统在野外进行可靠性实验,取得令人满意的效果。
With the development of marine seismic exploration , marine high-resolution seismic exploration has become the hotspot of current research in the field of seismic exploration. Marine high-resolution seismic exploration is a systemic project, and the rule of high-resolution exploration must be followed by bestir of seismic wave, arrangement of geophones, collection of data, process and explanation of data. As the source of seismic signal, the seismic excitation can give direct influence to the effect of exploration. In marine seismic excitation market , air gun is the most important , but in practical work, air gun wavelet’s energy is inconsistent with bandwidth. Vibrator is a new type of seismic source which will not bring the danger and destructibility of dynamite and can bestir repetitious sweeping signal. Vibrator is used broadly in land , but in marine seismic exploration , it is not used now. Electro-magnetic vibrator is a new type of non-destructive vibrator which frequency is adjustable. Its design ideas come from radar and sonar echo ranging technology, and its applications were mainly located in the shallow high-resolution seismic exploration. It not only can enhance the high frequency components by nonlinear sweep in accordance with the pre-determined frequency, but also could achieve the desired amplitude spectrum by variable frequency sweep.
     Marine electro-magnetic vibrator is not same as marine source, it has high frequency, but the output energy is less, so it need long time sweep to achieve high energy output, we need think nether problems in design :
     First, the electro- magnetic vibrator has a high working frequency, and vibration in a small Vibration amplitude. The tenet of Vibrator seismic exploration is outputting as much energy through a continuous bestirring in a period of time as that outputted by other sources in an instantaneous time. The realization of this goal needs that Vibrator can output a same sweeping signal in many times continuously, then overlap the reflect signal to eliminate the noise from the exploration background, finally visualize the structure of the stratum.
     Secondly, the electro-dynamic Vibrator has a comparatively light coupling weight and its output is not forceful, so a best transmission of energy must be realized between Vibrator and water. The depth and resolution of seismic exploration depend heavily on the magnitude of seismic reflecting wave, so under a ideal condition a Vibrator should work in a fully loaded state to output its most power to meet the need of seismic exploration.. In practical work , the coupling with water is better than ground, but because of linearity damp and linearity restoring force, different period of frequency in different exploration target will pick corresponding sweeping parameters to lead a tight couple between Vibrator base-plate and water , which realizes best transmission of limited energy.
     The dissertation, which was supported by the state 863 project "Study on key technology of marine electro-dynamic vibrator", aims to design a suitable seismic vibrator system. Working on marine vibrator system design , controlling sweep signal and system working in field, and the main work and conclusions are as follows:
     1.As a main participator, I developed the first marine electro-dynamic Vibrator of our country. The system performance can catch up with the internal world level.
     2.The composition and structure of present seismic instruments were compared and the advantage of the marine electro-dynamic Vibrator was analyzed. Present seismic instruments have a problem of energy and bandwidth, electro-dynamic Vibrator can solve this problem by adding sweep frequency bandwidth and time , therefore marine electro-dynamic Vibrator system and sweep method is the key technologies, which leads to the focus of this study.
     3.Analyzing marine electro-dynamic Vibrator configuration , developing controlling cell , power amplifier and excitation, realizing marine electro-dynamic Vibrator system . In marine electro-dynamic Vibrator system , designing the sweeping signal card, based on DDS(Digital Direct Synthesize), is used to output signal with choice magnitude, comparatively wide frequency band and random waveform to meet the need of different kind of seismic explorations, studying configuration of excitation, designing power amplifier based on excitation.
     4.Study coupling of excitation with water by marine electro-dynamic Vibrator excitation and the difference of water and ground, because of water’s specialty , considering excitation contacting well with water, emulating excitation, getting its system equation , analyzing vibration instances of system by simple harmonic wave power , gained four working state such as anti-main resonance vibration based on system respond in every frequency segment, studying the influence of system resonance frequency and respond signal range by excitation quality, gained energy absorbability changing curve with frequency in same character factor and differ character factor, at last studying non-linearity of excitation, gained the influence of system stability by inspirit signal’s frequency and range.
     5.Developing marine vibrator system incepting cell, developing MEMS seismic accelerometer, bringing forward problems based on design of accelerometer, reforming accelerometer by noises interference rejection , dynamic revising , improving linearity and so on, introducing EMC design of accelerometer and gained results, developing accelerometer frequency-domain integral based on accelerometer physical speciality and base plate displacement.
     6.Vibrator sweep mode was studied, basing on ground vibrator sweep mode, bringing forward pseudo-random encoding sweeps first time, investigating pseudo-random encoding character , and sampled pseudo-random encoding , numerical modeling this sweep mode, gained auto-correlation of pseudo-random encoding, validating this sweep mode ; gained marine vibrator short time sweep mode , developing short time sweep mode , gained emulation result , numerical modeling short time sweep mode , analyzing auto-correlation results , processing vibrator experiment based by emulation , gained correlation results , validating this sweep mode .
     7.Instruments experiments in lab and field were carried out. Instruments assembly were carried out. Excitation was airproofed, target test was carried out , at last instruments was test in trough. Vibrator seismic exploration computer emulation was carried out. Emulation gave method for vibrator experiments in field. The geographical position, natural and cultural condition and the noise of the test site is analized.Output power of excitation and base plate signal were measured , the result is content, vibrator seismic section chart was gained by lots of sweep experiments.
     The key innovative points are as follows:
     1.Aiming at marine seismic exploration ,marine electro-magnetic vibrator was developed based on idea of electro-magnetic vibrator
     2.Aiming at working specialty , pseudo-random encoding sweeps was bringed forward based on vibrator sweep mode.
     3.Aiming at marine vibrator , marine electro-magnetic vibrator short time sweep mode was designed.
     4. Excitation-water coupling module was design based on water speciality, non-linearity analyzing of excitation was carried out, excitation configuration was designed , excitation that fitting base plate and water coupling was developed.
引文
[1] A.DATTA, P.A. IOANNOU. Performance Analysis and Improvement in Model Reference Adaptive Control, [J]. IEEE Trans. Automat. Contr.,1994,39:2370-2387
    [2] AI-POH LOH, M.ANNASWAMY, FREDRIK P. SKANTZE. Adaptation in the Presence of a General Nonlinear Parameterization: An Error Model Approach. [J].IEEE Trans. Automat. Contr.,1999,44(9):1634-1651
    [3] ALESSANDRO DE LUCA, GIUSEPPE ORIOLO. Comments on“Adaptive Variable Structure Set-Point Control of Underactuated Robots”. [J].IEEE Trans. Automat. Contr.,2001,46(5):809-811
    [4] ANBUMAIN K,PATNAIK L M,SERMA L G. Self- tuning minimum- variance control of nonlinear systems of the hammerstain model. [J].IEEE Trans. Autom. Contol. ,1981 ,AC- 26(4) :959- 961
    [5] ANDREA SERRANI, ALBERTO ISIDORI, LORENZO MARCONI. Semiglobal Nonlinear Output Regulation With Adaptive Internal Model. [J]. IEEE Trans. Automat. Contr.,2001,46(8):1178-1193 [6]钱慧石丁乐俊.常用气枪工作原理介绍[J],物探装备,2008.2
    [7] BEHNAM SHAHRRAVA, J.D.APLEVICH. Optimal One-Step-Ahead Stochastic Adaptive Control. [J]. IEEE Trans. Automat. Contr.,2001,46(5):756-760
    [8] B.M.GURBUZ.Signal Enhancement Of Vibratory Source Data In The Presence Of Attenuation. [J].Geophysical Prospecting, 1972, Vol.20:421-438.
    [9] B.M.GURBUZ. Upsweep Signals With High Frequency Attenuation And Their Use In The Construction Of Vibroseis Synthetic Seismograms. [J]. Geophysical Prospecting 1982, Vol.30: 432-443.
    [10]林君,电磁驱动可控震源地震勘探原理及应用,[M].科学出版社,2004
    [11] CHEN ZUBIN, LIN JUN. Design for Vibrator Field Experiment Based-on Vibrator-Earth System. [J].Jounrnal of Geoscience Research in Northeast Asia, 2000,3(1):107-113
    [12] CHIEN, SUN K C, WU A C,FU L C. A robust MRAC using variable structure design for multivariable plants. [J]. Automatica, 1996, 32(6):833-848
    [13] DAVID S. BAYARD. A General Theory of Linear Time-Invariant Adaptive Feedforward Systems with Harmonic Regressors. [J].IEEE Trans. Automat. Contr.,2000,45(11):1893-1996
    [14] DAVID WALKER. Harmonic Resonance Structure and Chaotic Dynamics in the Earth-Vibrator System. [J].Geophysical Prospecting, 1995, Vol. 43: 487-507
    [15] JOHN M.CRAWFORD, WILLIAM E.N.DOTY, MILFORD R.LEE. Continuous Signal Seisgraphy. [J].Geophysics, 1960,Vol.25: 95-105
    [16] ELIAS B. KOSMATOPOULOS, PETROS A. IOANNOU. A Switching Adaptive Controller for Feedback Linearizable Systems. [J].IEEE Trans. Automat. Contr.,1999,Vol44(4):742-750
    [17] F.IKHOUANE, M.KRSTI?. Robustness of the Tuning Functions Adaptive Backstepping Design for Linear System. [J].IEEE Trans. Automat.Contr.,1998,Vol43:431-437
    [18] FILIPPOV A F. Differential equations with discontinuous right-hand side. [J].Amer. Math. Soc. Translations, 1964, Vol42(2):199-231
    [19] F.P.SKANTZE, A.KOJI?, A.-P. LOH ., A.M. ANNASWAMY. Adaptive Estimation of Discrete-Time Systems with Nonlinear Parameterization. [J].Automatica,2000,Vol36:1879-1887
    [20] F.ZHANG, D.M.DAWSON, M.S. DE QUEIROZ, W.E.DIXON. Global Adaptive Output Feedback Tracking Control of Robot Manipulators. [J]. IEEE Trans. Automat. Contr.,2000, Vol45(6): 1203-1208
    [21] G.J.M.BAETON, T.J.FOKKEMA, A.M.ZOILKOWSKI. Seismic Vibrator Modeling. [J].Geophysical Prospecting, 1988, Vol. 36
    [22] HANSHENG WU. Adaptive Stabilizing State Feedback Controllers of Uncertain Dynamical Systems with Multiple Time Delays. [J].IEEE Trans. Automat. Contr., 2000,45(9):1697-1700
    [23] HSU L ET.AL. Analysis and design of I/O based variable adaptive control. [J].IEEE Trans. Autom. Control, 1994, Vol39(1):4-21
    [24] ISIDORI A. Nonlinear Control Systems. [M].2nd Edition.New York:Springer-Verlag,1991
    [25] JIANGHAI XIA, RICHARD D. MILLER. Design of a Hum Filter for Suppressing Power-line Noise in Seismic Data.[J]. Journal of Environmental and Engineering Geophysics,2000, Vol5:31-38
    [26] J.J.SALLAS, R.M.WEBER. Comments on“The Amplitude and Phase Responses of a Seismic Vibrator”. [J].Geophysical Prospecting, 1982, Vol. 30
    [27] J.J.SALLAS. Seismic Vibrator Control and the Downgoing P-wave. [J].Geophysical Prospecting, 1984, Vol.32
    [28] JOSEPH. K. SCHRODT. Techniques For Improving Vibroseis Data. [J].Geophysics, 1987,Vol.52, No.4: 469-482
    [29] KANELLAKOPOULOS I,KOKOTOVI P V,MORSE A S. Systematic design of adaptive controllers for feedback linearizable systems. [J].IEEE Trans.Automat.Contr.,1991,Vol36(11):1241-1253
    [30] KANELLAKOPOULOS I. Passive adaptive control of nonlinear systems. [J].International Journal of Adaptive Control and Signal Processing,1993,Vol7(5):339-352
    [31] KLAUDER,J.R.PRINCE, A. C. DARLINGTON, W. J. Albersheim. The Theory And Design Of Chirp Radar. [J].The Bell System Technical Journal, 1960,Vol.39: 745-808
    [32] KOKOTOVIC P V, KRSTIC M, KANELLAKOPOULOS I. Backstepping to passivity: recursive design of adaptive systems. [J].In: Proc.of 31st IEEE CDC.Tusson, Arizona: IEEE, 1992:3276-3280
    [33] KRSTIC M,KOKOTOVIC P V.Observer-based schemes for adaptive nonlinear state-feedback control. [J].Int.J.Control,1994,Vol59(6):1373-1381
    [34] KUMPATI S. NARENDRA, CHENG XIANG. Adaptive Control of Discrete-Time Systems Using Multiple Models. [J].IEEE Trans. Automat. contr.,2000,45(9):1669-1685
    [35] LANDAU I D. Evolution of adaptive control. ASME Journal of Dynamic Systems,[J].Measurement,and Control,1993,Vol15:381-391
    [36] L.GUO. Estimating Time-Varying Parameters by the Kalman Filter Based Algorithm: Stability and Convergence. [J].IEEE Trans. Automat. Contr.,1990,Vol35(2):141-147
    [37] L.GUO, H.-F.CHEN. The ?str?m-Wittenmark Self-Tuning Regulator Revisited and ELS-Based Adaptive Trackers. [J]. IEEE Trans. Automat Contr.,1991,Vol36(7):802-812
    [38] L.GUO, L.LJUNG. Performance Analysis of General Tracking Algorithms. [J]. IEEE Trans. Automat. Contr.,1995,Vol40:1388-1402
    [39] L.HSU, R.COSTA. Bursting Phenomena in Continuous-Time Adaptive Control Systems with ?-modification. [J]. IEEE Trans. Automat. Contr.,1987,Vol32:84-86
    [40] LIANG-LIANG XIE, LEI GUO. Fundamental Limitations of Discrete-Time Adaptive Nonlinear Control. [J]. IEEE Trans. Automat. Contr.,1999,44(9):1777-1782
    [41] LIN YAN, ZHANG JIE,MAO JIANQIN. Variable structure robust adaptive control with unmodelled dynamics. [C]. In:36th IEEE Conf. Decision and Control, San Diego, 1997.
    [42] MARINO R,TOMEI P. Global adaptive output-feedback control of nonlinear systems,[J].PartⅠ,Ⅱ.IEEE Trans.Automat.Contr.,1993,Vol38(1):17-48
    [43] MAURICE PIEUCHOT. Seismic Instrumentation, [M].Geophysical Press, London Amsterdam 1984
    [44] MICHAEL H. CHANG, EDWARD J. DAVISON, Adaptive Switching Control of LTI MIMO Systems Using a Family of Controllers Approach. [J].Automatica,1999,35:453- 465
    [45] MILLER,DAVISON E J. An adaptive controller which provides an arbitrarily good transient and steady-state response. [J].IEEE, Trans. Autom. Control,1991, Vol36(1):68-81
    [46] MONOPOLI R V. Model reference adaptive control with an augmented error signal. [J]. IEEE Trans.Automat.Contr.,1974,Vol19:474-484
    [47] MORSE A S. A three-dimentional universal controller for the adaptive stabilization of any strictly proper minimum-phase system with relative degree not exceeding two. [J]. IEEE Trans. Autom. Control, 1985,Vol30(12):1188-1191
    [48] NAM K,ARAPOSTATHIS A. A model reference adaptive control scheme for pure-feedback nonlinear systems. [J]. IEEE Trans.Automat.Contr.,1988,Vol33(9):803-811
    [49] NARENDRA K S, VALAVANI S. Stable adaptive controller design ? direct control. [J]. IEEE Trans. Autom. Control, 1978,Vol23(4):570-583
    [50] NARENDRA K S,ANNASWAMY A M. A new adaptive law for robust adaptation without persistent excitation. [J].IEEE Trans.Automat.Contr.,1985,Vol30:193-216
    [51] OHKAWA F. Model reference adaptive control systems for linear time-varying systems with parameters and time delays. [J].Int. J. Contr. ,1986,Vol44(1):43-54
    [52] ORTEGA J M,RHEINBOLDT W C. Iterative Solution of Nonlinear Equations in Several Variables[M]..New York-London:Academic Press,1970
    [53] PIERREL. GOUPILLAUD. Signal Design In The“Vibroseis”System, [J].Geophysics, 1976, Vol41, No.6:1291-1304
    [54] P.MICHEAU, P.COIRAULT. Adaptive Controller Using Filter Banks to Reject Multi-Sinusoidal Disturbance. [J].Automatica,2000,Vol36:1659-1664
    [55] PRABHAKAR R. PAGILLA, MASAYOSHI TOMIZUKA. An Adaptive Output Feedback Controller for Robot Arms: Stability and Experiments. [J].Automatica,2001,Vol37:983-995
    [56] P.R.KUMAR. Convergence of Least-squares Parameter Estimate Based Adaptive Control Schemes. [J].IEEE Trans. Automat. Contr.,1990,Vol35(4):416-424
    [57] QU Z ET AL. Model reference robust control of a class of SISO systems. [J].IEEE Trans. Autom. Control, 1994, Vol39(11):2219-2234
    [58] RADHAKANT PADHI, S.N.BALLAKRISHNAN, TIMOTHY RANDOLPH. Adaptive-Critic Based Optimal Neuro Control Synthesis for Distributed Parameter Systems. [J].Automatica,2001,Vol37: 1223-1234
    [59] RAYADURGAM RAVIKANTH, SEAN P. MEYN. Bounds on Achievable Performance in the Identification and Adaptive Control of Time-Varying Systems. [J]. IEEE Trans. Automat. Contr.,1999,Vol44(4):670-682
    [60] RAúL ORD??EZ, KEVIN M.PASSINO. Adaptive Control for a Class of Nonlinear Systems with a Time-Varying Structure. [J].IEEE Trans. Automat. Contr.,2001,Vol46(1):152-155
    [61] R.D.ELLIS, R.RAVIKANTH, P.R.KUMAR. Automating the Simulation of Complex Discrete-Time Control Systems: A Mathematical Framework, Algorithms and a Software Package, [J]. IEEE Trans. Automat. Contr.,1994,Vol39:1795-1801
    [62] R.GHOSE, VINCENT NIJHOF, JAN BROUWER, YOSHIKAZU MATSUBARA, YASUHIRO KAIDA, TORU TAKAHASHI. Shallow to Very Shallow, High-Resolution Reflection Seismic Using a Portable Vibrator System. [J].Geophysics, 1998,Vol.63(4):1295-1309
    [63] RICCARDO MARINO, PATRIZIO TOMEI .An Adaptive Output Feedback Control for a class of Nonlinear Systems with Time-varying Parameters. [J].IEEE Trans. Automat. Contr.,1999,Vol44(11):2190-2194
    [64] R.MARINO, P.TOMEI. Adaptive Output Feedback Tracking with Almost Disturbance Decoupling for a Class of Nonlinear Systems. [J]. Automatica,2000,Vol36:1871-1877
    [65] R.ORTEGA. On Morse’s New Adaptive Controller: Parameter Convergence and Transient Performance. [J].IEEE Trans. Automat. Contr.,1993,Vol38:1191-1202
    [66] SASTRY S,ISIDORI A. Adaptive control of linearizable systems. [J]. IEEE Trans. Automat. Contr.,1989,Vol34(11):1123-1131
    [67] T.E.DUNCAN, L. GUO, B.PASIK-DUNCAN. Adaptive Continuous-Time Linear Quadratic Gaussian Control. [J].IEEE Trans. Automat. Contr.,1999,Vol44(9):1653-1662
    [68] TSAKALIS K S, IOANNOU P A. Adaptive control of linear time-varying plants. [J].Automatica, 1987,Vol23:459-468
    [69] TSAKALIS K S, IOANNOU P A. Adaptive control of linear time-varying plants: A new model reference controller structure. [J].IEEE Trans. Automat. Contr., 1989,Vol34(10): 1038-1046
    [70] TAO ZHANG. Comments on“Adaptive Variable Structure Set-Point Control of Underactuated Robots”. [J].IEEE Trans. Automat. Contr.,2001,Vol46(5):811-813
    [71] XIAOLI MA, GANG TAO. Adaptive Actuator Compensation Control with FeedbackLinearzation. [J].IEEE Trans. Automat. Contr.,2000,Vol45(9):1705-1710
    [72] XUDONG YE. Adaptive Nonlinear Output-Feedback Control with Unknown High-Frequency Gain Sign. [J].IEEE Trans. Automat. Contr.,2001,Vol46(1):112-115
    [73] YOUPING ZHANG, PETROS A. IOANNOU. A New Linear Adaptive Controller: Design, Analysis and Performance. [J]. IEEE Trans. Automat. Contr., 2000,Vol45(5):883-897
    [74] Y.ZHANG. Stability and Performance of a New Linear Adaptive Backstepping Controller. Proc. [J].IEEE Conf. Decision Contr., San Diego,CA,Dec.1997:3028-3033
    [75] ZHIHUA QU. Robust and Adaptive Boundary Control of a Stretched String on a Moving Transporter. [J]. IEEE Trans. Automat. Contr.,2001,Vol46(3):470-476
    [76] ZHIYUAN REN, BRUCE H. KROGH. Adaptive Control of Markov Chains with Average Cost. [J].IEEE Trans. Automat. Contr.,2001,Vol46(4):613-617
    [77] Z.ZANG, R.BITMEAD. Transient Bounds for Adaptive Control Systems, Proc. [J]. IEEE Conf. Decision Contr., 1990:171-175
    [78] B.威德罗,E.瓦莱斯,(刘树棠,韩崇昭译).自适应逆控制. [M].西安:西安交通大学出版社,2000
    [79]柴天佑.多变量自适应解耦控制及其应用. [M].北京:科学出版社,2001
    [80]陈祖斌,林君.浅层地震可控震源系统的设计. [J].电子测量与仪器学报,2002,(1):43-48
    [81]冯纯伯,费树岷.非线性控制系统设计. [M].北京:电子工业出版社,1998
    [82]韩曾晋.自适应控制. [M].北京:清华大学出版社,1995
    [83]何克忠.计算机控制系统. [M].北京:清华大学出版社,1998
    [84]何樵登.地震勘探原理及方法. [M].北京:地质出版社,1985
    [85]胡寿松.自动控制原理. [M].北京:国防工业出版社,1994
    [86]李庆忠.走向精确的勘探道路-高分辨率地震勘探系统工程剖析. [M].北京:石油工业出版社,1994
    [87]林君,陈祖斌.可控震源-大地耦合模型研究. [J].中国学术期刊文摘,1999,Vol5(6):811-812
    [88]林君,陈祖斌.国土资源部九五科技重点项目“轻便浅层地震可控震源系统”研究报告,[R].2000
    [89]陆基孟.地震勘探原理及方法. [M].北京:石油大学出版社,1993:4-7
    [90]孙传友,高光贵.遥测地震仪原理. [M].北京:石油工业出版社,1992:30-35
    [91]俞寿朋.高分辨率地震勘探. [M].北京:石油工业出版社,1994:25-28
    [92]王庆海,徐明才.抗干扰高分辨率浅层地震勘探. [M].北京:地质出版社,1990:38-39
    [93]周锐,韩增晋.一类非线性系统的自适应控制方法. [J].自动化学报,1999,Vol25(2):152-161
    [94] DONALD A. WEBER, P.E. ROBERT BONSEN. Analysis of a Novel EMI shielding technology[J], 2005:186-194.
    [95] BERTHER T ,GAUTSCHI GH, KUBLER J. Capacitive accelerometers for static and low-frequency measurements[J]. Sound and Vibration, 1996, 30(6):28-30.
    [96] WANG L P, DENG K, ZOU L, Micro-electromechanical systems(MEMS) accelerometers using lead zironate titanate thick films[J]. IEEE Electron Device Lett,2002,23(4):182-184.
    [97] TIEMAN J, SCHRNALZEL J, KRCHNAVEK R. Design of a MEMS based,3-axis accelerometer smart sensor[C]. In:Sensors for Industry Conference, 2002 2nd ISA/IEEE,2002:19-23.
    [98] MOUGENOT D. How digital sensors compare to geophones[J]. Expanded Abstracts of 74th Annual Internet SEG Mtg,2004,5-8.
    [99] DARIO PERTI . Frequency一Domain Testing of Waveform Digitizers. [J].IEEE Transactions on Instrumentation and Measurement.2002,3 (51):445-447
    [100]陈祖斌,林君,张林行,分布式浅层地震仪的设计,[J].电子测量与仪器学报,2000,14(5),240-243
    [101] D.DIMOGIANOPOULOS, R.LOZANO. Adaptive Control for Linear Slowly Time-Varying Systems Using Direct Least-Squares Estimation. [J]. Automatica,2001,Vol37:251-256
    [102]俞阿龙,黄惟一,加速度传感器的动态性能校正技术,测控技术,2004 ,Vol(23) ,No7, 5-7
    [103]陈祖斌,林君,轻便浅层地震可控震源的研制,[J].仪器仪表学报,2003,24(3),311-314.
    [104]陈祖斌,林君,新型数字式地震检波器的研制,[J].石油仪器,1999,13(5),1-4.
    [105] BERHARDT ,T., PEACOCK. Encoding Technique for the Vibroseis System [J]. Geophysical Prospecting, 1978.26:184-193.
    [106] H.V .ALLEN. ETAL , Accelerometer systems with self-testable featureas, [J].Sensors and Actuators, 1989,153一161
    [107]何汉漪.海上高分辨率地震技术及其应用[M].北京:地质出版社,2001,52- 61.
    [108] CHARLES L.ROBINSON. How vibratory seismic work is conducted offshore [J]. World Oil, 1967, No.5:594~597.
    [109] GUIDO BAETEN, TACOB FOKKEMA, ANTON ZIOLKOWSKI. The marine vibrator source [J]. First Break, 1987, Vol.6(9):285~294.
    [110] RUNE TENGHAMN. An electrical marine vibrator with a flextensional shell: DECEMBER 2005 DRAFT [A]. AESC2006, Melbourne, Australia.
    [111] RUNE TENGHAMN. PGS Electrical Marine Vibrator [J]. TECHLINK, 2005, Vol.5(11):1-3.
    [112]林君,陈祖斌.电磁式大功率浅层地震可控震源系统[P].中国:发明专利,(专利号:01128147.2),2001.
    [113] CUNNINGHAM A B. Some Alternate Vibrator Signals[J]. Geophysics, 1979, 44(12): 1901-1921
    [114] CRAWFORD J M, WILLIAM E N, LEE M R. Continuous Signal Seisgraphy [J]. Geophysics, 1960, 25: 95-105.
    [115] ANSTEY. NIGEL. ALLISTER. Vibroseis, [M].Prentice Hall Inc, 1991
    [116]肖国镇,粱传甲,王玉民.伪随机序列及其应用[M].北京:国防工业出版社,1985
    [117]万哲先,代数和编码[M],北京:科学出版社,1980
    [118]苏金名,阮沈勇.MATLAB实用指南[M].北京:电子工业出版社,2002
    [119]王忠仁,林君,冯声涯.地震勘探中相控阵震源的方向特性研究. [J]地球物理学报, 2006, 49(4): 1191-1197
    [120] H.A.K. EDELMANN, H.WERNER. Combined Sweep Signals for Correlation Noise Suppression [J]. Geophysical Prospecting, 1978, Vol.26:786-812.
    [121] H.A.K.EDELMANN, H.WERNER. THE Encoded Sweep Technique For Vibroseis [J]. Geophysics, 1982, Vol.47(5): 809-818.
    [122] BERHARDT ,T., PEACOCK. Encoding Technique for the Vibroseis System [J]. Geophysical Prospecting, 1978.26:184-193.
    [123] A. B. CUNNINGHAM, Some Alternate Vibrator Signal [J], Geophysics, 1979, Vol.47 (12):1901-1921.
    [124] CHEN ZUBIN, TENG JIWEN, LIN JUN, ZHANG LINHANG, JIANG ZHONGJIN. Nonlinear analysis on the coupling process of electromag-netic vibrator and earth [J]. Science in China Series D-Earth Sciences, 2005,Vol.48(8):1175-1182.
    [125]赵秀影,商玉凤,翟林培等,基于EBCOT的平衡多小波航空图像压缩编码[J],光学精密工程,15(11):1796-1801

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700