用户名: 密码: 验证码:
鸡西盆地张新地区辉绿玢岩侵入对碎屑岩围岩的改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过岩芯的系统描述、鉴定,结合40Ar/39Ar同位素测年、电子探针、X-射线衍射分析等测试方法与手段,开展了鸡西盆地张新辉绿玢岩对碎屑岩围岩改造特征研究,取得以下主要成果与认识:
     1.以岩床形式侵入到下白垩统城子河组含煤层系中的辉绿玢岩年龄测试结果为96~101Ma,从而确定鸡西盆地热事件的时间。
     2.示踪辉绿玢岩侵位的特征矿物主要为自生绢云母。辉绿玢岩侵位对岩体上盘碎屑岩的改造强度较大,表现为上盘围岩的镜质体反射率随远离辉绿玢岩体的距离增加而减少,由2.31%到0.79%;辉绿玢岩体侵入对上盘围岩有机质影响最大距离为129.06m。
     上盘围岩随远离辉绿玢岩体的距离增大伊利石含量减少;伊蒙混层、高岭石、绿泥石含量增大。下盘围岩随远离辉绿玢岩体的距离增大伊利石、高岭石、绿泥石含量增加;伊蒙混层含量减少。
     3.辉绿玢岩侵位对岩体上盘储层物性改造强度较大,表现为上盘围岩随远离辉绿玢岩体的距离增大孔隙度减小,由12.5%减小到11.3%,下盘由7%增大到8.8%;渗透率增加,上盘由0.16md到0.66md,下盘由0.21md到0.41md。西风井比鸡西地区城子河组砂岩平均孔隙度增大;渗透率变化不明显。
Jixi basin is one of the most important coal basins of Mesozoic Era in the east of Heilongjiang.The basin lies in the Jiamusi-Uplift of Mesozoic Era and to the north of the Dunhua-Mishan Fault.The basin was formed in the early phase of Early-Cretaceous and sealed off in the early stage of Late-Cretaceous. Four stratum units are recognized in Zhangxin area and they are named as Didao Formation(K1d), Chengzihe Formation(K1c), Muling Formation(K1m) and Dongshan Formation(K1ds).
     Didao Formation is composed of river and lake facies~volcanic clastic sedimentary rocks. Chengzihe Formation is composed of a series of brink lake~swamp facies of sedimentary rocks. Muling Formation is a series of brink lake~delta~swamp facies of sedimentary rocks. Dongshan Formation is a series of land facies composed of volcanic~sedimentary clastic rocks.
     The sampling points are located in Zhangxin mining area which is 8 kilometres long in east-west direction and 4 kilometres wide in north-south direction with an area of 32km2. The algovite invades the surrounding rocks between sedimentary layers composed of Chengzihe formation.The algovite is an ellipse in plane view with an area of 40km2 and has a thickness of 80~230m.
     The sampling space in the surrounding rocks in Xifeng tunnel is 4~6m and samples are also taken from the different lithologic layers.On the hanging wall of the algovite intrusion, samples are taken at a space of 20cm in a 10m long section.The sampling depth is from 175.81m to -168.25m in Yellow sea elevation and 133 samples in total are taken.
     The main types of sedimentary rocks in Chengzihe formation at Xifeng well are mainly lithic arkosic sandstones with some arkosic lithic sandstones. The main types of diagenesis are mechanical indentation, pressolution, cementation, metasomatosis, accreting, crack-infilling and alterationin.Through systematic sampling, slice identifying, physical property analysis, clay mineral analysis, vitrinite reflectance testing and chilkinite crystalization testing, autogenetic mineral analysis,clay mineral assemblage analysis, S% in I/S, the author thinks that diagenetic stages of Chengzihe formation in Zhangxin area are middle and late diagenetic stages.
     Although the sandstones of Chengzihe formation in Zhangxin area are nearly the same as that in Jixi basin, the sandstones of Chengzihe formation in Zhangxin area contain less quartz grains and more felspar and lithologic fragments.
     40Ar/39Ar dating shows that the algovite intrusion was formed during 96-101Ma B.P. The Chengzihe formation in Zhangxin area in Jixi basin is intruded by the algovite sills, which shows that the studied area undergone an extending stage during the late stage of Early-Cretaceous and the early stage of Late-Cretaceous.
     The laumontites are found in the intrusion composed of gabbroporphyrite intruding Chengzihe formation in Jixi Basin. The laumontites are arranged in radial aggregates and concentrates to band. With magma uprising,the temperature and pressure of the magma become smaller and smaller and the solubility of volatilizing components in the magma also becomes smaller and smaller. At the same time,volatilizing components are separated from the magma and concentrated in the boundary belts of the intrusion.Since the magma cools and condenses quickly, the bubbles in the upper part of the algovite intrusion form holes which provide spaces for the forming of laumontites.The cracks in the algovite and its boundary formed by magma cooling provide passageways for the escaping of CO2 and the transporting of Ca2+ and Al3+. Ca2+ and Al3+ react in the liquid magma forming laumontites and calcites.Little by little, laumontites and calcites form mineral assemblages.
     The data of electronic probe analysis shows that the augites and feldspars in the intrusion supply Ca2+ and Al3+ to form the laumontites. And at the same time, Fe3+ is concentrated in the intrusion. Ca2+ and Al3+ in alteration envelope are more than that in augites.So a light color alteration envelope is formed in the boundary belt of the intrusion.Laumontites are formed by chemical reaction and augites in the intrusion provide Ca2+ for the forming of Laumontites and calcites.
     The algovites intruding the Chengzihe formation effected the surrounding rocks. According to vitrinite reflectance testing and X-ray analysis on clay minerals,we divided the surrounding sedimentary rocks at Xifeng well into 6 respond belts to the algovite- intruding.From the top to the bottom of the well, they are:beltⅠ(no respond belt),beltⅡand beltⅥ(weak respond belts), beltⅣ(algovite intrusion) and beltⅢand beltⅤ(strong respond belts).
     According to calculation, the highest temperature of the buried Chengzihe formation at Xifeng well is 259.24oC. The temperature of algovite intrusion is 379.76oC while it intrudes the surrounding rocks and the intruding lasts for 117.7 years.The temperature of the algovite intrusion and the lasting time of intruding make the surrounding rocks metamorphosed weakly.
     Because of the intruding of algovite, a lot of didrimits are formed in the surrounding rocks and quartz grains are secondary enlarged.
     The vitrinite reflectance of the surrounding rocks on hanging wall decreases with the increasing of distance between the algovite intrusion and the surrounding rocks changing from 2.31% to 0.79%. The intruding of algovite effects the organic mass on hanging wall and the largest distance effected by the intruding is 129.06m.
     The average content of chilkinite in the surrounding rocks on hanging wall decreases with the increasing of the distance between the algovite intrusion and the surrounding rocks changing from 85.7% to 11.5%.The average contents of illite-smectite mixed-layer, kaolinite and chloritoid increase with the increasing of the distance between the algovite intrusion and the surrounding rocks changing separately from 4.3% to 64.8%, 0.0% to 15.0% and 10% to 12.1%. The average contents of chilkinite, kaolinite and chloritoid in the surrounding rocks on bottom wall increase with the increasing of the distance between the algovite intrusion and the surrounding rocks changing from 12.3% to 16.7%, 2.5% to 37.7% and 3.5% to 5.8%.But the average contents of illite-smectite mixed-layer decreases with the increasing of the distance between the algovite intrusion and the surrounding rocks changing from 82.0% to 39.8%.
     Three kinds of clay mineral assemblages are recognized at Xifeng well.They are:① illite-smectite mixed-layer+chilkinite+chloritoid±kaolinite±chloritoid-smectite mixed- layer assemblage,②chilkinite+chloritoid±chloritoid-smectite mixed-layer assemblage and③chloritoid-smectite mixed-layer+kaolinite + chilkinite + chloritoid assemblage.
     The porosity of the surrounding rocks on hanging wall decreases with the increasing of the distance between the algovite intrusion and the surrounding rocks changing from 12.5% to 11.3%.But the porosity of the surrounding rocks on bottom wall increases with the increasing of the distance between the algovite intrusion and the surrounding rocks changing from 7.0% to 8.8%. The percolation rate of the surrounding rocks on hanging wall increases with the increasing of the distance between the algovite intrusion and the surrounding rocks changing from 0.16md to 0.66md.And the percolation rate of the surrounding rocks on bottom wall increases with the increasing of the distance between the algovite intrusion and the surrounding rocks changing from 0.21md to 0.41md. The average porosity of the surrounding rocks is 10.4% and the average percolation rate of the surrounding rocks is 0.434md.The porosity of the surrounding rocks at Xifeng well is larger than that of Chengzihe formation in Jixi area.But the percolation rates of both are nearly the same.
     The intruding of algovite causes two respond belts on the hanging wall:one is a strong respond belt which is 0-7.77m from the algovite intrusion;and the other is a weak respond belt which is 7.77-129.06m from the algovite intrusion.The largest distance effected by the algovite intruding is 129.06m which is 1.2-fold of the thickness of the algovite intrusion.The effect of intruding on hanging wall is larger than that of intruding on bottom wall.
引文
[1]鲍景新,陈衍景,张增杰,陈华勇,刘玉琳.西天山阿希金矿浊沸石化与古地热成矿流体系统的初步研究[J].北京大学学报(自然科学版).2002,38(2):252-259.
    [2]曹学伟、胡文瑄、金之钧、朱东亚.临盘油田夏38井区辉绿岩热效应对成烃作用的影响[J].石油与天然气地质.2005,26(3):317-322.
    [3]陈河替,王丹,姜成才.论勃利煤田鸡西群与桦山群地层接触关系[J].煤炭技术.2005,24(1):72-73.
    [4]程金辉,何承全.黑龙江省东部鸡西盆地早白垩世滴道组的沟鞭藻类[J].古生物学报.2001,40(1):127-133.
    [5]程晓玲.粘土矿物转化与储层孔隙演化的规律性研究—以苏北盆地台兴油田阜三段储层为例[J].大庆石油地质与开发.2006,25(1):43-45.
    [6]陈少楠.张新煤矿次辉长玢岩特征及时代的探讨[J],煤炭技术,2004,23 (3):98-99.
    [7]池秋鄂.层序地层学基础与应用[M].石油工业出版社,2001.
    [8]崔明洙,李林山.鸡西—延吉地层分区饶河小区的锰矿地质特征[J].吉林地质. 2008,27(2):42-44.
    [9]董艳冰,夏立冬.鸡西煤田地质构造及断层解释[J].煤炭技术.2008,27 (5):132-133.
    [10]地质部地质辞典办公室.地质辞典(二),矿物岩石地球化学分册[M].北京:地质出版社,1981:211.
    [11]樊馥,高福红,高红梅.鸡西盆地下白垩统煤系烃源岩生油潜力[J].新疆石油地质.2007, 28(1):36-39.
    [12]冯乔、汤锡元.岩浆活动与油气成藏地质条件的关系[J].西北地质科学.1997,18(1):56-62.
    [13]冯乔,汤锡元.岩浆活动对油气藏形成条件的影响[J].地质科技情报.1997, 16(4):59-65.
    [14]丰成友,姬金生,薛春纪,张连昌.东天山西滩浅成低温热液金矿床地质特征及成因分析[J].新疆地质.1999,17(1):1-7.
    [15]付正,刘钦甫,田威猛,等.海拉尔盆地贝尔凹陷兴安岭群储层粘土矿物组成及特征研究[J].地球学报.2008,29(2):174-178.
    [16]高福红,高红梅,樊馥.鸡西盆地下白玺统煤系烃源岩生物标志物地球化学特征[J].石油实验地质.2007,29(2):188-198.
    [17]高福红,刘立,高红梅,樊馥.鸡西盆地早白垩世烃源岩沉积有机相划分和评价[J].吉林大学学报(地球科学版)2007,37(4):717-720.
    [18]高福红,刘立,马瑞,彭晓雷,高玉巧.黑龙江鸡西盆地鱼亮子沟城子河组海相泥岩有机地球化学特征[J].世界地质.2007,26(2):194-198.
    [19]高红梅,高福红,樊馥,高玉巧.鸡西盆地早白垩世烃源岩可溶有机质地球化学特征[J].吉林大学学报(地球科学版).2007,37(1):86-90.
    [20]格享特ED.关于沸石相的温度、压力和流体成分间题[M].何明喜译.西安:西北大学出版社,1979,78-84.
    [21]关于沸石类矿物命名法的建议(Ⅰ)矿物岩石地球化学通报.2001,20 (3):149-155.
    [22]郭永龙,王焰新,蔡鹤生,杨志华.水热条件下利用微波加热从粉煤灰合成沸石研究[J].地球科学—中国地质大学学报.2003,25(5):517-521.
    [23]韩会平,王宝清,李勇,武春英,蒋继辉.鄂尔多斯盆地侯北地区三叠系延长组长6储层特征[J].西安石油大学学报(自然科学版).2005,20(3):67-71.
    [24]何承全,孙学坤.黑龙江省东部鸡西盆地城子河组下部早白玺世欧特里夫晚期海相沟鞭藻类.古生物学报[J].2000,39(1):46-62.
    [25]贺同兴,卢良兆,李树勋等.变质岩岩石学[M].北京:地质出版社,1988.
    [26]何星,杨建国,李映雁,林东成,王洪伟.鸡西盆地烃源岩特征与评价[J].大庆石油地质与开发.2008,27(4):42-44.
    [27]胡善亭,杨起,潘治贵,张惠良.鸡西煤田煤的热液变质作用[J].煤炭学报.1996,21(4):343-347.
    [28]胡善亭,杨起,潘治贵.鸡西煤田深部动力学特征与煤的变质作用[J].东北煤炭技术.1996,(1):57-60.
    [29]胡善亭,杨起,潘治贵.鸡西煤田煤化作用的古地温场研究[J].中国煤炭.1996,(2):18-21.
    [30]黄福堂,冯子辉.松辽盆地中生界砂岩次生孔隙形成条件及预测[J].大庆石油地质与开发.1999,18(1):1-4.
    [31]黄思静,刘洁,沈立成,武文慧.碎屑岩成岩过程中浊沸石形成条件的热力学解释[J].地质论评.2001,47(3):301-308.
    [32]黄文明.福建南安向阳绢云母矿地质特征及成因探讨[J].福建地质,2007,28(1):13-18.
    [33]江爱耕,汤德平.连江溪利伊利石的矿物学特征[J].福州大学学报(自然科学版).1998,26(4):119-122.
    [34]姜宝玉,冯金宝.鸡西群城子河组时代的进一步探讨[J].地层学杂.2000,25 3):217-221.
    [35]姜剑虹,三江—穆棱河中晚侏罗世沉积体系与聚煤模式[J].东北煤炭技术.1996,3:9-17.
    [36]金强.裂谷盆地火山活动与油气藏的形成[J].石油大学学报(自然科学版),2001,25(1):27-33.
    [37]金强,熊寿生,卢培德.中国断陷盆地主要生油岩中的火山活动及其意义[J].地质论评,1998,44(2):136-142.
    [38]金之钧,朱东亚,胡文瑄等.塔里木盆地热液活动地质地球化学特征及其对储层的影响[J].地质学报,2006,80(2):245-253.
    [39]康仁华,刘魁元,钱峥.罗家地区下第三系辉绿岩建造及成藏特征[J].特种油气藏,2000,7(2):8-10.
    [40]厉艳君.鸡西矿区城子河—杏花矿区煤层气赋存条件分析[J].科技创新导报.2008,29:97.
    [41]厉艳君.鸡西煤田城子河组、穆棱组煤质特征[J].科技创新导报. 2008, 26:88.
    [42]李斌,朱永铭,童孝华,赵惊蛰,刘莉莉.靖安油田上三叠统长6储集层成岩作用[J].东华理工学院学报.2003,24(4):292-296.
    [43]李斌,朱永铭,管英柱.应用成岩岩相分析法研究非均质性储层[J].东华理工学院学报.2004,27(4):322-326.
    [44]李春先,韩淑云,齐军.鸡西盆地油气赋存规律[J].煤炭技术.2005,24(05):3-4.
    [45]李德敏,张哨楠.松辽盆地北部古中央隆起带白至系登娄库组沉积相及天然气富集有利地区[J].矿物岩石.1995,15(2):47-54.
    [46]李弘,王芙蓉,戴世立等.绿泥石膜对储层孔隙度的影响—以鄂尔多斯盆地M油田延长组2段为例[J].岩性油气藏,2008,20(4):71-74
    [47]李满根,胡宝群,白丽红等.江西银山矿伊利石化过程中围岩化学成分变化及其成矿意义[J].大地构造与成矿学.2007,31(3):353-358.
    [48]李明诚、李剑、万玉金、邓祖佑、杜秀芳.沉积盆地中的流体[J].石油学报.2001,22(4):13-18.
    [49]李怒军,吴志宇,张金亮,张晓玲.安塞油田王窑区长6油层储层地质[J].西安石油学院学报, 1998,13(4):34-39.
    [50]李恕军.安塞油田侯市地区长6油层储层特征[J].西安石油学院学报.1998,3(4):5-10.
    [51]李仰春,娄本军,杨晓平等.黑龙江鸡西盆地北部穆棱组高分辨率层序地层[J].地球科学与环境学报,2007,3(29):263-268.
    [52]李文厚,柳益群,冯乔.川口油田长6段油层组储集层特征与油气富集规律[J].岩石学报,1998.14(1):117-127.
    [53]李晓峰,华仁民,季俊峰等.江西银山多金属矿床伊利石的形成与流体成矿作用的初步研究[J].地质科学.2002, 37(1):86-95.
    [54]李兴.鸡西盆地永庆组煤质特征及其变化规律[J].黑龙江科技信息. 2007:21.
    [55]李兴.鸡西盆地含煤地层城子河组沉积环境分析[J].黑龙江科技信息.2008:35.
    [56]李又臣,王春莲.绥滨断陷地层格架特征及鸡西群沉积环境[J].科技信息,2007,32:653-654.
    [57]李忠权,罗启后,吴征,等.大庆探区外围盆地含油气性评价与优选[M].成都理工大学,2003.
    [58]林宝钦.中国东部冰长石--绢云母型低温浅成热液金矿[J].贵金属地质, 1992,4:199-206.
    [59]刘桂荣,胡善亭.鸡西煤田沉积体系与煤成气的分布[J].黑龙江矿业学院学报.1991,4(2):12-17.
    [60]刘国勇,张刘平,金之钧.深部流体活动对油气运移影响初探[J].石油实验地质,2005,27(3):269-275.
    [61]刘建明、刘家军、顾雪祥.1997.沉积盆地中的流体活动及其成矿作用[J].岩石矿物学杂志.16(4):341-352.
    [62]刘建章,刘伟,王存武.沉积盆地活动热流体类型及其石油地质意义[J].海洋石油,2004,24(3):8-13.
    [63]刘迎新,秦善,刘瑞,鲁安怀.孔道结构矿物及其晶体结构特征[J].北京大学学报(自然科学版).2004,40(6):992-1000.
    [64]刘小平.鸡西盆地穆棱组煤层聚煤规律分析[J].黑龙江科技信息.2008:48.
    [65]柳益群.关于成岩作用与变质作用界线的讨论——从沸石相谈起[J].地质论评,1996,42(3):215-223.
    [66]柳益群.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化[J].沉积学报,1996,14(3):87-95.
    [67]卢文忠,朱国华,李大成,陈娅娜,徐政语.川中地区侏罗系下沙溪庙组浊沸石砂岩储层的发现及意义[J].沉积储层,2004,:53-58.
    [68]吕修祥、杨宁、李建交.沉积盆地深部流体活动及油气成藏效应[J].海相油气地质. 2006,11(2):29-34.
    [69]吕正祥,卿淳.川西新场气田上沙溪庙组储层渗透性的地质影响因素[J].沉积与特提斯地质,2001,21(2):57-63.
    [70]毛凤鸣.高邮凹陷北斜坡辉绿岩形成时期的确定及其与油气关系[J].石油勘探与开发.2000,27(6):19-20.
    [71]孟元林,肖丽华,殷秀兰等.渤海湾盆地文安斜坡高温热流体活动与油气藏形成[J].岩石学报.2003,19(02):337-347.
    [72]帕拉提·阿布都卡迪尔.萨勒布尔地区的变质相及其特征研究[J].新疆工学院学报.1997,18(2):79-84.
    [73]庞奖励,裘愉卓.对辽西二道沟金矿床成因的再认识-一个冰长石-绢云母型浅成低温热液矿床[J].黄全地质科技,1994,4:7-10.
    [74]彭晓蕾.含油气盆地中岩浆活动对砂岩的改造[D].吉林大学,2006.
    [75]曲希玉,刘立,刘剑营,王海燕.鸡西盆地煤层顶板露头砂岩物性特征及成因探讨[J].石油天然气学报(江汉石油学院学报).2007,29(3):367-369.
    [76]任凤和,杨晓平,李仰春,汪岩,周兴福.黑龙江省东部鸡西群地层时代划分及地质意义[J].中国地质.2005,32(l):49-54.
    [77]任战利,赵重远,陈刚.沁水盆地中生代晚期构造热事件[J].石油与天然气地质.1999,20(1):46-48.
    [78]芮宗瑶,张立生,王龙生,王义天.斑岩铜矿与陆相火山活动[J].地震地质.003,5(增刊):78-87.
    [79]尚玉珂.黑龙江省鸡西城子河组被子植物化石层的孢粉研究[J].微体古生物学报.1997,14(2):161-174.
    [80]沈立成,黄思静,刘洁,张萌,武文慧,阳国进.用多元逐步回归方法评价储层孔隙度的控制因素[J].成都理工学院学报.2002,29(6):610-616.
    [81]孙革,刘风香.黑龙江鸡西含煤盆地早白垩世城子河组特尔姆叶(Tyrmia)的发现[J].煤田地质与勘探.2007,35(2):1-4.
    [82]孙革,郑少林,姜剑红等.黑龙江鸡西含煤盆地早白垩世生物地层研究新进展[J].煤田地质与勘探.1999,27(6):1-3.
    [83]孙革,郑少林等.黑龙江东部侏罗—白垩系界线附近地层研究新进展[J].地层学杂志.1992,16(1):49-54.
    [84]时林春.驾掌寺地区辉绿玢岩储层特征[J].特种油气藏.2003,10(增刊): 22-24.
    [85]孙涛、陈培荣、周新民等.2002.南岭东段强过铝质花岗岩中白云母研究[J].地质论评.48(5):518-525.
    [86]孙学坤,何承全.黑龙江绥滨地区晚侏罗世东荣组的沟鞭藻类[J].古生物学报.1992,31(2):199-203.
    [87]孙玉成.鸡西盆地城子河组煤层聚煤规律分析[J].煤炭技术. 2008, 27 (8):128-130.
    [88]田建锋,陈振林,凡元芳等.砂岩中自生绿泥石的产状、形成机制及其分布规律[J].矿物岩石地球化学通报.2008,27(2):200-205.
    [89]田建锋,陈振林,杨友运自生绿泥石对砂岩储层孔隙的保护机理[J].地质科技情报,2008,27(4):49-54.
    [90]王宝君,吴跃刚,李春先,等.鸡西盆地永庆区(一区)辉绿岩的侵入特征[J].工业技术.2006,17:84.
    [91]王保如,祁德清,汪恩华,魏水建,梁向勇.苏北盆地辉绿岩、蚀变带特征及其与油气的关系[J].西安石油学院学报(自然科学版).2001,16(6):5-8.
    [92]王成,邵红梅,洪淑新,齐晓杰,刘彤艳.松辽盆地北部深层碎屑岩浊沸石成因演化及与油气关系研究[J].矿物岩石地球化学通报,2004,23(3):213-218.
    [93]王成,邵红梅,洪淑新,潘昊,刘杰.松辽盆地北部深层次生孔隙分布特征[J].大庆石油地质与开发.2004,23(5):37-39.
    [94]王成,邵红梅,洪淑新,等.松辽盆地北部深层碎屑岩浊沸石成因、演化及与油气关系研究[J].矿物岩石地球化学通报[J].,2004,23(3):213-218.
    [95]王大锐.油气稳定同位素地球化学[M].北京:石油工业出版社,2000:13.
    [96]王冬艳,许文良,冯宏,等.辽西中生代晚期岩石圈地幔的性质:来自玄武岩和地幔捕虏体的证据[J].吉林大学学报(地球科学版).2002,32(4):319-324.
    [97]王芙蓉,何生,何治亮,等.准噶尔盆地腹部永进地区深埋侏罗系砂岩内绿泥石包膜对储层物性的影响[J].大庆石油学院学报,2007,31(2):24-27.
    [98]王海燕.鸡西盆地城子河组、穆棱组露头砂岩与岩芯砂岩成岩作用比较分析[D].吉林大学,2006
    [99]王杰,和钟铧,刘招君,等.鸡西盆地白垩纪碎屑岩地球化学特征及其对物源的制约[J].世界地质.2006,25(4):341-348.
    [100]王建国,王林凤.鸡西含煤沉积盆地早期油气勘探[J].中国海上油气(地质). 2005,15(2):121-126.
    [101]王金刚.鸡西盆地城子河组煤层煤质特征及其变化规律[J].煤炭技术. 2004,23(6).
    [102]王金山,姜剑虹.鸡西盆地城子河组海陆交互相含煤地层对比之新解[A]. 2001年全国沉积学大会摘要论文集,336-342.
    [103]王金山.黑龙江省鸡西盆地南、北两带城子河组精细对比[J].中国煤炭地质.2008,20(8):5-25.
    [104]王前平.黑龙江省东部盆地群构造热事件的研究[D].吉林大学,2006.
    [105]汪岩,周兴福,金哲岩,等.黑龙江鸡西地区晚古生代浅变质岩地球化学特征及构造环境.世界地质[J].2008,27(2):164-171.
    [106]王艳霞.2005.鸡西盆地煤变质作用的特征[J].煤炭技术,24(06):94-95.
    [107]王濮,潘兆橹,翁玲宝,等.系统矿物学[M].北京:地质出版社, 1984: 2-115.
    [108]王友勤,刘尔义.延吉一鸡西一饶河地层分区中、新代地层[J].吉林地质.1996, 15(3、4):96-110.
    [109]王薇,许文良,纪伟强,等.辽东中生代晚期和古近纪玄武岩和深源捕虏晶-对岩石圈地幔性质的制约[J].高校地质学报.2006,12(1):30–40.
    [120]王伟庆,陈菁,邹丽萍.东营凹陷成岩作用与孔隙流体活动的关系探讨[J].胜利油田职工大学学报.2005,19(3):40-42.
    [121]魏权凤,孔宪春.陕西首次发现热液型浊沸石矿[J].陕西地质.1993,11(2):83-85.
    [122]温泉波,刘永江,韩国卿等.黑龙江东部盆地群中、新生代构造演化[J].世界地质.2008,27(4):370-377.
    [123]温泉波,刘永江,李俊杰,白晶哲等.鸡西、勃利盆地白垩纪砂岩的物源分析及构造意义[J].沉积与特提斯地质.2008,28(3):52-59.
    [124]许文良,郑常青,王冬艳.辽西中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义[J].地质论评.1999,45(增刊): 444-449.
    [125]薛耀松,沈炎彬,卓二军.南极乔治王岛始新统化石山组沉积火山碎屑岩特征[J].南极研究(中文版).1996,8(4):31-46.
    [126]徐良.鸡西盆地含煤地层滴道组沉积环境分析.煤炭技术[J].2004, 23 (6): 32-33.
    [127]姚淑荣,李方健,周艳霞,梁奉奎.黑龙江东部区鸡西群、龙爪沟群时代与对比新认识[J].中国煤田地质.2001,13(1):4-7.
    [128]杨宝星,林仲虔,古世祥.松辽盆地北部下白至统下部含浊沸石砂岩的成岩作用[J].石油与天然气地质.1991,12(1):1-9.
    [129]杨桂芳,卓胜广,滕玉洪,牛奔,鄂俊杰.松辽盆地砂岩中成岩次生矿物特征[J].石油实验地质.2002,24(2):517-522.
    [130]杨华,付金华,喻建.陕北地区大型三角洲油藏富集规律及勘探技术应用[J].石油学报.2003,24(3):6-10.
    [131]杨列克,金伟,胡善亭等.鸡西煤田煤的变质特征[J].地球科学-中国地质大学学报.1996,21(6):641-644.
    [132]杨献忠,杨祝良,陶奎元等.含油玄武岩中绿泥石的形成温度[J].矿物学报.2002,22(4):365-370
    [133]杨小菊.黑龙江鸡西早白垩世穆棱组真蕨类植物一新种[J].古生物学报. 2002,41(2):259-265.
    [134]杨小菊,何承全,黎文本,朴太元.鸡西盆地早白垄世穆棱组海相沟鞭藻的发现及其古环境意义[J].科学通报.2003,48(14):1553-1556.
    [135]杨小萍,陈丽华.陕北斜坡延长统低渗储集层成岩相研究[J].石油勘探与开发.2001,28(4):38-40.
    [136]杨晓萍,张宝民,刘桂侠,陶仕振.四川盆地侏罗系沙溪庙组含浊沸石砂岩储层特征及其油层改造建议[J].西安石油大学学报(自然科学版).2005, 20(2):6-10.
    [137]杨晓萍,张宝民,陶士振.四川盆地侏罗系沙溪庙组浊沸石特征及油气勘探意义[J].石油勘探与开发.2005,32(3):37-44.
    [138]杨晓萍,裘怿楠.鄂尔多斯盆地上三叠统延长组浊沸石的形成机理、分布规律与油气关系[J].沉积学报,2002,20(4):628-632.
    [139]杨晓平,李仰春,张杰,郝永鸿.黑龙江东部下白垩统鸡西群层序地层划分与聚煤作用分析[J].华南地质与矿产.2005,4: 40-44.
    [140]杨晓平,马永强,郝永鸿,王洪杰,李仰春.黑龙江省东部鸡西群穆棱组年代地层划分[J].地质与资源2005,14(3):166-169.
    [141]杨仁超,樊爱萍,韩作振,等.马家山—小涧子油田砂岩成岩作用及其对储层的影响[J].中国地质,2007,34(2):283-288.
    [142]于恩君.黑龙江省鸡西—勃利含煤盆地层序地层学讨论[J].吉林地质.2008, 27(2):8-13.
    [143]袁德丰.浙江省瑞安市曹建绢云母矿床地质特征、成因机理探析及找矿方向[J].浙江地质.2001,17(2):33-39.
    [144]尤丽,刘立,彭晓蕾,曲希玉.鸡西盆地下白垩统含煤层系低孔低渗砂岩的成因探讨[J].世界地质.2007,26(2):218-223.
    [145]赵宏.思茅、景谷间发现埋藏变质作用的浊沸石、录纤石组合[J].云南地质.1984,3(1):成果报导.
    [146]赵孟为.鄂尔多斯盆地浊沸石的形成温度及其意义[J].石油学报,1995,16 (9):58-63.
    [147]赵孟为.划分成岩作用与埋藏变质作用的指标及其界线[J].地质论评.1995,41(3):238-244.
    [148]张俊宝,何玉梅.阜新煤田刘家区辉绿岩活动规律及对煤层气赋存的影响[J].煤矿开采.2003,8(3):21-22.
    [149]张锉昌,张振禹,戴长禄.浊沸石-一种有用的矿物[J].地质科学.1986,4.
    [150]张宏福,郑建平.华北中生代玄武岩的地球化学特征与岩石成因:以辽宁阜新为例[J].科学通报. 2003,48(9):924–930.
    [151]张健,王彦霞.鸡西煤田煤层气开发可行性分析[J].煤炭技术.2004, 23:124.
    [152]张立飞.陕北三.系延长统浊沸石的成因及形成条件的理论计算[J].岩石学报.1992,8(2):145-152.
    [153]张金亮,林辉,司学强,梁杰.鄂尔多斯盆地王窑地区上三叠统长6油层成岩作用研究[J].中国海洋大学学报.2004,34(4):625-635.
    [154]周东升,刘光祥,叶军,等.深部砂岩异常孔隙的保存机制研究[J].石油实验地质,2004,26(1):40-46.
    [155]周丽静,刘素荣.鸡西煤田煤的元素组成和化学性质[J].煤炭技术.2006,25 (l):213.
    [156]周张健.蒙脱石伊利石化的控制因素、转化机制及转化模型的研究综述[J].地质科技情报.1994,13(4):41-46.
    [157]朱炳泉,常向阳,胡耀国,等.地球化学急变带与地幔柱资源系统[J].矿物岩石地球化学通报,2003,22(4):287-293.
    [158]朱国华.陕北浊沸石次生孔隙砂体的形成与油气关系[J].石油学报.1985, 6(1):1-8.
    [159]朱平,黄思静,李德敏等.粘土矿物绿泥石对碎屑储集岩孔隙的保护[J].成都理工大学学报(自然科学版).2004,31(2):153-156.
    [160]朱占平,马瑞,刘立,等.辉绿玢岩中浊沸石及其成因[J].世界地质.2007, 26(3):293-297.
    [161]Б.И.Омельянеко,等.论绢云母的概念[J].摘译自《Иэв.АНСССРСер.геол.》, 1982,5,69-87莫耀支译.
    [162] Anthony H, Steve J M. The occurrence of laumontite in volcanic and vocaniclastic rocks from southern Sumatra[J]. Journal of Asian Earth Sciences.1997, 15(1): 55-59.
    [163] Dutrow B L , Travis B J, Gable C W.,et al. Coupled heat and silica transport associated with dike intrusion into sedimentary rock:Effects on isotherm location and permeability evolution[J]. Geochimica et Cosmochimica Acta. 2001, 65 (21): 3749–3767.
    [164] Barker C E, Pawlewicz M J. Calculation of vitrinite reflectance from thermal histories and peak temperatures: a comparison of methods. In: Mukhopadhyay P.K., Dow W.G.(Eds.), Vitrinite-Reflectance as a Maturity Parameter[J], American Chemical Society Symposium Series. 1994, 570:216–229.
    [165] Bjфrlykke K M, Palm E. Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions[J]. Marine and Petroleum Geology. 1988, 5: 338-350.
    [166] Bфrlykke K. Fluid flow processes and diagenesis in sedimentary basins[A]. In: Parnell J, ed. Geofluids: origin, Migration, and Evolution of Fluids in Sedimentary Basins[C]. Geol Soc Lond Spec Pub l78,1994,127-140.
    [167] Bloch S, Lander R H, Bonnell L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability[J]. A A P G Bulletin. 2002, 86(2):301-328.
    [168] Carlos Ce′sar de Arau′jo, Jorge Kazuo Yamamoto, Sidnei Pires Rostirolla, Vanessa Madrucci, Anthony Tankard.Tar sandstones in the Parana′Basin of Brazil: structural and magmatic controls of hydrocarbon charge[J]. Marine and Petroleum Geology. 2005,22: 671–685.
    [169] Cinzia M, Marco B, Pilar C, et al. Sericitic alteration at the La Crocetta deposit (Elba Island, Italy):interplay between magmatism, tectonics and hydrothermal activity [J]. Mineralium Deposita ,2003,38: 67–86.
    [170] Daniel P S, Oliveira D, Cawthorn G R. Dolerite intrusion morphology at Majuba Colliery, northeast Karoo Basin, Republic of South Africa.International Journal of Coal Geology [J]. 1999,41:333–349.
    [171] DeRos L F. Heterogeneous generation and evolution of diagenetic quartarenites in the Silurian—Devonian Furnas Formation of the Paranabasin, southernBrazil[J]. Sedimentary Geology.1998,116:99-128.
    [172] Frederic V, Gerard B, Philippe L, et al. Thermal diagenesis of clay minerals within volcanogenic material from the Tonga convergent margin[J]. Marine Geology. 1999,157:105–125.
    [173] Giday W G, Gordon N K, Greg A V. Effects of shallow basaltic intrusion into pyroclastic deposits, Grants Ridge, New Mexico, USA[J]. Journal of Volcanology and Geothermal Research. 1999,92:389–411.
    [174] Girard J P, Deynoux M, Nahon D. Diagenesis of the upper Proterozoic silicic lastic sediments of the Taoudeni Basin(west Africa) and relation to diabase emplacemet [J]. Journal of Sedimentary Petrology, 1989,59:233-248.
    [175] Matenaar I, Glasmacher U A, Pickel W, et al. Incipient metamorphism between Ufa and Beloretzk, western fold-andthrust belt, southern Urals, Russia. Geol Rundsch [J].1999, 87:545–560.
    [176] Ji W Q, Xu W L, Yang D B, et al. Geochronology and Geochemistry of the Volcanic Rocks in Suifenhe Formation from Eastern Heilongjiang, China[J]. Acta Geologica. 2007, 81(2):266-277.
    [177] Gillotta J E, Rogers C A. The behavior of silicocarbonatite aggregates from the Montreal area[J]. Cement and Concrete Research. 2003,33 :471–480.
    [178] Kubler B. Lacrisllinite del'illite et Les zone a Fait surperieures du metamorphis me in Etages[J]. Tectoniques-colloque de Neuchstel. 1967,105-121.
    [179] Kisch H J. Illite crystallinity:recommendations on Sample preparation.X-ray diffraction settings, and interlaboratory Samples [J]. Journal of Metamorphic Geology. 1991, 9(6):665-670.
    [180] Peters K E, Clutsonb M J, Robertson G. Mixed marine and lacustrine input to anoil-cemented sandstone breccia from Brora, Scotland[J]. Organic Geochemistry. 1999, 30:237-248.
    [181] Liu L,Yu J M. Petrographic studies on hydrothermally altered cong lomerates at Naer Creek, Sichuan Province, China[J]. Journal of Geoscientific Research in Northeast Asia, 1999,2:1-6.
    [182] Maruyama S, Seno T. Orogeny and relative plate motion: example of the Japanese islands[J]. Tectonophysics, 1986,127:305-329.
    [183] Merino E, Gierre J P, May M T, et al. Diagenetive mine ralogy, geochemistry, and dynamics of Mesozoic arkoses, Hartford rift basin, Connecticut, USA[J]. Journal of Sedimentary Petrology,1997,67:212-224.
    [184] Hajpa′l M, Torok A. Mineralogical and colour changes of quartz sandstones by heat[J]. Environmental Geology. 2004,46:311–322.
    [185] Hay R L. Zeolites and Zeolitic Reactions in Sedimentary Rock[M].The Geological Society of America, INC New York.1966.
    [186] Noh J H, Boles J R. Origin of zeolite dements in the miocene sandstones, North Tejon oil fields, California[J].Journal of Sedimentary Petrology.1993 63(2): 248-260.
    [187] Olaf B, Norbert C, Michael Z. Authigenic sericite record of a fossil geothermal system:the Offenburg trough, central Black Forest, Germany[J].Int J Earth Sci (Geol Rundsch). 2003,92:843–851.
    [188] Sun G. Eastern Asian centre of ang iosperm origin. Abstr. Lst Int'l Symp. Geoenvir. Change Biodivers. N EAsia.Seoul:1998,0~162.
    [189] Stewart A K, Massey M, Padgett P L, et al. Influence of a basic intrusion on the vitrinite reflectance and chemistry of the Springfield (No. 5) coal, Harrisburg, Illinois[J]. International Journal of Coal Geology. 2005, 63:58– 67.
    [190] Winker H G. Petrogenesis of metamorphic rocks,5th edition. New York; Springer Verlag. 1979:1-2.
    [191] Wood J R, Heweett T A. Reservoir diagenesis and convective fluid flow[A]. In: MeCdonald D A, Surdam R C, eds. Clastic Diagenesis[C]. A A PG, Memoir37,1984, 99-110.
    [192] Wopfner H. Markwort S. Semkiwa P M. Early diagenetic laumontite in the Lower Triassic Manda Beds of the Ruhuhu Basin, southern Tanzania [J]. Journal of Sedimentary Petrology. 1991, 61(1):65-72.
    [193] Parry W T. Fault-fluid compositions from fluid-inclusion observations and solubilities of fracture-sealing minerals[J].Tectonophysics.1998,290:1-26.
    [194] Zhang J L, Lin H, Si X Q, et al. Diagenesis of Chang-6 reservoir in Wangyao area of Ansai oil field[J].Periodical of Ocean University of China.2004,34-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700