用户名: 密码: 验证码:
晚更新世晚期以来二龙湾玛珥湖植被与环境演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对中国东北东部季风区内发育的封闭玛珥湖沉积岩芯,进行孢粉学、有机地球化学(TOC、TN、TOC/TN等)、地球物理性质(粒度、干密度、含水量)和年代学等多项环境代用指标的测试与分析,重建了区内晚更新世晚期以来植被与气候环境演化序列。孢粉分析表明晚更新世晚期以来区内的植被景观经历了五个阶段的变化:39.8~32.8 cal. ka B.P.发育山地寒温性针叶林;32.8~16.1 cal. ka B.P.发育针叶林和桦木林;16.1~11.2 cal. ka B.P.为针阔叶混交林;11.2~5.3 cal. ka B.P.为落叶阔叶林;5.3 cal. ka B.P.至今重新发育针阔叶混交林。由孢粉等多项环境代用指标记录的二龙湾晚更新世晚期气候环境演化过程可分为8个时期13个阶段。末次冰消期的YD事件、B?lling-Aller?d暖期及全新世千年至百年尺度的气候波动在二龙湾玛珥湖中都有记录。上述研究与高分辨率的记录及邻近地区的记录相对比,在年代误差范围内,气候变化过程及植被演化历史基本一致,但在MIS3a阶段晚期,二龙湾地区冷湿的气候具有鲜明的区域气候特征;全新世6次冷气候事件在发生时间与期次等方面也与其它记录有所不同。另外,通过对比研究发现,8.2 ka全球降温事件仅在二龙湾TOC、干密度、含水量等记录中得到响应,而在二龙湾及邻近地区孢粉记录中无明确指示;4.0 ka B.P.左右降温现象曾在东北东部地区广泛存在。
Northeast China has been identified as a key region for investigating the present and past climates because it is under the influence of the East Asian monsoon. So, more and more research carried on this place. In fact, before these studies, many previous works about paleoenvironment and paleoclimate since the late stage of the late Peistocene also had been done in this place. Most of them are focus on pollen analysis for peat and wetland. However, these studies are difficult to compare with other place on thousand and century scale because of lacking long continuous carriers and enough age datas.
     In our work, the sediment of Erlongwan maar lake (Jilin Province, northeast China) is the study object in investigating the change history of vegetation and climate. As a volcanic lake, maar has well closed catchment basin interrupting the inflow and outflow of water between maar lake and around outer water system, decreasing the entry of outer non-volcanic products. The sediments of maar lake, to the largest content, record paleoclimate changes. Furthermore, the maar lake has steady hydrology, special geological background, special geochemistry and geophysics conditions, which make it to be the most appropriate area of forming and preservative high-resolution sedimentary record.
     The sediment core of Erlongwan maar lake is 2391cm, and age is from 39.8cal.ka B.P. to present. All of age models in the paper are based on 17 AMS14C dates. Multi-proxy analysis of core sediments, which include pollen, organic carbonates content, water content, dry density, grain size, lithological character, has been applied to reconstruct the regional climate and vegetation variability since the late stage of late Peistocene. Furthermore, comparison study between Erlongwan maar lake and other regions has also been carried out in the paper.
     Vegetation history of Erlongwan maar lake has been reconstructed according to the pollen analysis since the late stage of late Peistocene. During 39.8~32.8 cal. ka B.P., there is coniferous forest. Later, between 32.8~16.1 cal. ka B.P., coniferous forest and birch forest develop in region. During 16.1~11.2 cal. ka B.P., there develop conifer broad-leaved forest. From 11.2 cal. ka B.P. to 5.3 cal. ka B.P., there is deciduous broad-leaved forest. After 5.3 cal. ka B.P.,conifer broad-leaved forest develop again in Erlongwan region.
     The paleoenvironment history of Erlongwan region since the late stage of late Peistocene can be generally divided into 8 periods and 13 phases. During 39.8~32.8cal.ka B.P., the climate is cold, humid. Later, between 32.8~24.4cal.ka B.P., climate is cold, slightly humid in prophase (32.8~27.2cal.ka B.P.) and cold, slightly dry at late phases (27.2~24.4cal.ka B.P.). During 24.4~21.4cal.ka B.P., environment change to cold, slightly humid. Later, in the stage of 21.4~16.1cal.ka B.P., there develop cold and dry climate. Between 16.1~11.2cal.ka B.P., temperature, humidity change greatly in Erlongwan region. In the prophase of this period (16.1~14.5cal.ka B.P.), temperature, humidity increase quickly. Later (14.5~13.1cal.ka B.P.), temperature decline, but climate in this phase is not as cold as in LGM. In last phase of the period (13.1~11.2cal.ka B.P.), climate change to cold and dry. During 11.2~5.3cal.ka B.P., there develop warm, humid environment, climate is temperate in prophase (11.2~9.8 cal.ka B.P.), and change to optimum environment after 9.8cal.ka B.P. in Erlongwan region. From 5.3 to 1.7cal.ka B.P., climate changed again, there is temperate in 5.3~4.1cal.ka B.P. and slight humidity in 4.1~2.5cal.ka B.P. and slightly dry in 2.5~1.7cal.ka B.P. After 1.7cal.ka B.P., temperature decline obviously, and from 0.83cal.ka B.P. to present, climate is cool and dry.
     Comparing the sediment record of Erlongwan maar lake with other high-resolution records, which come from ice core, spectrometer, near maar lake and peat, the history of vegetation and environment since the stage of late Peistocene is consistent except in the late stage of MIS3a. The multi-proxy of Erlongwan shows cold and humid climate in this period, which is different with warm and humid climate in Tibetan Plateau, and is also different with cool and humid in Loess Plateau.
     There also record some cold events with thousand or century scale in Erlongwan sediment core. Younger Dryas event in Erlongwan appears in 12.94~11.68cal.ka B.P, which has the same character and age comparing with ice core GISP2 and Hulu cave spectrometer, but it is earlier than Sihailongwan maar lake record about 200a. B?lling-Aller?d warm period appears at 14.87~12.94cal.ka B.P.in Erlongwan . In Holocene, organic carbonates content, water content and dry density record 6 cold events in Erlongwan sediment core, which appear in 0.3 cal. ka B.P., 1.8 cal. ka B.P., 4.5 cal. ka B.P., 7.9 cal. ka B.P., 9.4 cal. ka B.P., 10.0 cal. ka B.P., and have some difference in appearing age and times comparing with North Atlantic hematite-stained grains record. Among these cold events, 8.1~7.5cal.ka B.P.cold event is likely to respond 8.2 ka B.P. globe cold event in Erlongwan region, but it has not being document by pollen record in either Erlongwan maar lake nor Jinchuan peat. On the contrary, 4.0 ka B.P. cold event is a prevalent event in northeast China.
引文
[1]安成邦,冯兆东,唐领余.黄土高原西部全新世中期湿润气候的证据[J].科学通报,2003,48:2280-2287.
    [2]安芷生,肖举乐,张景昭,等.季风最近13万年来黄土高原的气候历史[M]//刘东生.黄土-第四纪地质-全球变化(二).北京:科学出版社,1990:108-114.
    [3]曹兴山,赫明林,曹炳媛.河西走廊地质记录中的新仙女木事件及其前后古地理环境演变[J].甘肃地质学报,2002,11(1):8-23.
    [4]陈发虎,朱艳,李吉均,等.民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化[J].科学通报,2001,46:1414-1419.
    [5]陈发虎,吴薇,朱艳,等.阿拉善高原中全新世干旱事件的湖泊记录研究[J].科学通报,2004,49(1):1-9.
    [6]陈敬安,万国江,徐经意.洱海沉积物粒度记录与气候干湿变迁[J].沉积学报,2000,18(3):341-345.
    [7]陈木宏,涂霞,郑范,等.南海北部近20万年沉积序列与古气候变化关系[J].科学通报,2000,45(5):542-548.
    [8]陈一萌,饶志国,张家武,等.中国黄土高原西部马兰黄土记录的MIS3气候特征与全球气候记录的对比研究[J].第四纪研究,2004,24(4):359-365.
    [9]储国强,顾兆炎,许冰,等.北四海龙湾玛珥湖沉积物纹层计年与137Cs、210Pb测年[J].第四纪研究,2005,25(2): 202-207.
    [10]樊祺诚,隋建新,刘若新,等.吉林龙岗第四纪火山活动分期[J].岩石学报,2002,18(4):495-500.
    [11]郭正堂,刘东生,吴乃琴,等.最后两个冰期黄土中记录的Heinrich型气候节拍[J].第四纪研究,1996,16(1):21-30.
    [12]郭正堂,彭淑珍,魏兰英,等.二十二万年以来东亚夏季的千年尺度变化及其在不同时期的差异[J].第四纪研究,1999,4:299-305.
    [13]胡东生,张华京,李炳元,等.青藏高原腹地湖泊沉积记录的“仙女木期”古气候颤动事件[J].地质学报,2002,76(2): 272-278.
    [14]黄小忠.新疆博斯腾湖记录的亚洲中部干旱区全新世气候变化研究[D].兰州:兰州大学,2006.
    [15]霍坎松·L,杨松·M.湖泊沉积学原理[M].北京:科学出版社,1992:11-90.
    [16]吉林地质局.靖宇县幅(1:20万)区域地质调查报告[R].1979.
    [17]贾国东,彭平安,房殿勇,等.南海南部约30 ka来沉积有机质的生物输人特征[J].海洋地质与第四纪地质,2001, 21(1):7-11.
    [18]金昌柱,徐钦琦,郑家坚.中国晚更新世猛犸象扩散事件的探讨[J].古脊椎动物学报,1998,36(1):47-53.
    [19]金明.居延泽湖泊演化与全新世环境变化研究[D].兰州:兰州大学, 2005.
    [20]金章东,沈吉,王苏民,等.早全新世降温事件的湖泊沉积证据[J].高校地质学报,2003,9(1):11-18.
    [21]库兹涅佐夫.微生物在湖内物质循环中的作用[M].宋大祥,译.北京:科学出版社,1961:125-193.
    [22]莱尔曼A.湖泊的化学地质学和物理学[M].王苏民等,译.北京:地质出版社,1989,197-201.
    [23]李文漪.中国第四纪植被与环境[M].北京:科学出版社,1998:48-49.
    [24]刘东生,刘嘉麒,吕厚远.玛珥湖高分辨率古环境研究新进展[J].第四纪研究,1998,4: 290-295.
    [25]刘金陵.长白山区孤山屯沼泽地13000年以来的植被和气候变化.古生物学报,1989,28(4):495-509.
    [26]刘嘉麒.中国东北地区新生代火山幕[J].岩石学报,1988,1:1~10.
    [27]刘嘉麒,刘东生,储国强,等.玛珥湖与纹泥年代学.第四纪研究,1996,(4):353-358.
    [28]刘嘉麒,J F W.Negendank,王文远,等.中国玛珥湖的时空分布与地质特征[J].第四纪研究, 2000a, 20(1):78-86.
    [29]刘嘉麒,吕厚远, J F W.Negendank.湖光岩玛珥湖全新世气候波动的周期性[J].科学通报,2000b,45(11):1191-1195.
    [30]刘嘉麒,倪云燕,储国强.第四纪的主要气候事件[J].第四纪研究,2001,21:239-248.
    [31]刘强,刘嘉麒,陈晓雨,等.18.5 kaB.P.以来东北四海龙湾玛珥湖全岩有机碳同位素记录及其古气候环境意义[J].第四纪研究,2005b,25(6):711-721.
    [32]刘祥,王锡魁.吉林省辉南县大龙湾火山基浪堆积物的发现[J].地质评论,1987,33(6):577-582.
    [33]刘兴起,沈吉,王苏民.青海湖16ka以来的花粉及其古气候古环境演变[J].科学通报, 2002, 47(17):1351-1354.
    [34]刘兴起,王苏民,沈吉.青海湖QH·2000钻沉积物粒度组成的古气候古环境意义[J].湖泊科学,2003,15(2):112-117.
    [35]吕厚远,郭正堂,吴乃琴,等.黄土高原和海南陆架古季风演变的生物记录与Heinrich事件[J].第四纪研究,1996,16(1):11-20.
    [36]吕厚远,刘东生,吴乃琴,等.末次间冰期以来黄土高原南部植被演替的植物硅酸体记录[J].第四纪研究,1999,(4):336-349.
    [37]罗运利,孙湘君.南海深海沉积物花橱记录的快速气候波动事件[J].第四纪研究,1999,(6):536-539.
    [38]欧祥喜.龙岗火山群的形成与构造的关系[J].吉林地质,1984,(1):76-81.
    [39]乔玉楼,陈佩英,沈才明,等.定量重建贵州梵净山一万来以来的植被与气候[J].地球化学,1996,25(5):445-57.
    [40]秦伯强,施雅风,于革.亚洲内陆湖泊在18kaB.P.和6kaB.P.的水位变化及其指示意义[J].科学通报,1997,42:2586-259.
    [41]沈吉,刘兴起,R.Matsumot,等.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化[J].中国科学(D辑),2004,34(6):582-589.
    [42]施雅风,孔昭哀,王苏民.中国全新世大暖期的气候波动与重要事件[J].中国科学(D辑),1992,12:1300-1308.
    [43]施雅风,贾玉连,于革,等. 40-30kaB. P.青藏高原及邻区高温大降水事件的特征、影响及原因探讨[J].湖泊科学,2002,14 (1):1-11.
    [44]宋长青,王臻瑜,孙湘君.内蒙古大青山DJ钻孔全新世古植被变化指示[J].植物学报,1996,38(7):568-575.
    [45]宋长青,吕厚远,孙湘君.中国北方花粉-气候因子转换函数建立及应用[J].科学通报,1997,42(20):2182-2186.
    [46]宋之琛,等.孢子花粉分析[M].北京:科学出版社,1965.
    [47]孙建中,柯曼红,魏明建,等.黄土高原晚更新世的植被与气候环境[J].地质力学学报,1998,4(4):30-42.
    [48]孙湘君,袁绍敏.据花粉资料推断吉林金川地区最近1万年的植被演化//刘东生.黄土·第四纪地质·全球变化(第二集).北京:科学出版社,1990:46-57.
    [49]孙湘君.黄土高原南缘10万年以来的植被-陕西渭南黄土剖面的花粉记录[J].科学通报,1995,40(13):1222-1224.
    [50]孙湘君,王琫瑜,宋长青.中国北方部分科属花粉-气候响应面分析[J].中国科学(D辑),1996,26(5):431-436.
    [51]孙湘君,李逊,罗运利.南海北部深海花粉记录的环境演变[J].第四纪研究,1999,(1):18-26.
    [52]覃嘉铭,袁道先,程海,等.新仙女木及全新世早中期气候突变事件:贵州茂兰石笋氧同位素记录[J].中国科学(D辑),2004,34(2):69-74.
    [53]陶发祥,洪业汤,姜洪波.贵州草海地区最近8ka的气候变化[J].科学通报, 1996,41 (16 ): 1489-1492.
    [54]唐领余,李春海,安成邦,等.黄土高原西部4万多年以来植被与环境变化的孢粉记录[J].古生物学报,2007,46(1):45-61.
    [55]汪品先,卞云华.西太平洋边缘海的新鲜女木事件[J].中国科学,1996,26(5):452-460.
    [56]汪品先,剪知敏.寻求高分辨率的古环境记录[J].第四纪研究,1999,1:1-17.
    [57]汪永进,吴江莹,吴金全,等.末次冰期南京石笋高分辨率气候记录GRIP冰芯对比[J].中国科学(D辑),2000 ,30 (5):533-539.
    [58]王伏雄,钱南芬,张玉龙,等.中国植物孢粉形态[M].北京:科学出版社,1995.
    [59]王琫瑜,宋长青,孙湘君.内蒙古中部表土孢粉研究[J].植物学报,1996,38(ll):902-909.
    [60]王杰,周尚哲,许刘兵.“8.2kaB.P.”事件的研究现状展望[J].冰川冻土,2005,27(4):520-527.
    [61]王绍武.小冰期气候的研究[J].第四纪研究,1995,(3):202-210.
    [62]王淑云,吕厚远,刘嘉麒,等.湖光岩玛珥湖高分辨孢粉记录揭示的早全新世适宜期环境特征[J].科学通报,2007,52(11):1285-1291.
    [63]王苏民,吉磊,羊向东,等.内蒙古扎赉诺尔湖相沉积物中的新仙女木事件记录[J].科学通报,1994,39(4):348-351.
    [64]王苏民,吉磊.呼伦湖古湖泊学研究[M].北京:科学出版社,1995:70-86.
    [65]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社, 1998.
    [66]王文远,刘嘉麒,彭平安,等.末次冰消期热带湖光岩玛珥湖记录的气候事件与GISP2记录的对比[J].自然科学进展[J],2000,10(9):824-829.
    [67]魏强.东北二龙湾玛珥湖32kaB.P.沉积序列的粒度组成特征及其古气候意义[D].北京:中国科学院地质与地球物研究所.
    [68]翁成郁,孙湘君,陈因硕.西昆仑地区表土花粉组合特征及其植被的数量关系[J].植物学报,1993,35(1):69-79.
    [69]吴敬禄,王苏民,王洪道.新疆艾比湖全新世以来的环境变迁与古气候[J].海洋与湖沼,1996,27:254-530.
    [70]吴敬禄,沈吉,王苏民,等.新疆艾比湖地区湖泊沉积记录的早全新世气候环境特征[J]中国科学(D辑), 2003,33(6):569-57.
    [71]吴锡浩,安芷生,王苏民,等.中国全新世气候适宜期东亚夏季风时空变迁[J].第四纪研究,1994,l:24-37.
    [72]吴文祥,刘东生.4000a B.P.前后东亚季风变迁与中原周围地区新石器文化的衰落[J].第四纪研究,2004,24(3):278-284.
    [73]吴艳宏,吴瑞金,薛滨,等.13kaB.P.以来滇池地区古环境演[J].湖泊科学,1998,(2):5-9.
    [74]吴征镒,等.中国植被.北京:科学出版社,1980:772-787.
    [75]夏玉梅,汪佩芳,王曼华.哈尔滨黄山剖面孢粉组合的初步研究[J].地理科学, 1983,3(2):183-187.
    [76]夏玉梅.三江平原12000年以来植物群发展和气候变化的初步研究[J].地理科学,1988,8(3):240-249.
    [77]薛滨,王苏民,沈吉,等.呼伦湖东露天矿剖面有机碳的总量及其稳定碳同位素和古环境演化[J].湖泊科学,1994,6 (4):308-316.
    [78]徐海.中国全新世气候变化研究进展[J].地质地球化学,2001,29:9-16.
    [79]许清海,李月丛,赵登海,等.中国北方典型灌丛群落表土花粉组合特征[J].古地理学报,2006,8(2):157-164.
    [80]严富华,叶永英,麦学舜.吉林榆树周家油坊晚更新世孢粉组合及其意义[J].地震地质,1982,4(2):71-77.
    [81]姚檀栋,焦克勤,李忠勤,等.古里雅冰帽的气候环境记录[J].中国科学(B辑),1994,24(7):766-773.
    [82]姚檀栋,杨志红,黄翠兰,等.近2ka以来高分辨率的连续气候变化记录古里雅冰芯近2ka记录初步研究[J].科学通报,1996,41:1103-1106.
    [83]姚檀栋,Thompson L G,施雅风,等.古里雅冰芯中末次间冰期以来气候变化记录研究[J].中国科学(D辑),1997,27(5):447-452.
    [84]游海涛.末次冰消期以来二龙湾玛珥湖高分辨率气候记录[D].长春:吉林大学,2007.
    [85]于革,韩辉友.南京紫金山现代植被表土孢粉的初步研究[J].植物生态学报,1995,19(1):79-84.
    [86]于革,孙湘君,秦伯强,等[J].花粉植被化模拟的中国中全新世植被分布[J].中国科学(D辑),1998,28(1):73-78.
    [87]袁绍敏,孙湘君.据花粉分析推论东北长白山西麓一万年来植被与环境[J].植物学报.1990,32(7):558-567.
    [88]张德二.历史时期“雨土”现象分析[J].科学通报,1982,5:294-297.
    [89]张嘉尔.长江下游晚冰期孢粉组合和气候回暖问题[C]//中国科学院兰州冰川冻土研究所.中国第四纪冰川冰缘学术讨论会论文集.北京:科学出版社,1985:175-179.
    [90]张佳华,孔昭宸,杜乃秋.北京地区百花山、东灵山表土孢粉的特征分析[J].海洋地质与第四纪地质,1996,16(3):101-113.
    [91]周卫建,卢雪峰,武振坤,等.若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年[J].科学通报,2001,46(12):1040-1044.
    [92]中国科学院北京植物研究所古植物研究室孢粉组.中国蕨类植物孢子形态[M].北京:科学出版社,1976.
    [93]竺可祯.中国近五千年来气候变迁的初步研究[J].中国科学.1973,2: 168-189.
    [94] Alley R B, Mayewski P A, Sowers T, et al. Holocene climatic instability: A prominent, widespread event 8200 yr ago [J]. Geol, 1997, 25: 483-486.
    [95] An Z S, Kukla G, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 Years [J]. Quaternary Research, 1991, 36:29-36.
    [96] An Z S, Porter S C, Zh W J, et al. Episode of strengthened summer monsoon climate of Younger Dryas age on the loess plateau of Central China [J]. Quaternary Research, 1993, 39: 45-54.
    [97] An Z S, Porter S C, et al. Asychronous Holocene optimum of the East Asian monsoon [J]. Quat. Sci. Rev, 2000, 19(8): 743-762.
    [98] Bensen L, Burdett T, Land S, et al. Nearly Synchronous climate change in the Northern Hemisphere during the last glacial termination [J]. Nature, 1997, 388-263.
    [99] Bianchi G G, McCave I N. Holocene periodicity in north Atlantic climate and deep-ocean flow south of Iceland [J]. Nature, 1999, 397: 515-517.
    [100] Bond G, Heinrich H, Broecker W, et al. Evidence for massive discharges of icebergs in the North Atlantic ocean during the last glacial period [J].Nature, 1992,362(6401): 245-249.
    [101] Bond G, Broecker W, Johnson S, et al. Correlation between climate records from North sediments and Greenland ice [J]. Nature, 1993, 365(6442):143-147.
    [102] Bond G, Shower W, Cheseby M, et al. A pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climate [J]. Science, 1997, 278:1257-1266.
    [103] Bond G, Kromer B, Beer J, et al. Persistent solat influence on north Atlantic climate during the Holocene [J]. Science, 2001, 294: 2130-2136.
    [104] Booth R K, Jackson S T, Forman S L, et al. A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages [J]. Holocene, 2005, 15: 321-328.
    [105] Bradley R S, Jones P D. Climate since AD 1500.London: Routledge, 1992: 649-655.
    [106] Bradley R.S., Jones P.D. Little Ice Age’s summer temperature variations: their nature and relevance to recent global warming trends. The Holocene, 1993, 3: 367-376.
    [107] Brauer A, Negendank J F W. Periglacial varved sediments from lake Holzmaar//Zolitschka B, Negendank J F Weds.7th international symposium on paleolimnology. 1997, 33-36.
    [108] Brauer A, Endres C, Gunter C, et al. High resolution sediment and vegegation responses to Younger Dryas climate changes in varved lake sediments fromMeer-felder Maar, Germany [J]. Quaternary Science Reviews, 1999, 18:321-329.
    [109] Brauer A, Endres C, Negendank J F W. Lateglacial calendar year chronology based on annually laminated sediments from Lake Meerfelder Maar, Germany [J].Quaternary International, 1999, (61):17-25.
    [110] Birks H J B, Gordon A D. Numerical methods in Quaternary pollen analysis [M]. London: Academic Press, 1985:29.
    [111] Broecker W S, Andrge M, et al. The chronology of the last deglaciation: Implication to the cause of the Younger Dryas Event. Paleoceanography [J], 1988, 3(1):1-19.
    [112] Broecker W S. Massive iceberg dischanges as triggers for global climate change [J]. Nature, 1994, 372: 421-424.
    [113] Brüchmann C., Negendank J F W. Diatom assemblages and changes in boreal sediments of Lake Holzmaar [J]. Terra Nostra, 1997, (8):B21-B25.
    [114] Buchel G, Lorenz V. Syn-and posteruptive mechanisms of the Alaskan Ukinrek Maars in 1977// Negendank J F W, Zolitschka B. Paleoliminology of European Maar Lakes. Berlin: Springer-Verlag, 1993: 15-61.
    [115] Chen F H, Holmes J A. Multi-proxy evidence for late Pleistocene-Holocene environmental change in arid Central Asia: An overview of the RACHAD 2001 symposium [J]. Chinese Science Bulletin, 2003, 48(14):1397-1400
    [116] Cuffey K M, C low G D, A lley R B, et al. L arge Arctic temperature change at the Wiscon -Holocene glacial transition [J]. Science, 1995, (270): 455-458.
    [117] Dansgaard W, Clausen H B, Gundestrup N, et al. A new Greenland deep ice core [J]. Science, 1982, 218: 1273-1277.
    [118] Dansgaard W. Ice core evidence of abrupt climatic changes//Berger W J, Labeyrie L D. Abrupt climatic change: Evidence and implications. Dordrecht, The Netherlands: Reidel, 1987: 223-233.
    [119] Dansgaard W, Johnson S J, Clausen H B, et al. Evidence for general instability of past climate from a 250 kyr record [J]. Nature, 1993, 364:218-220.
    [120] Davis B A S, Brewerb S, Stevensona AC, et al. The temperature of Europe during the Holocene reconstructed from pollen data [J]. Quaternary Science Reviews, 2003, 22:1701-1716.
    [121] Delange G J, Distribution of exchangeable, fixed, organic and total nitrogen in interbeded turbiditic pelagic sediments of the Maderia Abyssal-Plain, easternNorth Atlantic[J]. Marine Geology, 1992, 109: 95-114.
    [122] Dahl-Jensen D, Mosegaard K, Gundestrup N, et al. Past temperature directly from the Greenland Ice sheet [J]. Science, 1998, 282: 268-271.
    [123] Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time Scale for Chinese loss deposits [J]. Quaternary Science Reviews, 1994, 13: 39-70.
    [124] Frank U. Rock magnetic studies on sediments from Erlongwan maar lake, Long Gang Volcanic Field, Jilin province, NE China [J]. Geophys. J. Int, 2007a, 168:13-26.
    [125] Frank U. Palaeomagnetic investigations on lake sediments from NE China: a new record of geomagnetic secular variations for the last 37ka [J]. Geophys. J. Int, 2007b, 169:29-40.
    [126] Gasse F, Fontes J C, Van Campo E, et al. Holocene environmental changes in Bangong Co basin (Western Tibet ). Part 4: Discussion and conclusions [J]. Palaeoclim Palaeoeco, 1996, 120: 79-92.
    [127] GRIP members. Climate instability during the interglacial period recorded in GRIP ice core[J]. Nature, 1993, 364:203-207.
    [128] Hajdas, I, Zolitschka B, Ivy-Ochs S D, et al. AMS radiocarbon dating of annually laminated sediments from lake Holzmaar, Germany [J]. Quaternary Science Reviews, 1995, 14: 137-143.
    [129] Heinrich H. Origin and consequences of cyclic ice rafting years [J]. Quaternary Research, 1988, 29:143-152.
    [130] Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J] . Earth Planet Science Lett, 2003, 211:371-380.
    [131] Hormes A, Muller B U, Schluchter C. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps [J].The Holocene. 2001,11: 255-265.
    [132] Imbre J, Hays J D. The orbital theory of Pleistocene climate: support from a revised chronology of marineδ18O record//Berger, Imbre J, Hays J D, et al. Milankovich and Climate [C]. Norwell MA: Reidel Press, 1984:269-305.
    [133] Jiang Wenyin, Suzanne A.G. Leroy, Neil Ogle, et al. Natural and anthropogenic forest fires recorded in the Holocene pollen record from a Jinchuan peat bog, northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261, 47–57.
    [134] Johnsen S J, Clausen H B, Dansgaard W, et al. Imegular glacial interatadials recorded in a new Greenland ice core [J]. Nature, 1992, 359 (6393): 311-313.
    [135] Kallel N, Paterne M, Duplessy J C, et al. Enhanced rainfall on Mediterranean region during the last sapropel event [J].Oceanologica Acta, 1998, 20: 697-712.
    [136] Kapuz N K, Jansen E A. A high-resolution diatom record of the last degalciation from the SE Norweitianses: Documentation of rapid climatic changes [J]. Paleooceangraphy, 1992, 7(4): 499.
    [137] Keigwin L D. The little Ice Age and Medieval Warm Period in the Sargasso Sea [J].Science, 1996, 274:1501-1508.
    [138] Langdong P G, Barbe K E, Hughes P D M. A 7500-year peat-based palaeoclimatic reconstruction and evidence for a 110-year cyclicity in bog surface wetness from temple Hill Moss, Pentland Hills. Southeast Scotland [J].Quaternary Science Reviews, 2003, 22: 259-247.
    [139] Luckge A, Doose-Rolinske H, Khhan A A, et al. Monsoonal variability in the northeastern Arabian Sea during the past 5000 years: geochemical evidence from laminated sediment [J]. Paleogeography Paleoclimatology Paleoecology, 2001, 167: 173-186.
    [140] Mayewski P A, Meeker L D, Whitlow S, et al. The atmosphere during the Younger Dryas [J]. Science, 1993, 261:195-197.
    [141] Mayewski P A, Meeker L D, Whitlow S, et al. Changes in atmospheric circulation and ocean cie cover the North Atlantic during the last 41 000 years [J]. Science, 1994, 263(5153):1747-1751.
    [142] Mayewski P A,Rohling E E, stager J C,et al. Holocene climate variability [J]. Quaternary Research, 2004, 62:243-255
    [143] Meyers, et al. Lacustrineorganic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments [J]. Organic.Geochemistry, 1993, 20: 867-900.
    [144] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J].Chem. Geol., 1994, 114(3-4):289-302.
    [145] McDermott F, Mattey D P, Hawkesworth C. Centennial-scale Holocene climate variability revealed by a heigh-resolution speleothemδ18O record from SW Ireland [J]. Science, 2001, 194:1328-1331.
    [146] Mingram J. Laminatted Eocene maar-lake sediments from Eckfeld (Eifelregion, Germany) and their short-term periodicities [J]. Paleogeography, Paleoclimatology, Paleoecology, 1998, 140:289-305.
    [147] Mingram J, Schettler G, Allen J, et al. The Eifel of NE China-maar and crater lakes of the Long Gang Volcanic Field [J]. Terra Nostra, 2000, 6: 353-363.
    [148] Mingram J, Schettler G, Nowaczyk N, et al., The Huguang maar lake-a high resolution record of palaeoenvironmental and palaeoclimatic changes over the last 78000 years from South China [J]. Quaternary International, 2004a, 122:85-107.
    [149] Mingram J, Allen J R M, Bruchmann C, et al. Maar-and crater lakes of the Long Gang Volcanic Field(N.E.China)-overview, laminated sediments, and vegetation history of the last 900 years [J]. Quaternary International, 2004b, (123-125): 135-147.
    [150] Makohonienko M, Kitagawa H, Fujiki T, et al. Late Holocene vegetation changes and human impact in the Changbai Mountains area, northeast China [J]. Quaternary International, 2008, 184: 94–108.
    [151] Nakagawa T, Kitagawa H, Yasuda Y, et al. Asynchronous climate changes in the North Atlantic and Japan during the last termination [J]. Science, 2003, 299: 688-691.
    [152] Nakai N. Carbon isotopic variation and paleoclimate of sediments from lake Biwa [J]. Proceedings of the Japan Academy, 1972, 48:516-521.
    [153] Noren A J, Blerman P R, Steig E J,et al. Millennial-scale storminess variability in the northeastern United States during the Holocene epoch [J].Nature, 2002, 419: 821-824.
    [154] O’Brien S R, Mayevoski PA, Meeker L D,et al. Complexity of Holocene climate as reconstructed from a Greenland ice core [J].Science, 1995, 270:1962-1964.
    [155] Porter S G, An Z S.Correlation between climate events in the North Atlantic and China during the last glaciation [J].Nature, 1995, 375(6529):305-308.
    [156] Raymode B, Francoise C. Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 yr B.P.[J].Global and Planetary Change, 2000, 26(1/3):25-50.
    [157] Rein B, Negendank J F W.Organic carbon contents of sediments from Lake Schalkenmehrener Maar: A palaeoclimate indicatou//Negendank J F W, Zolitschka B. Paleolimnology of European maar lakes. Lecture Notes in EarthSciences, 1993: 163-172.
    [158] Sampei Y, Matsumoto E. C/N ratios in a sediment core from Nakaumi Lagoon, southwest Japan-useful as an organic source indicator [J]. Geochemical Journal, 2001, 35:189-205.
    [159] Schettler Georg, Qiang Liu, Jens Mingram, et al.East-Asian monsoon variability between 15000 and 2000 cal.yr B.P. recorded in varved sediments of Lake Sihailongwan (northeastern China, Long Gang volcanic field) [J].The Holocene, 2006a, 16(8):1043-1057.
    [160] Schettler Georg, Qiang Liu, Jens Mingram, et al.Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin province) Part 1 [J]. Journal of Paleolimnology, 2006b, 35: 239-270.
    [161] Schettler Geory, Jens Mingram, Jorg F.W, et al. Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin province) Part 2 [J]. Journal of Paleolimnology, 2006c, 35: 271-288.
    [162] Steig E J. Mid-Holocene climate change [J]. Science, 1999, 286: 1485-1487.
    [163] Stuiver M, Grootes P M, Braziunas T F. The GISP2δ18O Climate record of past 16500 years and the role of the Sun, ocean, and volcanoes [J]. Quaternary Research, 1995, 44: 254-341.
    [164] Thienemann A. Physikalishche und chemische U ntersuchungen in den Maaren der Eifel [J]. TeilⅠVer Naturh Ver Preuss Rheinl, 1913, 70: 249-302.
    [165] Thompson L G, Mosley-Thompson E, Dansgaard W, et al. The Little Ice Age as recorded in the stratigraphy of the tropical Queiccaya Ice Cap [J]. Science, 1986, 234 (4774): 361-364.
    [166] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the late Pleistocene: High-resolution sediment records from the South China Sea [J]. Marine Geology, 1999, 156: 245-284.
    [167] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave [J]. Science, 2001, 294: 2345-2348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700