用户名: 密码: 验证码:
激光烧蚀瑞利—泰勒不稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用流动稳定性的线性和弱非线性理论,对预热条件下激光烧蚀面上的瑞利-泰勒不稳定性问题进行了研究。在进行稳定性分析时,基本流选用数值求解的定常基本流,且将烧蚀面附近流场看作是连续的,从而充分包含了预热条件下烧蚀面变宽的因素。本文重点考察了激光烧蚀瑞利-泰勒不稳定性扰动分布的特征和幅值的演化规律。
     首先利用空间二阶精度的直接数值模拟对激光驱动下CH靶的运动进行了分析,CH靶的厚度为200μm,激光功率强度线性增长4 ns后达到峰值强度1014 W/cm2,然后维持不变,得到了在一段时间内CH靶做匀加速运动的平衡解。根据平衡解的烧蚀参数,本文给出了在烧蚀面的加速运动坐标系下的定常解,并与直接数值模拟的结果进行了比较。用该定常解做基本流,利用流动稳定性的线性理论和弱非线性理论对烧蚀瑞利-泰勒不稳定性进行了研究,并通过空间精度为四阶的直接数值模拟对稳定性理论的结果进行了验证,得出以下结论:
     1.激光烧蚀面附近流场匀加速运动阶段的平衡解可以用烧蚀面匀加速运动坐标系下、具有相同烧蚀参数的定常解描述。
     2.利用流动稳定性的线性理论研究了烧蚀瑞利-泰勒不稳定性的线性增长规律。给出了不稳定波各扰动量的特征函数,分析了特征函数的特点。理论分析给出的增长率曲线与修正的Lindl公式给出的结果基本符合,与直接数值模拟的结果几乎完全相同。
     3.在弱非线性理论中,对具有较大增长率的扰动,提出了新的确定Landau系数方法,即基模产生项的形状函数应该与相应的伴随特征值问题的特征函数双线性正交,该方法能方便得用于高阶展开的情况。
     4.利用Stuart弱非线性理论的方法对烧蚀瑞利-泰勒不稳定性的弱非线性增长规律进行了研究。给出了各次谐波的形状函数,并分析了形状函数的特点。弱非线性理论出了Landau系数曲线,波数较大时,Landau系数为负数,而当波数较小时,Landau系数则为正数。弱非线性理论分析的结果还表明:一次谐波的非线性修正中,Landau系数起的作用较小,基模产生项的非线性修正起主要作用。
     5.在弱非线性理论的展开中,提出了将基模扰动的线性幅值作为小参数进行展开的方法,与Stuart的弱非线性理论相比,该方法具有如下优点:幅值方程中不再包含未知的Landau系数,不需要补充其它条件来确定Landau系数,方程可直接求解,使展开变得简单,有利于进行高阶展开。与DNS的结果对比表明:当非线性作用相对较强时,改进方法的高阶展开,在一定程度上能更准确的描述烧蚀瑞利-泰勒不稳定性的演化规律。
In this paper, hydrodynamic linear stability theory and weakly nonlinear theory are adopted to study the Rayleigh-Taylor instability at the laser ablation front in the preheat case. In the stability analysis, the numerically solved steady state flow field is used as the basic flow, and the ablation front is treated as a continuous flow field so as to take into account the broaden thickness of the ablation front. In this paper, amplitude distribution and amplitude evolvement of the laser ablative Rayleigh-Taylor instability is the main focus.
     First, the behavior of the laser-driven CH ablation target is analyzed using a direct numerical simulation which is second order in space. The thickness of the CH target is 200μm, the laser intensity linearly grows 4 ns to it maximum of 1014 W/cm2, and then keeps on. The constantly accelerating equilibrium of the ablation CH target is obtained. Based on the ablation parameters, the steady state flow field at the reference frame of the constantly accelerating ablation front is given and compared with the result of direct numerical simulation. The hydrodynamic linear stability theory and weakly nonlinear theory are used to study the ablative Rayleigh-Taylor instability based on the steady state flow field, and the results are tested through comparison with a direct numerical simulation which is fourth order accurate in space. And the following conclusions can be drawn:
     1. The constantly accelerating equilibrium of the laser ablation front can be represented by the corresponding steady state flow field at the reference frame of the constantly accelerating ablation front which is obtained using the same ablation parameters.
     2. The linear growth of the ablative Rayleigh-Taylor instability is studied using the linear stability theory. The Eigen-Functions of the instable perturbations are presented, and the characteristics of the Eigen-Functions are analyzed. The growth rate of the linear stability theory is in agreement with the modified Lindl formula, and is almost identical to that of direct numerical simulation.
     3. In the weakly nonlinear theory, a new method is proposed to determine the Landau constant for the perturbations with relatively larger growth rates. The method is that the shape function of the regenerated fundamental mode is bi-orthogonal to the Eigen-function of the ad-joint linear stability problem. This method can be easily applied for higher order expansion (in the weakly nonlinear theory).
     4. The weakly nonlinear growth of ablative Rayleigh-Taylor instability is studied using the weakly nonlinear theory by Stuart. Shape functions of each harmonic are presented and their characteristics are analyzed. The Landau constant curve is given by the weakly nonlinear theory. It is negative when the wave number is small and positive when the wave number is large. The weakly nonlinear theory shows that the Landau constant has relatively smaller correction to the first harmonic, whereas the regenerated fundamental mode plays the dominant role.
     5. In the weakly nonlinear theory, a new expansion method with respect to the linear amplitude of the fundamental mode is proposed. Compared with the expansion method by Stuart, the new method has the following advantages: the amplitude equations no longer contains the Landau constant, no extra condition is needed to determine the Landau constant, and the equations can be solved directly. The expansion method is simpler, and is convenient for higher order expansion. The compassion with direct numerical simulation shows that: when the nonlinear effect is relatively stronger, the new method can describe the ablative Rayleigh-Taylor instability more accurately in a certain sense.
引文
[1] Taylor G I. The stability of liquid surface when accelerated in a direction perpendicular to their planes I. Proc Roy Soc A, 1950, 201: 192~196
    [2] Rayleigh L. Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density. Scientific PapersⅡ, 1900, 200~207
    [3] Nuckols J H, Wood L, Thiessen A et al. Laser compression of matter to super-high densities: thermonuclear (CTR) application. Nature, 1972, 239: 139~142
    [4] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 1995, 2(11): 3933~4024
    [5] Bodner S E, Colombant D G, Gardner J H et al. Direct-drive laser fusion: Status and prospects. Phys. Plasmas, 1998, 5(5): 1901~1918
    [6] Bodner S E et al, Naval Research Laboratory NRL/MR/6730-98-8113, 1998
    [7] Takabe H, Mima K, Montierth L et al. Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma. Phys. Fluids, 1985, 28(12): 3676~3682
    [8] Kull H J and Anisimov S I. Ablative stabilization in the incompressible Rayleigh–Taylor instability. Phys. Fluids, 1986, 29(7): 2067~2075
    [9] Kull H J. Incompressible description of Rayleigh-Taylor instabilities in laser-ablated plasmas. Phys. Fluids B, 1989, 1(1): 170~182
    [10] Kilkenny J D, Glendinning S G, Haan S W et al. A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas, 1994, 1(5): 1379~1389
    [11] Sanz J. Self-consistent Analytical Model of the Rayleigh-Taylor Instability in Inertial Confinement Fusion. Phys. Rev. Lett, 1994, 73: 2700
    [12] Wouchuk J G and Piriz A R. Growth rate reduction of the Rayleigh-Taylor instability by ablative convection. Phys. Plasmas, 1995, 2(2): 493~500
    [13] Betti R, Goncharov V N, McCrory R L et al. Self-consistent cutoff wave number of the ablative Rayleigh-Taylor instability. Phys. Plasmas, 1995, 2(10):3844~3851
    [14] Goncharov V N, Betti R, McCrory R L et al. Self-consistent stability analysis of ablation fronts with large Froude numbers. Phys. Plasmas, 1996, 3(4): 1402~1414
    [15] Betti R, Goncharov V N, McCrory R L et al. Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas, 1996, 3(5): 2122~2128
    [16] Betti R, Goncharov V N, McCrory R L et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas, 1998, 5(5): 1446~1454
    [17] Jacobs J W and Catton I. Three-dimensional Rayleigh-Taylor instability. Part I. Weakly nonlinear theory. J. Fluid Mech., 1988, 187: 329~352
    [18] Susumu Hasegawa and Katsunobu Nishihara. Mode coupling theory in ablative Rayleigh-Taylor instability. Phys. Plasmas, 1995, 2(12):4606~4616
    [19] Sanz J, Ramírez J, Ramis R et al. Nonlinear theory of the ablative Rayleigh-Taylor instability. Phys. Rev. Lett., 2002, 89(19): 195002
    [20] Garnier J, Raviart P A, Cherfils-Clérouin et al. Weakly Nonlinear Theory for the Ablative Rayleigh-Taylor Instability. Phys. Rev. Lett., 2003, 90(18): 1850003
    [21] Garnier J and Masse L. Statistical approach of weakly nonlinear ablative Rayleigh–Taylor instability. Phys. Plasmas, 2005, 12(6): 062707
    [22] Skupsky S, Short R W, Kessler T et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys., 1989, 66(8): 3456~3462
    [23]罗山.激光驱动惯性聚变能的现状与发展前景.激光与光电子学进展, 2004, 41(12): 2~12
    [24] Richtmyer R D. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths., 1960, 13: 297~319
    [25] Meshkov E E. Instability of a shock wave accelerated interface between two gases. NASA Tech. Trans., 1970, F-13: 074
    [26]叶文华,张维岩,陈光南等. Rayleigh-Taylor和Richtmyer-Meshkov不稳定性的FCT方法数值模拟.计算物理, 1998, 15(3): 277~282
    [27] Tian B L, Fu D X and Ma Y W. Numerical investigation of Richtmyer-Meshkov instability driven by cylindrical shocks. Acta Mech.Sinica, 2006, 22: 9~16
    [28] Spitzer L, Jr and Harm R. Transport phenomena in a completely ionized gas. Phys. Rev., 1953, 89: 977~981
    [29] Sunahara A, Delettrez J A, Stoeckl C et al. Time-dependent electron thermal flux inhibition in direct-drive laser implosions. Phys. Rev. Lett., 2003, 91: 095003
    [30] Manheimer W and Colombant D. Beam deposition model for energetic electron transport in inertial fusion: Theory and initial results. Phys. Plasmas, 2004, 11(1): 260
    [31] Ye W H, Zhang W Y and He X T. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number. Phys. Rev. E., 2002, 65(5): 057401
    [32] Lindl J D, Amendt P, Berger R L et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 2004, 11(2): 339~491
    [33] Dittrich T R, Haan S W, Pollaine S et al. NIF Capsule Design Update. Fusion Technol. 1997, 31(4): 402-405
    [34] Goncharov V, Knauer J, McKenty P, et al. Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket. Phys. Plasmas, 2003, 10(5): 1906~1918
    [35]叶文华,张维岩,贺贤土.烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式.物理学报, 2000,49(4): 762~767
    [36] Verdon C P, McCrory R L, Morse R L et al. Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells. Phys. Fluids. 1982, 25(9): 1653~1674
    [37] Dahlburg J P and Gardner J H. Ablative Rayleigh-Taylor instability in three dimensions. Phys. Rev. A, 1990, 41(9): 5695~5698
    [38] Haan S W. Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B, 1991, 3(8): 2349~2355
    [39] Ofer D, Shvarts D, Zinamon Z et al. Mode coupling in nonlinear Rayleigh–Taylor instability. Phys. Fluids B, 1992, 4(11): 3549~3561
    [40] Remington B A, Hann S W, Glendinning S G, et al. Large growth Rayleigh-Taylor experiments using shaped laser pulses. Phys. Rev. Lett., 1991, 67(23): 3259~3262
    [41] Remington B A, Weber S V, Hann S W, et al. Laser-driven hydrodynamic instability experiments. Phys. Fluids B, 1993, 5(7): 2589~2595
    [42] Kilkenny J D, Glendinning S G, Haan S W, et al. A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion. Phys. Plasmas, 1994, 1(5): 1379~1389
    [43] Remington B A, Weber S V, Marinak M M, et al. Single-mode and multimode Rayleigh-Taylor experients on Nova. Phys. Plasmas, 1995, 2(1):241~255
    [44] Shigemori K, Azechi H, Nakai M, et al. Measurements of Rayleigh-Taylor Growth Rate of Planner Targets Irradiated Directly by Partially Coherent Light. Phys. Rev. Lett., 1997, 78(2): 250~253
    [45] Nakano H, Miyanaga N, Yagi K et al. Partially coherent light generated by using single and multimode optical fibers in a high-power Nd: glass laser system. Appl. Phys. Lett., 1993, 63(5):580~582
    [46]周斌,王珏,沈军等.研究瑞利-泰勒流体力学不稳定性的实验用靶.中国激光, 1999, 26(10): 878~882
    [47] Grun J, Emery M E, Manka C K et al. Rayleigh–Taylor instability growth rates in targets accelerated with a laser beam smoothed by induced spatial incoherence. Phys. Rev. Lett., 1987, 58(25): 2672~2675
    [48] Kilkenny J D. Experimental results on hydrodynamic instabilities in laser accelerated planar packages. Phys. Fluids B, 1990, 2(6): 1400~1404
    [49] Marinak M M. Glendinning S G. Wallace R J et al. Nonlinear Rayleigh–Taylor evolution of a three-dimensional multimode perturbation. Phys. Rev. Lett., 1998, 80(20): 4426~4429
    [50]袁永腾,缪文勇,丁永坤等. X光背光观测烧蚀面扰动引起内界面扰动的增长,强激光与粒子束. 2007, 19(4): 625~628
    [51]袁永腾,缪文勇,丁永坤等.平面调制靶瑞利-泰勒不稳定性初步研究.强激光与粒子束, 2007, 19(5): 781~784
    [52] Weir S T, Chandler E A and Goodwin B T.Rayleigh-Taylor instability experiments examining feed through growth in an incompressible convergent geometry. Phys. Rev. Lett., 1998, 80(17): 3763~3766
    [53] Hsing W W, Barnes C W, Beck J B et al. Rayleigh-Taylor instability evolution in ablatively driven cylindrical implosions. Phys. Plasmas, 1997, 4(5): 1832~1840
    [54] Tubbs D L, Boehly T, Barnes C W et al. Cylindrical implosion experimentsusing laser direct drive. Phys. Plasmas, 1999, 6(5): 2095~2104
    [55] Wark J S, Kilkeany J D, Cole A J et al. Observations of the RT instability in laser imploded microballoons. Appl. Phys. Lett., 1986, 48(15): 969~97l
    [56] Nishimura H, Takabe H, Mima K et al. Hydrodynamic instability in an ablatively imploded target irradiated by high power green lasers. Phys. Fluids, 1988, 31(10): 2875~2883
    [57] Cherfils C, Glendinning S G, Galmiche D et al. Convergent Rayleigh-Taylor experiments on the Nova laser phys. Phys. Rev. Lett., 1999, 83(26): 5507~5510
    [58] Shu Chi-Wang. Essentially non-osciallatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253, Virginia: NASA Langley Research Center, 1997
    [59] M. R. Malik, S. Chuang and M. Y. Hussaini. Accurate numerical solution of compressible linear stability equations. ZAMP., 1982, 33:189~201
    [60] Stuart J T. On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 1, the basic behavior in plane Poiseuille flow. J. Fluid Mech., 1960, 9: 353~370
    [61]吴俊峰,叶文华,张维岩.直接驱动柱内爆流体力学不稳定性数值模拟.强激光与粒子束, 2005, 17(3): 373~376
    [62]张涵信.无波动、无自由参数的耗散差分格式.空气动力学学报, 1988, 6(2): 143~165
    [63]张涵信.无波动、无自由参数、耗散的隐式差分格式.应用数学和力学, 1991, 12(1): 97~100
    [64]曾绍标,熊洪允,毛云英.应用数学基础(下册).天津:天津大学出版社, 2004, 122~131
    [65]吴望一.流体力学(下册).北京:北京大学出版社. 1998, 424~424
    [66] Boris J P, Landsberg A M, Oran E S et al. LCPFCT– Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations. NRL/MR/6410-93-7192. Washington, DC: Naval Research Laboratory, 1993
    [67] Yee H C. Construction of explicit and implicit symmetric TVD schemes and their applications. J. Comp. Phys., 1987, 68(1): 151~179
    [68] Van Leer. Towards the ultimate conservative difference schemes V. A second order sequel to Godunov’s method. J. Comp. Phys., 1979, 32(1): 101~136
    [69]齐进,叶文华.三维激光烧蚀瑞利-泰勒不稳定性并行计算.计算物理,2002, 19(5): 388~392
    [70]王丽丽,李家春.瑞利-泰勒不稳定性中尺度效应的数值模拟研究.强激光与粒子束, 2003, 15(12): 1195~1199
    [71]葛全文.惯性约束聚变激光烧蚀驱动内界面不稳定性数值模拟.计算物理, 2004, 21(3):294~304
    [72]郁晓瑾,叶文华,吴俊峰.直接驱动球内爆点火的数值模拟.强激光与粒子束, 2006, 18(8): 1297~1301
    [73] Kloker M, Konzelmann U and Fasel H. Out-flow boundary conditions for spatial Navier-Stokes simulations of transition boundary layers. AIAA J., 1993, 31: 620-628
    [74]苏彩虹,周恒.嵌边出流边界条件在可压缩流直接数值模拟中的应用.空气动力学学报, 2006, 24:289-294
    [75]周恒,赵耕夫.流动稳定性.北京:国防工业出版社. 2004, 6~8
    [76] Herbert T. Nonlinear stability of parallel fows by high-order amplitude expansions. AIAA J., 1980, 18: 243~248
    [77] Zhou H. On the nonlinear theory of stability of plane Poseuille flow in the subcritical range. Proc Roy Soc A, 1982, 381: 407~418
    [78]周恒.流动稳定性弱非线性理论中幅值方程的一个必要修正.科学通报, 1990, 35(16): 1228~1230
    [79]周恒.流动稳定发生弱非线性理论的重新考虑.应用数学和力学. 1991, 12(3):203~208
    [80]周恒,尤学一.论流动稳定性中的弱非线性理论.中国科学A辑, 1992, A(6): 615~622
    [81] Zhou H, You X Y. On the problems in the weakly nonlinear theory of hydrodynamic stability and its improvements. Acta. Mech. Sinica, 1993, 9(1): 1~12
    [82]周恒,藤村薰.流动稳定性弱非线性理论的进一步改进.中国科学A辑, 1997, 27(12): 1111~1118
    [83]罗纪生.对流动稳定性非线性理论中确定幅值演化方程系数的重新思考.应用数学和力学, 1994, 15(8): 709~712

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700