用户名: 密码: 验证码:
半导体激光器驱动模式与可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要研究工作是根据半导体激光器的电学特点,构建了半导体激光器驱动模式的数学模型,并对驱动模式的可靠性进行了分析与研究。首先简要介绍了半导体激光器的发展概况,对当前国内外半导体激光器的驱动模式做了概括介绍。其次重点对恒电流驱动模式,恒功率驱动模式和恒电压驱动模式进行了深入的分析与研究,推导出了三种驱动模式下控制量与反馈量之间的函数关系。在恒电流驱动模式中重点分析了影响驱动电流稳定度的因素,给出了提高最大驱动电流的可行方法,并对末级电路中功率器件的电流分配问题进行了深入分析。针对半导体激光器阵列的特性,提出了恒电压驱动模式的概念,并设计了驱动电路。最后根据三种驱动模式的特点,设计了限流保护电路,过流保护电路,软启动电路和防浪涌电路,切实保护了半导体激光器地安全工作。数值仿真和实际的数据测试表明,模型构建得到了比较理想的结果。
     本论文的创新点在于:第一,提出了恒电压驱动模式的概念,并给出了相应的驱动电路设计;第二,限流保护电路的电流取样反馈点取自激光器的实时工作电流,确保了工作模式切换时对激光器的实时保护;第三,对三种工作模式下影响输出稳定性的因素进行了分析,并给出相应的解决方案。
     本文的工作是在国家自然科学基金项目(No.60372061)“超高速主动锁模光纤激光器真自启动及稳定性研究”的支持下完成的,通过对半导体激光器驱动模式的研究,对进一步深入研究半导体激光器的驱动与控制技术提供了一定的研究基础。
Since the first semiconductor laser(laser diode) was invented in 1962, the semiconductor laser technology has changed dramatically, which greatly promoted the development of other science and technology and was considered as one of the greatest inventions in the 21th century. Semiconductor laser diode has the excellent character of high efficiency, small size, low weight, high reliability, direct modulation, but semiconductor laser diode is a kind of device with high power density and sky-high quantum efficiency. Even weak drive current and temperature change will lead to its large change of output light power and device parameters, which directly damages the safe use of laser diode, so higher request to the laser diode driver is put forward.
     This paper describes the model constitution and drive circuit design of high-power laser diode (LD), which works in constant current mode, constant power mode and constant voltage mode, based on the electrical characteristics of high power LD. The reliability of drive modes are analyzed and researched. By model constitution and analysis, the relations between the control voltage and the output current are set up, respectively.
     The function of constant current drive mode is to provide a stable drive current for laser diode. It focuses on improving the stability of drive current and obtaining the enough large drive current. The constant current drive circuit is mainly composed of voltage benchmark circuit, voltage-current conversion circuit, feedback circuit, and current-sample circuit. The control voltage unit is a high stability reference voltage source, which may provide the voltage reference for the whole circuit. In general, the reference voltage source is the core of drive circuit, which determines the stability level of drive current. The voltage-current (V-C) converting circuit is mainly composed of the operational amplifier and high-power Metal Oxide Semiconductor Field Effect Transistor (MOSFET). The maximum current of drive circuit depends on the work current of MOSFET. The feedback control unit is composed of resistor network. The feedback voltage comes from the voltage of sample resistor. The whole design idea is to use the principle of negative feedback to stabilize output current, which obtains the lowest current error and the highest current stability.
     The most important characteristic of laser diode is the effect of temperature on the relationship between the LD’s optical output power and the injection current. When the laser diode operates in a long period, the output optical power will be variable owing to many kinds of reasons, but we hope that the laser diode can maintain relatively constant light power. Therefore, laser diode is necessary to work in the mode of constant power.
     The principle of constant power drive is: PD converts the change of output light power of laser diode into the change of diode current, and the change of current is feed back to voltage-current converser which adjusts output current of driver to compensate the laser diode. So, when output light power attenuates, driver will increase output current accordingly; when output light power increases, driver will reduce output current accordingly.
     For the semiconductor laser array, the constant-voltage drive mode is put forward. The basis of constant-voltage driving is the constant-curreent for one laser diode in the laser diode array.When one laser diode of semiconductor array has been destroyed owing to some reasons, the others laser diode will be destroyed by the very large drive current. The drive current in constant-voltage mode can be automatically adjusted by constant-voltage feedback network. The work principle is that the feedback voltage and the control voltage ensure the drive current of laser array by the negative feedback control. For the whole laser diode array, the drive mode is the constant-voltage drive. The constant-voltage drive ensures the safe use of the laser diode array.
     If we want to improve the drive circuits’reliability and stability, we must consider the choice of parts and solve dispersing heat. We should dispose of dispersing heat well due to the large output current of whole constant current driver. If we can’t solve the heat issue, parts will change specialty because of high temperature. As we all known, high temperature also can make parts permanent invalidation owing to pole touching and semiconductor layer melting. The basic task of dispersing heat design is that we can make a heat flow circuit having the lowest heat resistance according to principle of heat transfer and we should keep parts heat be thrown off. In this way we can ensure internal knot temperature lower than allowable temperature when parts run. This paper describes the details of radiator design and how to select the method of dispersing heat.
     In order to preclude the possibility of the injected current exceeding the maximum safety current, especially when mode shifts of laser diode take place, the current-limit circuit is designed. Its work principle is that the limit voltage decides the maximum drive current, even if the control voltage is above the control voltage. If the maximum limit voltage is set, the maximum operating current is set by the limit voltage. That is to say, no matter how we adjust the control voltage, the operating current must not overshoot the maximum operating level.
     For some laser diodes, the over-current protect is necessary. If the control voltage is below the control voltage, the drive current is decieded by the controle voltage; If the control voltage is above the control voltage, the drive current is zero just now, which can ensure the safe use of the laser diode.
     When the laser diode works normally, we should watch for possible intermittent or unreliable connections between the laser diode and the drive circuit. In order to ensure that spikes, surges, and other switching transients are effectively eliminated, the soft start circuit is designed. Its work principle is that the drive current is on the laser diode slowly. The surge-surrendering circuit ensures eliminating the surge voltage and current.
     The main work in this paper is supported by the national natural sciences fund project“the super-velocity initiative mode locking optical fiber laser really self-starting and investigation into stability. The content in this paper involves in the electronics, optics and optical-electrical transform. This work mentioned in the paper has positive significance to the wide application of semiconductor laser diode, which solves key questions in the application of semiconductor laser diode.
引文
[1]王德,李学千.半导体激光器的最新进展及其应用现状[J].光学精密工程,2001, 9(3):279-283.
    [2]王路威.半导体激光器的发展及其应用[J].成都大学学报(自然科学版),2003,33(3):34-38.
    [3] D. Russell. An introduction to the development of the semiconductor laser[J]. IEEE J. Quantum Electron, 1987, 23(6):651-657.
    [4]张月清,王立军.半导体激光器进展[M].北京:科学出版社,2002,第一版.
    [5] McClure J D. Diode laser radar :application and technology[C] . Proc. SPIE ,1990 ,1219 :446– 456.
    [6]陈晓敏,郭爱煌,孙维勇.高速率光纤通信系统激光器技术[J].电信快报,2006,5: 33–35.
    [7] S. Nakamura, et al.. Ridge-geometry InGa multi-quantum-well structure laser diode[J]. Appl.Phys. Lett., 1996, 69:1477-1479.
    [8] H. Soda, K. Iga, et al.. GaInAsP/InP surface emitting injection lasers[J]. Japan J. Appl.Phys.Lett., 1979,18:2329-2330.
    [9] Hao Dong,Qiang Wang. Stable 80GHz Short Pulse Generation Using the Cascaded Polarization-Maintaining Fiber Loop Mirrors[J].IEEE Photonics Technology Letters,VOL.17, NO.7:1396-1398, Jul.2005 .
    [10] L P Chen,M Y Li. Lower-power 1Gb/s CMOS laser driver for a zero-bias modulated optical transmitter[J] , IEEE Photonics Technology Letters ,1997,9(7):997-999.
    [11] Eduard Sackinger,Yusuke Ota.A 15-mW,155Mb/s CMOS Burst-Mode Laser Driver with Automatic Power Control and End-of-Life Detection[J],IEEE journal of solid-state circuits,1999,34(12):1944-1950.
    [12] E. Y. Chan,J. C. Adams. Applications of COTS high speed 980nm pump laser diode and driver for free space laser communication terminal[C],Proceedings ofSPIE-The International Society for Optical Engineering,1999,37(8):79-86.
    [13] J. S. Chang,R.Dugan . 1.0625Gbit/s fiber channel chipset with laser driver[J],Hewlett-Packard Journal,1996,32(1):14-19.
    [14]丛红侠,冯列峰,王军等.激光二极管正向电特性的精确检测[J].半导体学报, 2006,27(1):105-109
    [15]栖原敏明(日)著.半导体激光器基础[M].科学出版社.
    [16]黄德修,刘雪峰.半导体激光器及其应用[M].北京:国防工业出版社, 1999.
    [17] Allan R.Hambley.电子技术基础[M].电子工业出版社2005.
    [18]邓军,单江东,张娜,田小建,大功率半导体激光器驱动器的研究与设计.半导体光电[J],2003,24(5):319-321.
    [19]王明生,张娜,单江东,邓军,田小建.半导体激光器驱动与控制系统的分析与设计[J].吉林大学学报(理学版),2003,41(2):206-208.
    [20]金永南,田小建,张娜,邓军.激光光源的稳恒控制分析与设计[J].吉林师范大学学报, 2004,25(2):8-10.
    [21] Marc T.Thompson,Martin F.Schlecht.High Power Laser Diode Driver Based on Power Converter Technology[C]. IEEE transaction on power electronics,1997,12(1):46-52.
    [22]胡小玲,王学忠,高国,徐萍萍,于海鹰,阮颖.应用于半导体激光器可靠性评估系统的恒流源设计[J].现代电子技术,2005,201(10):102-104.
    [23]李中汇主编.VMOS功率场效应管及其应用[M].人民邮电出版社:87-88.
    [24]杨素行.模拟电子技术基础简明教程[M].高等教育出版社2004.
    [25]王士杰.场效应管恒流源特性的分析与研究[J].自动化仪表,1996,17(2):34-36.
    [26]汪雨凌.25A恒流源系统实验研究与设计[D].长春:吉林大学电子科学与工程学院,2006.
    [27]姜晓华,陈喻.准连续大功率半导体激光器电源[J].长春光学精密机械学院学报,2001,24(3):1-4.
    [28]于复生,艾兴,逢东庆.大功率半导体激光器驱动电源的设计[J].应用激光,2000,20(6): 257-260.
    [29]郜峰利,曹军胜,张爽,郭树旭.基于PCI-6014的程控半导体激光器驱动电源设计[J].应用激光,2006,26(6):449-451.
    [30] V.Colonna,G.Gandolfi. A versatile 3.3V CMOS laser driver system[J],Microelectronics Journal. 2001,32(3):253-263.
    [31] D Li,N J Bowring.A scanning temperature control system for laser diode[J],Measure Science Technology,1993,4:1111-1116.
    [32]张娜,于永力,田小建,单江东,半导体激光器恒温控制理论与应用[J].吉林大学学报(理学版),2002,40(3):284-287.
    [33]张娜,田小建,罗青龙,单江东.半导体激光器恒温系统PI控制部件的设计[J].吉林大学学报(信息科学版)2003,21(2):220-222.
    [34] Yih-Jun Wong, Chih-Wei Hsu, and C.C. Yang. Characteristics of a Dual-Wavelength Semiconductor Laser Near 1550nm[J]. IEEE Photonics Technology Letters. 1999,11(2):173-175.
    [35] David F. Welch, A Brief History of High-Power Semiconductor Lasers[J].IEEE Journal of Selected Topics In Quantum Electronics. 2000:29-31.
    [36]徐雅璠.半导体激光器恒功率驱动模式的实验研究[D].长春:吉林大学电子科学与工程学院,2006.
    [37] Romanoy Igor B. Korobkin,Yuriy V. The Features of Electrical Current in The X-ray Source Based on The Va- cuum Diode With The Laser-Plasma Cathode[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2003, (5228): 637-642.
    [38]徐秀芳,胡晓东.半导体激光器德功率稳恒控制技术[J].光子学报, 2001,30(6):761-764.
    [39]王熙,张建江,杨保平,李德才.半导体激光器稳功率电路设计[J].黑龙江八一农垦大学学报,2001,13(2):49-53.
    [40]童治,魏淮.应用于拉曼泵浦德高功率激光器[J].光电子激光,2001,12(5):545-548.
    [41] G. Beister, J. Maege, G. Ebert et al. Non-radiative current in InGaAs/AlGaAs laser diodes as a measure of facet stability[J]. Solid-state Electron. 1998, 42(11):1938- 1945.
    [42]曾华林,江鹏飞,谢福增.半导体激光器温度控制研究[J].激光与红外,2004,34(5):339-340.
    [43]刘澄,刘伟.半导体激光器输出功率自动控制电路[J].电力环境保护,2004,20(2):56-58.
    [44]杨九如,李成,叶红安等.基于Fuzzy-P控制的半导体激光器功率稳定研究.光子学报[J],2006,35(6):804-806.
    [45]金典顺,赵学增,李成.单片机控制的半导体激光器稳光强器的研究[J].半导体光电,2004,25(1):69-71.
    [46]伊小素,肖文.大功率、宽光谱超辐射发光管的温度稳定性研究[J].光子学报,2004,33(11):1367-1369.
    [47] W Zhao,J E Simsarian,A computer based digital feedback control of frequency drift of multiple lasers[J],Review of Scientific Instrument,1998.69:3737-3740.
    [48] J. Berger, D. F. Welch, et al.. High power, high efficiency neodymium:Yttrium aluminum laser and pumped by a laser diode array[J]. Appl. Phys. Lett., 1987, 51(16): 1212-1214.
    [49]曹军胜.半导体激光器及其列阵的无损检测技术研究[D].长春:吉林大学电子科学与工程学院,2006.
    [50] HE X, OVTCHINNIKOV A. Efficient high power reliable InGaAs/AlGaAs (940nm) monolithic laser diode arrays[J]. E L, 1999,35:1739.
    [51] ENDRIZ J G,Vakili M. High power diode laser arrays[J]. J Q E, 1992,28:952.
    [52] BEZOTOSNYI V, KUMYKOV K. Modelling of the thermal parameters of high-power linear laser-diode arrays. two-dimentional transient model[J]. Q E, 1998,28:217.
    [53] PUCHERT R,BARWOLLF A. Influence of the mount
    [55]金菊其.大功率半导体激光器的阵列化技术[J].激光与光电子学进展, 2001,8:31.
    [56] LORENZEN D,SCHRoDER M,MEUSEL J,et al.Comparative performance studies of indium and goldtin packaged diode laser bars[J]. SPIE, 2006, 6104: 30-41.
    [57] STEELE R V,UNLIMITED S.2007 laser market hits a slow patch[J].Laser Focus World,2007(3):22-26.
    [58] CRUMP P,PATTERSON S,WANG J,et al.Diode laser bars deliver > 400 W peak CW power from 800 nm to 980 nm enabling wide range of applications[J]. SPIE,2006,6397:639-706.
    [59]邓军,田小建,高博.半导体激光器驱动器设计和驱动模式研究[J].仪器仪表学报,2008,29(4):389-393.
    [60]孙梅生,卢威,徐小鹏.浪涌对半导体激光器德危害与消除方法[J].激光杂志,2002,23(6):18-19.
    [61]梅遂生.关于激光二极管的腔面污染和浪涌击穿问题[J].激光与红外,1998,2(28):2-6.
    [62] Shan Jiangdong,Tian Xiaojian, Deng Jun, Zhang Shuang. Research and design of the protection circuits in LD Controller[J]. Journal of China Universities of Posts and Telecommunications, 2006,13 (4):73-76.
    [63]胡宏伟,甘柏辉,胡企铨.半导体激光器电源中的保护技术[J].应用激光,1998,18(2):81-82.
    [64] Shi Jiawei, Jin Enshun, Li Hongyan. The characteristic junction parameter of a semiconductor laser and its relation with reliability[J]. Optical and Quantum Electroncis, 1996,28:647-651.
    [65] Shi Jiawei, Jin Enshun, Gao Dingsan. The junction voltage saturation and reliability of semiconductor laser[J]. Optical and Quantum Electronics. 1992,24: 775-781.
    [66]王金定,刘宏林,王云才.新型的半导体激光器保护电路[J].应用激光,2006,26(2):119-121
    [67]单江东,田小建,张爽,邓军. LD控制器的系统组成与应用研究[J].仪器仪表学报,2006,27(6)1830-1832。
    [68] Deng Jun,Shan Jiangdong,Fan Wenhua,Tian Xiaojian,Luo Hong’e. Studies on constant power mode for high power laser diode(LD).[C]7th ISTM,2007:5370-5373.
    [69]李庆有,王文,周根明.电子元器件散热方法研究[J].电子器件,2005,28(4):937-940.
    [70]谢德仁.电子设备热设计[M].东南大学出版社,1989.
    [71]吴建强. PSPICE仿真实践[M].哈尔滨工业大学出版社,2001.
    [72]孙红兵.仿真软件在脉冲激光器驱动电源设计中的应用[J].淮阴师范学院学报,2004,3(2):117-120.
    [73]蔡兵,王培元.大功率IGBT驱动过流保护电路研究[J].襄樊学院学报,2005,26(5)75-78.
    [74]杨明伟,许文海,顾智萍.融入FPGA技术的半导体激光器功率-电流-电压测试系统[J].光电子.激光,2005,16(3):344-348.
    [75]王莉,张河.引信激光装定用脉冲半导体激光器电源设计[J].仪器仪表学报,2006,27(9):1016-1019.
    [76]林晓翰.半导体激光器的大电流窄脉冲驱动电路的研究[J].压电与声光,2000,22(6):414-417.
    [77]陈炳林,张河,孙全意.微型大电流窄脉宽半导体激光器电源的研究[J].仪器仪表学报,2004,25(4):491-493.
    [78]张冈,刘东波,陈幼平,撒继铭.光纤传感器中光源的驱动与控制[J].仪表技术与传感器,2006,5:45-47.
    [79]伍翔,王一超,冯重熙,周联红.一种光输出功率控制电路[J].光通信研究,2000,1:37-41.
    [80]刘旭升,林久令,张海明,王晋疆.纳秒脉冲半导体激光驱动器的研究[J].激光技术,2006,4(30):445-448.
    [81]张娜.半导体激光器稳恒控制系统研究与设计[D].长春:吉林大学电子科学与工程学院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700