用户名: 密码: 验证码:
LFMCW雷达高速/加速目标参数估计及测距范围扩展技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与传统应用背景不同,本文主要研究了LFMCW(linear frequency-modulatedcontinuous wave)雷达中具有大动态范围参数目标的检测和估计问题。所谓大动态范围,主要是指目标具有距离远、高速/加速运动的特点。在所建立的信号检测模型基础上,依次解决了高速运动目标跨距离单元走动校正、高速加速运动目标的参数估计、测距范围的扩展等问题,并利用模糊函数理论分析了扩展测距范围方法的特点。
     在传统差拍-傅立叶频谱分析-MTD(moving target detection)结构基础上,第二章中首先分析了MTD处理的信噪比改善因子,并据此定义了最优检测度量。针对高速/加速运动目标的特点,定量分析了高速运动和加速运动对二维积累性能的影响程度,并在差拍-傅立叶频谱分析-MTD结构基础上建立了跨距离单元走动情况下的检测模型。
     针对高速运动目标参数估计问题,第三章主要研究了跨距离单元走动的校正方法。根据差拍信号的特点,提出了一种基于速度预补偿的MTD处理方法,通过在速度动态范围内进行盲搜索的方式对差拍信号进行运动补偿;利用对称三角LFMCW信号的调频对称性,得出距离走动项对上、下调频差拍信号形成对称影响的结论,提出了基于二次混频的MTD处理方法;结合速度盲搜索补偿和二次混频方法各自的特点,提出一种多目标情况下的联合处理方法;进一步将SAR/ISAR成像处理中的Keystone变换引入到LFMCW雷达中,提出了基于Keystone变换的MTD处理方法,并拓展性地将其应用于单调频率LFMCW信号的距离-速度解耦合问题;最后对上述三种校正方法的适用性进行了分析讨论。
     基于第二章中给出的二维耦合差拍信号模型,第四章研究了高速加速运动目标的参数估计问题。首先推导了最大似然参数估计模型,并得到了高斯白噪声环境下参数估计的Cramer-Rao下界;根据目标二维谱的局部展宽特性,提出了基于局部补偿的速度-加速度模板匹配方法,有效降低了参数估计过程中的运算量,利用局部补偿思想实现最大似然估计,在满足一定输入信噪比要求的条件下能达到接近于CRB下界的参数估计性能;然后从二维解耦合的思想出发,分别提出了二次混频-DPT(discrete polynomial-phase transform)处理方法和直接相位差分方法,在无需进行模板匹配搜索的条件下有效解决了参数估计问题;最后在直接相位差分法的基础上,提出了DPT-CZT(Chirp-Z transform)处理方法,该方法无需借助其它速度解模糊处理即可获得无模糊的速度估计结果,从而可以实现单调频率LFMCW信号对高速加速运动目标的参数估计。
     针对现有差拍-傅立叶处理结构所存在的测距范围受限问题,第五章研究了扩展LFMCW信号测距范围的方法及相关问题。利用对称三角LFMCW信号的调频对称性和周期重复性的特点,提出了双差拍-傅立叶处理方法,通过两次具有互补特性的差拍处理有效地将时延参数的可测范围扩展到了整个信号重复周期;然后研究了双差拍处理的多周期积累问题,并在此基础上研究了其多目标配对方法,根据距离谱峰值频率特性提出一种距离-速度联合配对法,有效解决了双差拍处理中的多目标配对问题;最后借鉴第四章中的局部补偿模板匹配思想,解决了双差拍处理中高速加速运动目标参数估计问题。
     论文第六章推导给出了双差拍处理下的模糊函数,详细分析了其对称特性和分辨率特点,并与传统差拍处理下的模糊函数特性进行了比较。从模糊函数的角度得到了双差拍处理的一些定量分析结果,为其工程实用奠定了理论基础。
Unlike the traditional application fields, this dissertation is devoted to the detection and parameter estimation problem of targets with high dynamic range parameters in LFMCW (linear frequency-modulated continuous wave) radar. The so-called high dynamic range refers to long range, high-speed and acceleration. Upon the signal detection model constructed, rectification of MTRC (migration through range cell) for high-speed targets, parameter estimation of high-speed accelerating targets and extension of detectable range have been studied and been solved. And the properties of the method for detectable range extension are analyzed using the theory of ambiguity function.
     Based on the traditional structure of beat-Fourier analysis-MTD (moving target detection) processing, SNR (signal-to-noise ratio) improving factor is obtained in Chapter2, and hereby optimal detection metric is defined. Then quantitative analysis of the effect of high-speed and acceleration on the two-dimensional integration performance is carried out for high-speed/accelerating targets. Finally detection model under MTRC is established upon traditional processing flow.
     Aiming to parameter estimation of high-speed targets, rectification methods for MTRC are mainly focused in Chapter3. From the characteristic of the beat signal, a velocity precompensation method is proposed which accomplishes motion compensation by searching the optimal compensation velocity in its dynamic range. For the triangular LFMCW signal, MTRC of up-sweep beat signal and down-sweep part is symmetry, based on which secondary mixing-MTD processing is proposed. And recurring to the respective advantage of the above two methods, a combination processing for multi-targets is presented. Furthermore Keystone transform in SAR (synthetic aperture radar) and ISAR (inverse SAR) is introduced into LFMCW radar and a MTD processing based on Keystone transform is propounded which is developed to solve the range-velocity coupling problem in single chirp LFMCW signals. At the end of Chapter3, the applicability of these three rectification methods is discussed.
     Using the two-dimensional coupling signal model acquired in Chapter2, parameter estimation for high-speed accelerating targets is stressed in Chapter4. Firstly the maximum likelihood (ML) estimation model is derived and the Cramer Rao bound (CRB) in Gaussian white noise circumstance is obtained. Considering that the widening of the two-dimensional spectrum appeared in a local spectrum region, a velocity-acceleration template matching method based on partial compensation is proposed. The concept of partial compensation can effectively alleviate the computation burden during template matching course. And when some input SNR requirement is satisfied, the performance of ML estimation based on partial compensation can approach to the CRB. Then with the intention of decoupling, secondary mixing-DPT (discrete polynomial-phase transform) processing and direct phase differentiation (DPD) method are proposed respectively, which can realize the parameter estimation without searching and template matching operations. And when some modification is made in DPD method, DPT-CZT (Chirp-Z transform) method is produced which can achieve unambiguous velocity estimation without other ambiguity resolving processing. Therefore this method can be applied to parameter estimation for high-speed accelerating targets with single chirp LFMCW signal.
     To solve the ranging limitation problem in the beat-Fourier analysis-MTD structure, the objective of Chapter5 is to explore some technique to extend the detectable range of LFMCW radar and to investigate the corresponding problems. Considering the modulation symmetry and waveform repetition of triangular LFMCW signal, double beat-FFT processing is proposed in which the beat-FFT processing is performed twice. And by the analysis of the two complementary results, the measurable time-delay of targets is effectively extended to the whole repetition period. Then multi-cycle integration is discussed, and joint range-velocity pairing method for multi-targets is proposed according to the characteristics of range spectrum peaks. In virtue of the partial compensation concept in Chapter4, the parameter estimation problem of high-speed accelerating targets is solved in double beat-FFT processing.
     At last, the ambiguity function of triangular LFMCW signal adopting the double beat-FFT processing is derived in Chapter6. Under rational approximations, the symmetry and resolution properties are analyzed in detail and compared to those of the traditional processing. Some quantitative results for the double beat-FFT processing are obtained from the point of ambiguity function, which will provide theory foundation for the engineering applications.
引文
[1]齐国清,FMCW液位测量雷达系统设计及高精度测距原理研究[D].大连海事大学博士学位论文,2001(7):21-42.
    [2]朱启明编著.雷达高度表设计理论基础[M].北京:国防工业出版社,1992:62-63.
    [3]Skolnik M.I.Radar Handbook(second edition)[M].McGraw-Hill Book Co.,New York,1990.
    [4]Graham S.Woods,Douglas L.Maskell,Michael V.Mahoney.A high accuracy microwave ranging system for industrial applications[J].IEEE Transactions on Instrumentation and Measurement,1993,42(4):812-816.
    [5]Qi Guoqing.Digital signal processing in FMCW radar marine tank gauging system[C].International Conference on Signal Processing,1996(1):7-10.
    [6]L.P.Lighthart,L.R.Nieuwkerk.System aspects of a solid-state FMCW weather surveillance radar[C].Proceedings of International Radar Conference,London,U.K.Otc.1987:112-115.
    [7]Barrett M.,Reits E.J.,Stove A.G.An X-band FMCW navigation radar[C].Proceedings of RADAR-87 Conference,London,October,1987:448-452.
    [8]P.D.L.Beasley,A.G.Stove.Pilot-an example of advanced FMCW techniques[C].IEE Colloquium on High Time-Bandwidth Product Waveforms in Radar and Sonar,May 1991:1-5.
    [9]Griffiths H.D.New ideas in FM radar[J].Electronics & Communication Engineering Journal,October,1990:185-194.
    [10]Griffiths H.D.,Purseyyed B.A radar altimeter with synthetic aperture processing[C].Proceedings of XIX European Microwave Conference,September,1989:281-286.
    [11]Mark E.Russell,Arthur Crain,Anthony Curran,etc.Millimeter-wave radar sensor for automotive intelligent cruise control(ICC)[J].IEEE Transactions on Microwave Theory and Techniques,1997,45(12):2444-2453.
    [12]A.G.Stove.Linear FMCW radar techniques[J].IEE Proceedings-F,1992,139(5):343-350.
    [13]Stove A.G.80GHz car obstacle detection radar[C].IEE Colloquium on Millimeter-Wave Radar,1990:1-3.
    [14]Hermann Rohling,Ernst Lissel.77 GHz radar sensor for car application[C].Proceedings of IEEE International Radar Conference,1995:373-379.
    [15]H.Rohling,R.Mende.OS CFAR performance in a 77GHz radar sensor for car application[C].Proceedings of CIE International Radar Conference,1996:109-114.
    [16]Paul G.Flikkema,Sandra G.Johnson.Vehicle collision warning and avoidance system using real-time FFT[C].IEEE Mobile Technology for the Human Race Vehicular Technology Conference,1996(3):1820-1824.
    [17]Feng J.X.,Wang X.G..,Xiang J.C.3MMW LFMCW Experimental Radar System[C].Proceedings of the 1996 CIE International Conference of Radar,October,1996:266-269.
    [18]Li Y.,Liang L.W.,Pan W.F.,Chen Y.Q.,Feng Z.H.Object-oriented Algorithm for Range Super-resolution Estimation of LFMCW Car Sensors[C].Proceedings of 2000 IEEE International Conference on Signal Processing,Beijing:1810-1813.
    [19]Rohling H.,Meinecke M.M.,Klotz M.,Lubbert U.Research Activities in Automotive Radar[C].MSMW'2001 Symposium Proceedings,Kharkov,Ukraine,June 4-9,2001:48-51.
    [20]金昶明,徐涛,孙晓玮,夏冠群,盛怀茂,李玉芳.时频分析在毫米波防撞雷达信号处理中的应用[J].电子学报,2002,30(9):1413-1416.
    [21]徐涛.毫米波汽车防撞雷达实用化研究[D].中国科学院上海微系统与信息技术研究所博士学位论文,2003.
    [22]刘艳.FMCW汽车防撞雷达的多目标信号处理方法研究[D].南京理工大学硕士学位论文,2004.
    [23]杜小丹,羊裔高,杜雨洺.一种人工神经网络算法在汽车防撞雷达中的应用[J].计算机应用研究,2005:154-156.
    [24]E.M.Poultter,M.J.Smith.Microwave radar measurements of ocean wave propagation-initial results[J].Geophys.Res.Lett,1990,17:2137-2140.
    [25]齐国清,贾新乐.高精度液位测量雷达系统的设计[J].大连海事大学学报,1999,25(1):20-24.
    [26]齐国清.FMCW液位测量雷达系统设计及高精度测距原理研究[D].大连海事大学博士学位论文,2001.
    [27]柳瑾.FMCW微波液位测量仪的研究[D].北京科技大学硕士学位论文,2006.
    [28]魏崇毓,徐善驾,王东进.TR-T~2多站雷达系统的近程应用分析与仿真[J].电子学报,1999,27(12):56-60.
    [29]张容权.双基地LFMCW雷达信号处理技术研究[D].电子科技大学博士学位论文,2005.
    [30]张立志.8mm LFMCW高分辩力成像雷达[D].电子科技大学博士学位论文,2000.
    [31]李玉书.空间目标监视雷达技术探讨[J].飞行器测控学报,2003,22(4):62-66
    [32]Schumacher P.W.,Gilbreath G.C.,Lydich E.D.,Davis M.A.Error Analysis for Laser-Based Metric Calibration of the Naval Space Surveillance System[C].Part of the SPIE Conference on Laser Radar Technology and Applications Ⅲ,Orlando,Florida,April,1998:202-215.
    [33]Sridharan R.,Penda A.F.U.S.Space Surveillance Network Capabilities[C].Part of the SPIE Conference on Characteristics and Consequences of Space Debris and Near-Earth Objects,San Diego,California,July,1998:88-100.
    [34]Easton R.L.,Fleming J.J.The Navy Space Surveillance System[J].Proceedings of the IRE,April,1960:663-669.
    [35]Mengel J.T.Tracking the Earth Satellite and Data Transmission by Radio[J].Proceedings of the IRE,June,1956:755-760.
    [36]Baghdady E.J.Hybrid Interferometry for High-Resolution DOA Measurement[C].Proceedings of the IEEE 1989 National Aerospace and Electronics Conference,May,1989:2092-2097.
    [37]Klass P.J.Navy Improves Accuracy,Detection Range of Space Surveillance Chain[J].Aviation Week & Space Technology,August 16,1965:56-61.
    [38]Michael Zedd,LCDR Edward Najmy.Modernizing the Naval Space Surveillance System.http://www.fas.org/spp/military/program/track/ModernizingNAVSPA SUR.pdf
    [39]向敬成,张明友.雷达系统[M].北京:电子工业出版社,2001.
    [40]王月鹏.对称三角线性调频连续波雷达技术研究[D].西安电子科技大学硕士学位论文,2005.
    [41]Skolnik M.I.Introduction to Radar Systems[M].McGraw-Hill Book Co.,New York,1980.
    [42]陈祝明,丁义元,向敬成.提高线性调频连续波雷达测距经度的最大值估值算法[J].系统工程与电子技术,1999.21(6):39-42.
    [43]刘宝,刘军民.FMCW雷达快速高精度测距算法[J].电子测量与仪器学报,2001,15(3):41-45.
    [44]陈祝明,丁义元,向敬成.采用Chirp-Z变换提高LFMCW雷达的测距离精度[J].信号处理,2002,18(2):110-112.
    [45]K.J.Runtz,D.Hack.A multistage DFT-FFT-CZT approach for accurate efficient analysis of sparsely distributed spectra[C].Proceedings of the 2002 IEEE Candian Conference on Electrical & Computing Engineering,2002:127-132.
    [46]张红,王晓红,郭听.提高线性调频连续波雷达测距精度的ZFFT算法[J].航天电子对抗,2006,22(1):48-51.
    [47]李政,张容权,杨建宇,熊金涛.利用频域增采样内插方法提高LFMCW雷达测距精度[J].电讯技术,2005(5):77-80.
    [48]Zhang Rongquan,Huang Yulin,Yang Jianyu,Xiong Jintao.Improving range precision of LFMCW radar based on frequency domain up-sampling-interpolating method[C].Proceedings of 2005 International Conference on Communications,Circuits and Systems,2005:777-780.
    [49]杜川华,龚耀寰.LFMCW雷达的距离/多普勒处理[J].电子科技大学学报,2004,33(1):27-30.
    [50]Musa M.,Salous S.Ambiguity elimination in HF FMCW radar systems[J].IEE Proceedings-Radar Sonar Navig.,2000,147(4):182-188.
    [51]Du Y.M.,Yang J.Y.,Xiong J.T.Novel Method for Ambiguity Elimination in the Linear FMCW Radar[C].Proceedings of 2004 IEEE International Conference on Signal Processing,Beijing:2066-2069.
    [52]杜雨洺,杨建宇,熊金涛.线性调频连续波雷达速度模糊消除新方法[J].上海交通大学学报,2006,40(1):86-89.
    [53]杜雨洺,杨建宇.线性FMCW雷达动目标—维距离像运动补偿[J].电波科学学报,2006,21(1):104-107.
    [54]陈家军,王东进,陈卫东.LFMCW雷达目标运动补偿新方法[J].现代雷达,2006,28(7):37-40.
    [55]徐涛,金昶明,孙晓玮,夏冠群.一种采用变周期调频连续波雷达的多目标识别方法[J].电子学报,2002,30(6):861-863.
    [56]史林,张琳.调频连续波雷达频谱配对信号处理方法[J].西安电子科技大学学报,2003,30(4):534-538.
    [57]杨建宇,凌太兵,贺峻.LFMCW雷达运动目标检测与距离速度去耦合[J].电子与信息学报,2004,26(2):169-173.
    [58]肖汉,杨建宇,熊金涛.LFMCW雷达多目标MTD-速度配对法[J].电波科学学报,2005,20(6):712-715.
    [59]刘贵喜,凌文杰,杨万海.线性调频连续波雷达多目标分辨的新方法[J].电波科学学报,2006,21(1):79-83.
    [60]刘贵喜,凌文杰.LFMCW雷达密集运动目标检测[J].红外与毫米波学报,2005,24(1):76-80.
    [61]宋长哲.LFMCW雷达多目标检测算法研究[D].西安电子科技大学硕士学位论文,2007.
    [62]张直中.雷达信号的选择与处理[M].北京:国防工业出版社,1979.
    [63]杨建宇.LFMCW雷达信号模糊函数分析[J].信号处理,2002,18(1):39-42.
    [64]张容权,杨建宇,熊金涛,向敬成.对称三角线性调频连续波信号模糊函数分析[J].电子学报,2004,32(3):353-356.
    [65]赵宏钟,付强,周剑雄.雷达信号的加速度分辨力分析及应用[J].电子学报,2003,31(6):958-961.
    [66]赵宏钟,付强.雷达信号的加速度分辨性能分析[J].中国科学(E辑),2003, 33(7):638-646.
    [67]Du Y.M.,Miao S.L.,Yang J.Y.,Xiong J.T.Performance Analysis of Acceleration Resolution for the LFMCW Radar[C].2004 International Conference on Communications,Circuits and Systems,June,2004:887-890.
    [68]Wojtkiewicz A,Rytel-Andrianik R.Optimal detection and estimation in FMCW radar[C].14~(th) International Conference on Microwaves,Radar and Wireless Communications,2002(3):778-781.
    [69]Abatzoglou T.J.Fast Maximum Likelihood Joint Estimation of Frequency and Frequency Rate[J].IEEE Transaction on Aerospace & Electronic Systems,1986,22(6):708-715.
    [70]杜雨洺,张容权,杨建宇.毫米波LFMCW雷达加速运动目标回波检测与加速度-速度估计[J].红外与毫米波学报,2005,24(5):348-351.
    [71]张容权,杜雨洺,杨建宇,黄钰林,熊金涛.一种LFM信号最大似然估计模型与参数估计快速算法[J].电波科学学报,2005,20(5):651-655.
    [72]Xia X.G.Discrete Chirp-Fourier Transform and its Application to Chirp Rate Estimation[J].IEEE Transaction on Signal Processing,2000,48(11):3122-3133.
    [73]Guo xin,Sun Hongbo,Wang Shengli,Liu Guosui.Comments on "Discrete chirp-Fourier transform and its application to chirp rate estimation"[J].IEEE Transactions on signal processing,2002,50(12):3115.
    [74]Xia Xianggen.Response to "Comments on "Discrete chirp-Fourier transform and its application to chirp rate estimation""[J].IEEE Transactions on signal processing,2002,50(12):3116.
    [75]Fan Pingyi,Xia Xianggen.A modified discrete chirp-Fourier transform scheme[C].Proceedings of 5~(th) International Conference on Signal Processing,2000(1):57-60.
    [76]Fan Pingyi,Feng Chongxi.A new discrete chirp Fourier transform[C].Proceedings of 6~(th) International Conference on Signal Processing,2002(1):49-53.
    [77]孙泓波,郭欣,顾红,苏卫民,刘国岁.修正离散Chirp-Fourier变换及其在SAR运动目标检测中的应用[J].电子学报.2003,31(1):25-28.
    [78]Meherwan Polad,Benjamin Friedlander.Separation of co-channel FM/PM signals using the discrete polynomial-phase transform[C].Proceedings of 1994IEEE Digital Signal Processing Workshop,1994:3-6.
    [79]Shimon Peleg,Benjamin Friedlander.The discrete polynomial-phase transform[J].IEEE Transactions on Signal Processing,1995,43(8):1901-1914.
    [80]Shimon Peleg,Benjamin Friedlander.Multicomponent signal analysis using the polynomial-phase transform[J].IEEE Transactions on Aerospace and Electronic Systems,1996,32(1):378-387.
    [81]Zhang Liping,Zhang Hao,Peng Yingning.Threshold probability and threshold SNR of parametric polynomial phase estimators[J].Electronics Letters,2003,39(13):1018-1019.
    [82]黄小红,陈曾平,庄钊文,姜卫东.空间目标高分辨距离像运动参数估计[J].宇航学报,2004,25(3):269-272.
    [83]张容权,杨建宇,熊金涛.基于多项相位变换的线性FMCW雷达目标加速度和速度估计方法[J].电子学报,2005,33(3):452-455.
    [84]Zhang R.Q.,Huang Y.L.,Yang J.Y.,Xiong J.T.LFMCW Radar Multi-target Acceleration and Velocity Estimation Method[C].Proceedings of 2004 IEEE International Conference on Signal Processing,Beijing:1989-1992.
    [85]张容权,李政,杨建宇,熊金涛.LFMCW雷达多目标加速度和速度估计方法[J].电讯技术,2005(6):17-20.
    [86]赵兴浩,陶然,周思永,王越.基于Radon-Ambiguity变换和分数阶傅立叶变换的chirp信号检测及多参数估计[J].北京理工大学学报,2003,23(3):371-374.
    [87]Qi Lin,Tao Ran,Zhou Siyong,Wang Yue.Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform[J].Science in China Ser.F Information Sciences,2004,47(2):184-198.
    [88]杜文超,王国宏,高学强.低信噪比条件下在短时信号中提取目标径向加速度方法研究[J].中国科学E辑:技术科学,2007,37(7):923-943.
    [89]杜雨洺,杨建宇.基于FRFT的LFMCW雷达加速运动目标检测与参数估计[J].电波科学学报,2005,20(6):815-818.
    [90]Wang Minsheng,Chan K.Andrew,Chui K.Charles.Linear frequency-modulated signal detection using radon-ambiguity transform[J].IEEE Transactions on Signal Processing,1998,46(3):571-586.
    [91]刘建成,王雪松,肖顺平,王国玉.基于Wigner-Hough变换的径向加速度估计[J].电子学报,2005,33(12):2235-2238.
    [92]钱云襄,刘渝,黄慧慧.线性调频连续波信号参数估计算法[J].现代雷达,2006,28(3):40-43.
    [93]李强,王其申.基于小波-Radon变换的线性调频信号检测与参数估计[J].信息与电子工程,2005,3(3):192-196.
    [94]李强,王其申.小波谱及其在线性调频信号检测中的应用[J].量子电子学报,2005,22(5):685-689.
    [95]黄克骥,田达,陈天麒.基于任意阵列形式的LFM信号参数估计[J].电波科学学报,2003,18(3):346-351.
    [96]袁伟明,王敏,吴顺君.对称三角线性调频连续波信号的检测与参数估计[J]. 电波科学学报,2005,20(5):594-597.
    [97]Mehrdad Soumekh.Wide-bandwidth continuous-wave monostatic/bistatic synthetic aperture radar imaging[C].Proceedings of 1998 International Conference on Image Processing,1998(3):361-365.
    [98]Yang X.B.,Yang J.Y.,Jing C.G.A Research on Millimeter-wave LFMCW Radar for Airfield Object Imaging[C].2000 25~(th) International Conference on Infrared and Millimeter Waves,September,2000:413-414.
    [99]Meta A.,Hoogeboom P.High Resolution Airborne FM-CW SAR:Digital Signal Processing Aspects[C].Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium,July,2003:4074-4076.
    [100]J.J.M.de Wit,A.Meta,P.Hoogeboom.Modified range-Doppler processing for FM-CW synthetic aperture radar[J].IEEE Geoscience and Remote Sensing Letters,2006,3(1):83-87.
    [101]J.M.Munoz-Ferreras,F.Perez-Martinez,J.Calvo-Gallego,etc.Focused ISAR images of maritime targets using a high resolution LFMCW millimeter-wave radar[C].Proceedings of 2006 IEEE Mediterranean Electrotechnical Conference,2006:521-524.
    [102]Piper S.O.Homodyne FMCW Radar Range Resolution Effects with Sinusoidal Nonlinearity in the Frequency Sweep[C].Record of the IEEE 1995 International Radar Conference,May,1995:565-567.
    [103]汪学刚,袁湘辉,向敬成等.调频线性度与零差拍线性调频连续波雷达的距离分辨力[J].系统工程与电子技术,1997,19(10):19-23.
    [104]张立志,汪学刚,向敬成.调频线性度与FMCW雷达距离分辨力的关系[J].信号处理(增刊),1999,15:93-97.
    [105]陈祝明,丁义元,向敬成.扫频非线性对线性调频连续波雷达测距精度和距离分辨力的影响[J].电子学报,1999,27(9):103-104.
    [106]Alban Laloue,Jean-Christophe Nallatamby,Michel Prigent.etc.An efficient method for nonlinear distortion calculation of the AM and PM noise spectra of FMCW radar transmitters[J].IEEE Transactions on Microwave Theory and Techniques,2003,51(8):1966-1976.
    [107]Markus Pichler,Andreas Stelzer,Peter Gulden,Martin Vossiek.Influence of systematic frequency-sweep non-linearity on object distance estimation in FMCW/FSCW radar systems[C].Proceedings of 33~(rd) European Microwave Conference,2003(3):1203-1206.
    [108]Stefan Scheiblhofer,Stefan Schuster,Andreas Stelzer.Effects of systematic FMCW radar sweep nonlinearity on bias and variance of target range estimation[C].Proceedings of IEEE MTT-S International Microwave Symposium Digest,2006:1418-1421.
    [109]陈祝明,丁义元,向敬成.宽带LFMCW扫频源的相对非线性校正方法[J].系统工程与电子技术,2001,23(2):16-18.
    [110]胡翔,王东进.一种提高LFMCW雷达调频线性度的新思路[J].中国科学技术大学学报,2001,31(1):63-67.
    [111]王俊.微弱目标信号积累检测的方法研究[D].西安电子科技大学博士学位论文,1999.
    [112]李海.微弱信号长时间积累检测研究[D].北京理工大学博士学位论文,2002.
    [113]肖汉.LFMCW雷达信号处理算法研究与实现[D].电子科技大学硕士学位论文,2005.
    [114]杜雨洺.近程小扇区LFMCW雷达信号处理研究[D].电子科技大学博士学位论文,2006.
    [115]Steven M.Kay.Fundamentals of statistical signal processing[M].北京:电子工业出版社,2003.
    [116]丁鹭飞,耿富录.雷达原理[M].西安:西安电子科技大学出版社,2000.
    [117]贺峻.LFMCW雷达动目标回波距离-速度去耦合方法研究[D].电子科技大学硕士学位论文,2000.
    [118]凌太兵.LFMCW雷达运动目标检测与距离速度去耦合[D].电子科技大学硕士学位论文,2003.
    [119]陈祝明,丁义元,向敬成.线性调频连续波雷达的噪声性能分析[J].电子科技大学学报,1999,28(1):28-31.
    [120]杨建宇.线性调频连续波雷达接收机性能分析[J].系统工程与电子技术,2001,23(10):16-18.
    [121]陈远征,朱永锋,赵宏钟,付强.基于包络插值移位补偿的高速运动目标的积累检测算法研究[J].信号处理,2004,20(4):387-390.
    [122]朱永锋,李为民,陈远征,付强.Chirp雷达对高速运动目标有效相参积累的算法研究[J].系统工程与电子技术,2004,26(10):1396-1399.
    [123]Perry R.P.,Dipietro R.C.,Fante R.L.SAR imaging of moving target[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):188-200.
    [124]盛蔚,毛士艺.基于Keystone变换的地面运动目标检测研究[J].系统工程与电子技术,2002,24(11):1-4.
    [125]陈文驰,保铮,刑孟道.基于Keystone变换的低信噪比ISAR成像[J].西安电子科技大学学报,2003,30(4):155-159.
    [126]Xing Mengdao,Wu Renbiao,Lan Jinqiao,Bao Zheng.Migration through resolution cell compensation in ISAR imaging[J].IEEE Geoscience and Remote Sensing Letters,2004,1(2):141-144.
    [127]陈文驰,刑孟道.基于Keystone变换的多目标ISAR成像算法[J].现代雷达,2005,27(3):40-42.
    [128]Zhu Daiyin,Zhu Zhaoda,Wang Ling.SAR ground moving target imaging based on Keystone transform without interpolation[C].Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium,2005:2946-2948.
    [129]张顺生,曾涛.基于Keystone变换的微弱目标检测[J].电子学报,2005,33(9):1675-1678.
    [130]Zhang Shunsheng,Zeng Tao,Long Teng,Yuan Haipeng.Dim target detection based on Keystone transform[C].Proceedings of 2005 IEEE International Radar Conference,2005:889-894
    [131]Yang Li,Tao Zeng,Teng Long,Zheng Wang.Range Migration Compensation and Doppler Ambiguity Resolution by Keystone Transform[C].Proceedings of 2006 CIE International Conference on Radar:1466-1469.
    [132]潘英锋,汤子跃.距离走动校正在小信号检测中的应用[J].空军雷达学院学报,2005,19(1):1-3.
    [133]L.L.Scharf.Statistical Signal Processing:Detection,Estimation and Time Series Analysis[M].Sydney,Australia:Addison-Wesley,1991.
    [134]Jonathan A.Legg,Douglas A.Gray.Performance bounds for polynomial phase parameter estimation with nonuniform and random sampling schemes[J].IEEE Transactions on Signal Processing,2000,48(2):331-337.
    [135]E.A.Hoyer,R.F.Stork.The Zoom FFT using complex modulation[J].IEEE Proceedings,ICASSP,1977:78-81.
    [136]李玉柏.基于DFT滤波器组实现Zoom-FFT算法分析[J].信号处理,2000,16(增刊):122-127.
    [137]李玉柏,彭启琮.基于多相分解滤波器实现的局部频率细化[J].电子测量与仪器学报,2000,14(3):26-31.
    [138]江志红,曹延伟,程翥,皇甫堪.基于局部解线性调频的多频连续波雷达实时加速度补偿算法[J].信号处理,2006,22(5):663-667.
    [139]周静波.连续波雷达机动目标检测算法研究[D].国防科学技术大学硕士学位论文,2003.
    [140]李素芝,万建伟.时域离散信号处理[M].长沙:国防科技大学出版社,1994.
    [141]陈祝明.高精度测距雷达及其信号处理[D].电子科技大学博士学位论文,1999.
    [142]刘闯.对称三角LFMCW雷达目标检测方法的研究[D].西安带你子科技大学硕士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700