用户名: 密码: 验证码:
面向分布式交互仿真的应用层组播关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式交互仿真在国民经济和国防建设等领域有着广泛的应用。随着仿真系统复杂度的提高及仿真应用范围和规模的扩大,分布式交互仿真应用常需向大量的仿真实体发送数百上千个实体状态的更新消息。如何针对分布式交互仿真应用的通信需求,提供QoS保证的广域网组通信支持,减少仿真应用的网络带宽开销,已成为一个急待解决的问题。
     由于IP组播部署的局限性,很多研究提出通过应用层组播来提供广域网的组播功能支持。但现有的应用层组播算法研究主要集中于覆盖网和分发树的构建、维护和优化,借助TCP的支持来实现流量控制,针对的主要是流媒体等应用,难以满足分布式交互仿真等大规模多组多源应用的需求。
     论文面向分布式交互仿真的应用需求和特点,针对当前应用层组播技术的不足,从以下几个方面对面向分布式交互仿真的应用层组播技术展开深入研究。
     (1)应用层组播协议综合分类评价法
     现有的应用层组播协议的分类方法主要考虑应用层组播系统的体系结构和组播树的生成方式,较少考虑应用层组播协议的优化目标及其采用的优化技术。论文提出了应用层组播协议综合分类评价法,该方法综合考虑了应用层组播协议设计过程中所需考虑的问题,包括数据转发策略、服务模型、性能优化目标、性能优化技术和容错机制等五个要素,并对应用层组播协议设计过程中所需考虑的若干问题进行了讨论。
     (2)度数和树直径受限的最小代价组共享树算法
     端系统自组网算法是应用层组播协议的核心功能,当前自组网算法的研究主要考虑普通覆盖网的构建、维护和优化,较少涉及具体的应用背景。论文针对分布式交互仿真的通信需求,提出了度数和树直径受限的最小代价组共享树问题BDBDMST,并给出BDBDMST的集中式求解算法CST和分布式算法DBST。与现有的应用层组播协议相比,DBST实现了核放置和动态核迁移,可以做到在组成员频繁加入和退出的情况下仍能够较稳定地维护组共享树性能。
     (3)度数和树直径受限的多核组播树算法
     针对单棵组共享树存在的单点失效、时延较大和流量集中度高等缺陷,论文提出了度数和树直径受限的多核应用层组播树算法MDBST。MDBST算法使用节点间时延作为节点间距离的度量标准,通过使核间距离最大化来实现多核在空间的均匀分布,同时在保证多核均匀分布的条件下尽可能选取可用带宽最大的节点为新核。为适应组成员的强动态性,MDBST支持多核根据组播树的状态进行核迁移,以优化组播树结构。实验表明,MDBST具有节点间最大时延受限、支持多组和流量负载均衡等特点,能够很好适用于分布式交互仿真的多组多源组播环境。
     (4)基于优先级队列的应用层组播流量控制算法
     现有的应用层组播协议常依赖TCP提供拥塞控制,这种方法所能支持的组规模有限。为适应大规模分布式交互仿真的多组多源组播环境,论文设计实现了基于优先级队列的应用层组播流量控制算法GFC。该算法由流控机制(Flow-ControlMechanism)和反馈机制(Feed-Back Mechanism)两部分组成,流控机制根据组播报文的优先级和长度对各个发送队列中的报文进行带宽分配和发送调度;反馈机制基于TCP的反馈信息对流控参数进行实时校正和调节,进而有效地减少报文的丢失率。实验表明,该算法具有很好的扩展性和稳定性。
     在上述研究基础之上,论文设计实现了面向分布式交互仿真的应用层组播系统DVSCast。与同类系统XOM相比,DVSCast使用算法DBST和MDBST来构建组播树,因此保存、计算组播树的开销较小,组播树的动态适应性强,同时采用GFC算法实现了覆盖网的流量控制,可有效避免网络拥塞。
     综上所述,论文的工作针对大规模分布式交互仿真的应用层组播中存在的关键问题提出了有效的解决方案,对于推进应用层组播在分布式交互仿真环境中的实用化具有一定的理论意义和应用价值。
Distributed interactive simulation has been widely used in the many fields of national economic and defence. With the rapid increase of the complexity of the simulated system and the expanding of simulation scale, thousands of state update messages for the entities might be transmitted between numbers of simulation members in the distributed interactive simulation. It has become an urgent issue to provide efficient WAN multicast services with QOS guarantee and reduce the network bandwidth consuming during simulations in the distributed interactive simulation applications.
     Because of the deployment limitation of the IP multicast, researchers present that application layer multicast (ALM) may be used to provide WAN multicast services. However, the existing ALM protocols are mainly focused on the construction, maintenance and optimization of the overlay networks and delivery trees for applications such as video meeting, IP TV etc. Obviously they would not be well suited for multi-group and multi-source applications such as the large-scale distributed interactive simulations.
     This thesis expands in-depth research on ALM for distributed interactive simulation aiming at the requirements and characteristics of simulation applications and the deficiencies of the existing ALM protocols. The main contribution of our work can be divided into four aspects as follows:
     (1) The synthesis classification and evaluation method of the ALM protocols
     The existing classification methods of the ALM protocols are more constricted on the system framework and the constructure of the ALM system, but less on the optimization objects and the optimization technologies used. This paper presents a synthesis classification and evaluation method of the ALM protocols, which synthetically considers most problems in the design of ALM protocols, including five aspects as the data delivery strategies, service models, performance optimization objects and techniques, and fault tolerance mechanism. Furthermore, some recommendations are presented for the design of ALM protocols.
     (2) The degree and diameter bounded minimum spanning tree algorithm
     The self-organization algorithm of end systems is the key function of the ALM protocols. Most researches on the self-organization algorithm are dedicated in the construction, maintenance and optimization of the ordinary overlay networks, and they pay less attention to the specific application background. This paper presents the degree-bounded and diameter-bounded minimum spanning tree problem (BDBDMST), and proposes a centralized arithmetic CST and distributed algorithm DBST. Compared to other ALM protocols, DBST implements the core placement and core migration and is able to accomplish the performance of the multicast tree would not decrease dramatically when the group members join and leave frequently.
     (3) The degree and diameter bounded multiple shared trees algorithm
     To solve the the problems of single delivery tree such as single-point failure, longer delay and higher traffic concentration, this thesis presents a degree and diameter bounded multiple shared trees algorithm, called MDBST. MDBST uses the RTT between nodes as the metric of distance, and implements the even distribution of the multiple cores by maximum the distances between cores. Besides, the node that has the maximum available bandwidth is most likely to be elected as a new core. In order to accommodate the strong dynamic properties of the group members, MDBST supports the core migration according to the state of multiple shared trees. The experiments show that MDBST is maximum-delay bounded, traffic load balance and multi-group supported, and it is well suited for the multi-source and multi-group environments of the distributed interactive simulation applications.
     (4) The traffic control algorithm based on the priority queue for application-layer multicast
     The existing ALM protocols achieve the congestion control relying on the TCP protocol. But this mechanism can not meet the requirement of the large scale environments. In order to adapt to the distributed interactive simulations, this paper designs an ALM traffic control algorithm based on the priority queue, named GFC. GFC is composed of flow-control mechanism and feed-back mechanism. The former mechanism allocates the bandwidth and schedules the delivery of packets based on the priority of the data and the length of the sending queues; the latter mechanism emendates and adjusts the traffic control parameters based on the feed back information of the TCP. The experiment results demonstrate that the GFC algorithm has many good characteristic, such as scalability and stability.
     According to these studies we design and implement an application layer multicast system named DVSCast for distributed interactive simulation. In DVSCast multicast trees are constructed with algorithm DBST and MDBST. Comparing to XOM, DVSCast has lower control overhead in computing and saving multicast trees and stronger adaptability to dynamics. DVSCast also implements GFC to support end-to-end flow control in overlay networks.
     In summary, our work presents solutions to several key problems of the ALM in the large distributed interactive simulation, and has academic and practical value for advancing the use of ALM in the distributed interactive simulation.
引文
[1]IEEE Standard 1278.Distributed Interactive Simulation[S],1995.
    [2]A.L.Wilson,R.M.Weatherly.The Aggregate Level Simulation Protocol:An Evolving System[C].in Winter Simulation Conference Proceedings'94,December 1994:781-787.
    [3]IEEE Standard 1516.Modeling and Simulation High Level Architecture[S],2001.
    [4]IEEE.IEEE Standard for Modeling and Simulation(M&S) High Level Architecture(HLA)--Framework and Rules[S].USA:The Institute of Electrical and Electronics Engineers,Inc.,December 2000.
    [5]IEEE.IEEE Standard for Modeling and Simulation(M&S) High Level Architecture(HLA)--Federate Interface Specification[S].USA:The Institute of Electrical and Electronics Engineers,Inc.,March 2001.
    [6]IEEE.IEEE Standard for Modeling and Simulation(M&S) High Level Architecture(HLA)--Object Model Template Specification[S].USA:The Institute of Electrical and Electronics Engineers,Inc.,March 2001.
    [7]IEEE.IEEE Recommended Practice for High Level Architecture(HLA)Federation Development and Execution Process[S].USA:The Institute of Electrical and Electronics Engineers,Inc.,Apirl 2003.
    [8]吕良权,周忠,吴威,赵沁平.DVE_RTI:一个基于组播技术的分布交互仿真运行基础机构[J].计算机研究与发展,2004,vol.41(5):828-834.
    [9]Douglas D Wood,Len Gran Owetter.Rationale and Design of the MAK Real-Time RTI,2001.http://www.sisostds.org/siw/01spring.
    [10]Mikael Karlsson,Lennart Olsson.pRTITM 1516-Rationale and Design,2001.http://www.sisostds.org/siw/01fall.
    [11]Michael D Myjak,Sean T Sharp.Java real-time RTI,1998.http://www.sisostds.org.
    [12]Stephen T Bachinsky,Glenn H Tarbax,Larry Mellon.RTI 2.0 Architecture,2000.http://www.cs.bham.ac.uk.
    [13]Klaus Schug,Sandeep KS Gupta,Anura Jayasurnana.CORBA based HLA/RTI design approach,1997.http://www.cs.colostate.edu/~ftppub/.
    [14]孙柏林.从美国“军事转型”看自动化技术在军事领域中的应用,http://caa.gongkong.com/home/paperdetail.asp?paperid=11.
    [15]Ceranowicz A,Torpey M,Helfinstine B,Evans J,Hines J.Reflections on Building the Joint Experimental Federation[C].in I/ITSEC Conference'02.Orlando,Florida,2002.
    [16]陈钢,王元元.SRTP中NAK双重抑制算法的研究与实现[J].计算机仿真,2002,vol.19(5):41-43,49.
    [17]Mark Pullen,Vincent P Laviano.Adding Congestion Control to The Selectively Reliable Transmission Protocol For Large-Scale Distributed Simulation[C].in Simulation Interoperability Workshop'97,September1997.
    [18]Vincent P Laviano,J Mark Pullen.Prototyping the Selectively Reliable Transport Protocol[C].in Workshop on Standards for the Interoperability of Distributed Simulations'96,March 1996.
    [19]胡亚海,徐勇波,彭晓源.一种被动更新LBTS的HLA时间管理方案[J].北京航空航天大学学报,2004,vol.30(12):1159-1162.
    [20]曲庆军,郝建国,邱晓刚,黄柯棣.HLA/RTI中DDM的弱服务器模式实现方案[J].计算机仿真,vol.20(1):90-93,101.
    [21]柴旭东,李伯虎.一种优化的DDM实现策略[J].系统仿真学报,1999,vol.8(4):231-233.
    [22]戴忠健,候朝桢,苏利敏.DDM的实现策略及网格尺寸的优化[J].南京航空航天大学学报,2002,vol.8(4):364-367.
    [23]廖利云,龚光红.组播技术及其在RTI通信中的应用[J].系统仿真学报,2003,vol.15(7):1021-1023,1029.
    [24]钟海荣,王召福,金士尧,刘晓建.基于组播组的联邦时间推进策略[J].系统仿真学报,2003,vol.15(3):417-420,432.
    [25]陈利风,顾浩,曹志敏,李弘毅.复杂大系统中数据分发管理的几种实用方法[J].系统仿真学报,2004,vol.16(5):923-926.
    [26]张亚崇,孙囤基,严海蓉,钟联炯.基于HLA/RTI的分布式交互仿真中数据分发管理的研究[J].系统仿真学报,2004,vol.16(6):1284-1287.
    [27]汤伟,刘晓明,黄松.HLA/RTI仿真系统中应用层组播通信的设计与实现[J]. 计算机仿真,2004,vol.22(3):145-148.
    [28]詹磊,潘清.HLA/RTI中数据分发管理服务实现策略研究[J].装备指挥技术学院学报,2005,vol.16(2):113-116.
    [29]D.Brutzman,M.Zyda M.,J.M.Pullen,K.L.Morse.Extensible Modeling and Simulation Framework(XMSF):Challenges for Web-Based Modeling and Simulation[R]:US Naval Postgraduate School,2002.
    [30]Lihua Wang,Stephen John Turner,Fang Wang.Interest Management in Agent-based Distributed Simulations[C].in the Seventh IEEE Workshop on Distributed Simulation and Real-Time Applications,2003:20-27.
    [31]Simon Robert,Woan Sun Chang,J.Mark Pullen.Using Composable Simulation Agents in the Presence of Network Overload[C].in Simulation Interoperability Workshop,September 2004.
    [32]廖海宁,吴庆波.Linux超线程技术的研究[J].计算机工程与应用,2003,vol.39(33):49-51.
    [33]廖海宁,吴庆波.Linux/IA64存储管理的研究[J].计算机工程与应用,2004,vol.30(19):14-16.
    [34]Deering S E.Multicast routing in Internetworks and extended LANs[C].in ACM SIGCOMM'88,1988:55-64.
    [35]C.Diot,B.N.Levine,B.Lyles,H.Kassem,D.Balensiefen.Deployment issues for the ip multicast service and architecture[J].IEEE Network 2000,vol.14(1):78-88.
    [36]Y.-H.Chu,S.G.Rao,H.Zhang.A Case for End System Multicast[C].in ACM SIGMETRICS'00,June 2000:1-20.
    [37]Yang-hua Chu,Sanjay G.Rao,Srinivasan Seshan,Hui Zhang.Enabling Conferencing Applications on the Internet using an Overlay Multicast Architecture[C].in ACM SIGCOMM'01,August 2001.
    [38]S.Banerjee,B.Bhattacharjee,C.Kommareddy.Scalable application layer multicast[C].in ACM Sigcomm,August 2002:205-220.
    [39]Yunxi Sherlia Shi.Design of Overlay Networks for Internet Multicast[D].Saint Louis,Missouri,Washington University,August 2002.
    [40]S.Shi,J.Turner.Multicast Routing and Bandwidth Dimensioning in Overlay Networks[J].Journal on Selected Areas in Communications,October 2002,vol. 20(8):1444-1455.
    [41]N.Mimura,K.Nakauchi,H.Morikawa,T.Aoyama.RelayCast:A middleware for application-level multicast services[C].in GP2PC'03,May 2003:434-441.
    [42]Danilov Claudiu.Performance and functionality in overlay networks[D]Baltimore,Maryland,The Johns Hopkins University,September 2004.
    [43]Yamash Ita T,Yamaguch IH.Emma Middleware:An application-level Multicast Infrastructure for Multi-party Video Communication[C].in PDCS'03,November 2003:416-421.
    [44]李春洪,叶保留,顾铁成,陈道蓄.适用于大规模分布交互仿真的应用层组播研究[J].系统仿真学报,2004,vol.16(6):1271-1274.
    [45]田瑞雄,向哲,李星.基于分层排列图结构的流媒体应用层组播系统[J].清华大学学报(自然科学版),2004,vol.44(4):493-497.
    [46]龙白滔,孙立峰,陈文萍,钟玉琢.具有层间冗余链路的应用层组播及其性能分析[J].电子学报,2004,vol.32(11):1844-1848.
    [47]曹佳,鲁士文.应用层组播的最小延迟生成树算法[J].软件学报,2005,vol.16(10):1766-1773.
    [48]吴家皋,叶晓国,姜爱全.一种异构环境下覆盖多播网络路由算法[J].软件学报,2005,vol.16(6):1112-1119.
    [49]潘耘,余镇危,王励成.求解应用层组播路由问题的遗传算法[J].小型微型计算机系统,Jan,2005,vol.26(1):55-58.
    [50]刘志峰.大规模组通信多播技术研究[D],国防科学技术大学计算机学院,2005.4.
    [51]El-Sayed A,Roca V,Mathy L.A Survey of Proposals for an Alternative Group Communication Service[J].IEEE Network,January 2003,vol.17(1):46-51.
    [52]M.Castro,M.B.Jones,A.Kermarrec,A.Rowstron,M.Theimer,H.Wang,A.Wolman.An evaluation of scalable application-lavel multicast built using peer-to-peer networks,in IEEE INFOCOM'03,San Francisco,2003:1510-1520.
    [53]Su Wei Tan.Constructing Efficent Self-Organising Application Layer Multicast Overlays[D],The University of Kent,October 2005.
    [54]Dennis M.Moen,Dr J.Mark Pullen.Overlay Multicast for Real-Time Distributed Simulation[R]:C~3I Center,George Mason University,2005.
    [55]Paul Francis.Yoid:Extending the Internet Multicast Architecture.April 2000.http://www.aciri.org/yoid/.
    [56]Beichuan Zhang,Sugih Jamin,Lixia Zhang.Host Multicast:A Framework for Delivering Multicast To End Users[C].in IEEE INFOCOM'02.New York,USA,June 2002:1366-1375.
    [57]L Mathy,R Canonico,D Hutchison.An Overlay Tree Building Control Protocol [C].in Third Workshop on Networked Group Communication.London,UK,2001:78-87.
    [58]D.A.Helder,S.Jamin.End-host multicast communication using switch-trees protocols[C].in CCGrid'02,May 2002:419-424.
    [59]Miguel Castro,Peter Druschel,Anne-Marie Kermarrec,Antony Rowstron.Scribe:A large-scale and decentralized application-level multicast infrastructure [J].IEEE Journal on Selected Areas in Communications,October 2002,vol.20(8):1489-1499.
    [60]Y.Chawathe.Scattercast:An Architecture for Internet Broadcast Distribution as an Infrastructure Service[D],University of California,Berkeley,December 2000.
    [61]Su-Wei Tan,Gill Waters,John Crawford.A Multiple Shared Trees Approach for Application Layer Multicasting[C].in ICC'04.Paris,France,June 2004:20-24
    [62]曹佳,鲁士文.组播技术研究[EB/OL].http://lib.ict.ac.cn/ITL/data/2004/11/组播技术研究.doc.2004年11月.
    [63]D.Kostic,A.Rodriguez,A.Vahdat.The Best of Both Worlds:Adaptivity in Two-metric Overlay Networks[R]:Duke University,2002.
    [64]Su-Wei Tan,Gill Waters,John Crawford.MeshTree:Reliable Low Delay Degree-bounded Multicast Overlays[C].in The 1st International Workshop on Distributed Parallel and Network Applications.Fukuoka,Japan,July 2005:20-22.
    [65]Wenjie Wang,D.Helder,S.Jamn,L.Zhang.Overlay optimizations for end-host multicast[C].in the Fourth International Workshop on Networked Group Communication Boston,USA,October 2002:124-131.
    [66]Duc A.Tran,Kien A.Hua,Tai T.Do.A Peer-to-Peer Architecture for Media Streaming[J].IEEE Journal on Selected Areas in Communications,January 2004, vol.22(1):121-133.
    [67]S.Ratnasamy,P.Francis,M.Handley,R.Karp,S.Shenker.A scalable content-addressable network[C].in ACM Sigcomm'01,August 2001:161-172.
    [68]S.Q.Zhuang,B.Y.Zhao,A.D.Joseph,R.Katz,J.Kubiatowicz..Bayeux:An architecture for scalable and fault-tolerant widearea data dissemination[C].in Eleventh International Workshop on Network and Operating Systems Support for Digital Audio and Video,June 2001:11-20.
    [69]Dejan Kosti'c,Adolfo Rodriguez,Jeannie Albrecht,Amin Vahdat.Bullet:High Bandwidth Data Dissemination Using an Overlay Mesh[C].in 19th ACM Symposium on Operating System Principles,October 2003:282-297.
    [70]Xinyan Zhang,Jiangchuan Liu,Bo Li,Tak-Shing Peter Yum.CoolStreaming/DONet:A Data-driven Overlay Network for Peer-to-Peer Live Media Streaming[C].in IEEE INFOCOM'05,March 2005:2102-2111.
    [71]Xiaofei Liao,Hai Jin,Yunhao Liu,Lionel M.Ni,Dafu Deng.AnySee:Peer-to-Peer Live Streaming[C].in IEEE INFOCOM'06,Apirl 2006.
    [72]M.Hefeeda,A.Habib,D.Xu,B.Bhargava,B.Botev.Collectcast:A peer-to-peer service for media streaming[J].ACM/Springer Multimedia Systems Journal,October 2003,vol.14:4-10.
    [73]S.Banerjee,C.Kommareddy,K.Kar,B.Bhattacharjee,S.Khuller.Construction of an Efficient Overlay Multicast Infrastructure for Real-time applications[C].in INFOCOM'03,Apirl 2003:1521-1531.
    [74]John Jannotti,David K.Gifford,Kirk L.Johnson,M.Frans Kaashoek,Jr.James W.O'Toole.Overcast:Reliable Multicasting with an Overlay Network[C].in 4th USENIX Symposium on Operating Systems Design and Implementation.San Diego,California,USA.October 2000:197-212.
    [75]S.Banerjee,B.Bhattacharjee.A comparative study of application layer multicast protocols,http://www.cs.wisc.edu/~suman/pubs/compare.ps.gz,Fall 2002.
    [76]S.Deering,D.R.Cheriton.Multicast routing in datagram inter-networks and extended LANs[J].ACM Transactions on Computer Systems,1990,vol.8(2):85-110.
    [77]Liebeherr J,Nahas M,SI W.Application-layer multicasting with delaunay triangulation overlays[J].IEEE Journal on Selected Areas in Communications, 2002,vol.20(8):1472-1488.
    [78]Dejan Kostic,Adolfo Rodriguez,Jeannie Albrecht,Abhijeet Bhirud,Amin Vahdat.Using Random Subsets to Build Scalable Network Services[C].in 4th USENIX Symposium on Internet Technologies and Systems,March 2003:253-366.
    [79]S.Banerjee,B.Bhattacharjee.Analysis of the NICE Application Layer Multicast Protocol[R]:Department of Computer Science,University of Maryland,College Park,UMIACSTR 2002-60 and CS-TR 4380,June 2002.
    [80]John W.Byers,Jeffrey Considine,Michael Mitzenmacher,Stanislav Rost.Informed Content Delivery Across Adaptive Overlay Networks[C].in ACM SIGCOMM'02,August 2002:47-60.
    [81]刘锋.面向P2P流媒体服务的应用层组播技术研究[D],国防科学技术大学计算机学院,2006,3.
    [82]Z.Li,P.Mohapatra.HostCast:A New Overlay Multicast Protocol[C].in ICC.Anchorage,Alaska,USA,2003.
    [83]S.Y.Shi,J.S.Turner,M.Waldvogel.Dimensioning server access bandwidth and multicast routing in overlay networks[C].in NOSSDAV.Port Jefferson,New York,USA,2001:83-91.
    [84]S.Banerjee,S.Lee,B.Bhattacharjee,A.Srinivasan.Resilient multicast using overlays[C].in ACM Sigmetrics'03.San Diego,CA,June 2003:102-113.
    [85]PADMANABHAN V N,WANG H J,CHOU P A,SRIPANIDKULCHAI K.Distributing streaming media content using cooperative networking[C].in 12th International Workshop on Network and Operating Systems Support For Digital Audio And Video Miami,Florida,USA:ACM Press,May 2002:177-186.
    [86]Broash E,Shavit Y.Approximation and heuristic algorithms for minimum delay application-layer multicast trees[C].in INFOCOM,2004:2697-2707.
    [87]Guy Kortsarz,David Peleg.Generating low-degree 2-spanners[J].SIAM Journal on Computing,1998,vol.27(5):1438-1456.
    [88]D.Zappala,A.Fabbri,V.Lo.An evaluation of shared multicast trees with multiple cores[J].Journal of Telecommunication Systems,2002,vol.19(3):461-479.
    [89]T.H.Cormen,C.E.Leiserson,R.L.Rivest.Introduction to Algorithms[M]: MIT Press,1990.
    [90]Stephen Deering,Deborah Estrin,Dino Farinacci,Van Jacobson,Ching-Gung Liu,Liming Wei.Protocol independent multicast-spare mode(PIM-SM):protocol specification.RFC 2117.
    [91]A.J.Ballardie,P.F.Francis,J.Crowcroft.Core Based Trees[C].in ACM SIGCOMM'93,August 1993:85-95.
    [92]A.J.Ballardie.Core Based Trees(CBT) Multicast Routing Architecture,RFC 2201.
    [93]Su-Wei Tan,Gill Waters,John Crawford.A Survey and Performance Evaluation of Scalable Tree-based Application Layer Multicast Protocols JR]:University of Kent TR 9-03,July 2003.
    [94]Y.Rekhter,T.Li.A border gateway protocol 4(BGP-4),RFC 1771.
    [95]Michael Q.Rieck,Sukesh Pai,Subhankar Dhar.Distributed routing algorithms for multi-hop ad hoc networks using d-hop connected d-dominating sets[J].Computer Networks 22 April 2005,vol.47(6):785-799.
    [96]S.Kumar,P.Radoslavov,D.Thaler,C.Alaettinoglu,D.Estrin,M.Handley.The MASC/BGMP Architecture for Inter-domain Multicast Routing[C].in ACM SIGCOMM,August 1998.
    [97]Pawel Winter.Steiner Problem in Networks:A Survey[J].IEEE Networks,1987,vol.17(2):129-167.
    [98]谢政.网络算法与复杂性理论[M].第二版:国防科技大学出版社,2003.
    [99]David G.Thaler,Chinya V.Ravishankar.Distributed Center-Location Algorithms:Proposals and Comparisons[J].IEEE Journal on Selected Areas in Communications,April 1997,vol.15(3):291-303.
    [100]Matthew Doar,Ian Leslie.How bad is navie multicast routing[C].in IEEE INFOCOM'93.San Francisco,CA,USA.1993:82-89.
    [101]David W.Wall.Mechanisms for Broadcast and Selective Broadcast[D].Stanford University,1980.
    [102]Liming Wei,Deborah Estrin.A comparison of multicast trees and algorithms[R]:Computer Science Department,University of Southern California,Technical Report USC-CS-93-560,September 1993.
    [103]J.Moy.Multicast extensions to OSPF.IETF RFC 1584.
    [104] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP Completeness [M]: W. H. Freeman and Co., 1979.
    [105] V. Vazirani. Approximation Algorithms [M]: Springer, 2001.
    [106] S. Sharma, John Wiley. Applied Multivariate Techniques [M], 1996.
    [107] Baruch Awerbuch, Yossi Azar, S. Plotkin. Throughput-competitive on-line routing [C]. in 34th IEEE Symposium on Foundations of Computer Science,1993:32-40.
    [108] Spread group communication system, http://www.spread.org/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700