用户名: 密码: 验证码:
高效精密切削及其振动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效精密切削加工是以高速加工技术为手段,以精密加工质量为目标,实现高效率、低成本和高质量三者有机统一的一种综合切削加工技术,是先进制造技术发展的主要方向之一。随着切削速度的提高,切削过程中的振动对生产效率、加工质量以及加工稳定性影响也随之增加,成为影响和制约高效精密切削技术发挥其优势的一个关键因素。本文以精密车削和高速铣削为背景,对高效精密加工中的切削力、切削系统的动态特性、切削振动及其稳定性以及加工表面形态等进行了系统的理论和实验研究,主要研究工作及其创新成果为:
     首先,运用坐标变换方法,给出了包含刀具主偏角的斜角切削加工切削力的理论公式,在此基础上,利用微分法建立车刀刀尖圆弧和球头铣刀的切削力数学模型,其数值计算与有关实验表明,本研究建立的模型所预测的切削力与精密车削力和球头铣削力的变化趋势基本吻合,验证了该模型的有效性,并通过频谱分析技术探讨斜角加工中切削力变化的主要成因。
     其次,利用实验模态分析方法研究了精密车床和高速加工中心的动态特性变化,特别是机床主轴连接刀柄系统(工件)前后的动态特性变化,以及刀具悬臂长度、夹紧力和刀具(工件)的装夹方式等对主轴动态特性的影响,从而系统深入地揭示出切削系统的动态特性,为实现切削系统的振动控制及其稳定性奠定了基础。
     第三,针对高速精密切削系统结构和受力都比较复杂的特点,对空转条件下和高速切削过程中刀具和主轴的振动等进行检测并进行对比分析,首次定量地描述了在不同的工具材料、不同的切削用量等条件下刀具/主轴的振动变化规律,探讨了引起切削振动的内在原因及其与切削力之间的相互关系。
     第四,研究了高速切削过程中自激振动机理、特性及其稳定性,探讨了机床系统的动态特性、切削过程的动力学参数和切削用量以及铣刀齿数对切削稳定性的影响,给出了不同条件下的切削系统稳定性图,进而提出了提高高速精密切削稳定性的基本方法与途径。
     第五,利用非接触表面形貌仪对高速精密切削加工的表面粗糙度和表面三维形貌进行分析,研究了切削速度、进给量和切削深度对表面质量的影响变化规律,分析了高速精密切削过程中的刀具磨损形式及其机理,并探讨高速精密切削中降低表面粗糙度的切削用量匹配与优化方法,为高效精密切削加工生产中切削用量的选择与优化提供了参考依据。
     本研究是国家自然科学基金项目——精密零件棱边的形成机理及其控制(№50275066)和国家十五科技攻关项目——高速加工工具系统的开发与应用(№2001BA205805/05)的组成部分之一,并得到江苏大学研究生科技创新基金项目的资助
High efficiency precision cutting is one of the advanced machining technologies which possess the advantages of high efficiency and high precision. With the increase of machining speed, the influence of vibration in machining process on the efficiency, surface quality as well as the stability in machining is greatly increasing. So it becomes the important factor to limit the development and reasonable application of the high speed cutting technology. Therefore, based on the high precision turning and high speed milling, a systemically theoretical and experimental investigation on the cutting force, the dynamical characteristic of the cutting system, the vibrating and its stability, as well as the machining surface roughness and profile in high efficiency precision cutting is carried out for understanding and optimizing machining operations and upgrade their performance.
     The extended oblique machining theory developed with conversion of coordinates in this research is used in understanding the mechanics underlying the high efficiency precision cutting. Based on this theory, the analytical models of cutting forces for nose turning and ball-end milling were developed respectively. Taking into account the effects of cutter nose, helix angle and depth of cut, the model predicts characteristic variation of cutting forces in a series of high-speed precision machining. The changing causes of the cutting force in oblique cutting experiments are discussed using the Spectrum analyses.
     With the example of the super-precision and high speed machining centre, the influence of clamping force and the length of cutter(workpiece) on dynamic characteristics of different spindle/holder and cutters combination is analyzed. The dynamic characteristic of the spindle and cutter(workpiece) is compared with bare spindle's and theoretical value. It is shown that the spindle dynamic behavior can vary substantially due to effects of the structure coupling.
     This thesis scrutinizes the vibrations in high speed precisions machining. Considering the complexity of the structure and the force in high speed precision machining system, the experiments of idling of spindle and high speed cutting are designed and carried out to investigate thoroughly the vibration of the spindle, cutter and workpiece involved in high speed precisions machining. A solid foundation was achieved from both theoretical and experimental methods in order to analyze the vibrations involved. The changing law of the vibration of cutter/spindle in different workpiece material and different cutting parameter is discussed quantificationally.
     The stability of the linearized dynamic model is investigated using an analytical frequency domain method. The computation of the stability in both turning and milling are conduct to investigate the effect of machine tool dynamics and cutting parameter on the stability of the turning and ball-end milling processes. The effect of varying the clamping force and cantilever length on the stability is also investigated. Based on these observations, it is put forward that the increment of the stiffness and damping of the system is one of the basic and important ways to increase the stability of the machining system.
     With the help of the profiling techniques, the influences of cutting condition and vibration on surface roughness in high speed precisions cutting are analyzed systematically through a series of cutting experiments. Explanations for the observed trends are given. The tool wear form and wear mechanism in high speed precisions cutting experiments are also analyzed. The potential application of studying result in process optimization is discussed, which can be used as beneficial refer in practical high speed cutting.
引文
[1]国家自然科学基金委员会.学科发展战略研究报告:机械与制造科学,2006-2010.
    [2]艾兴等.高速切削加工技术.北京:国防工业出版社,2003.
    [3]H.Schulz.高速加工发展概况.机械制造与自动化,2002(1):4-8
    [4]张伯霖等.高速切削技术及应用.北京,机械工业出版社,2002.9
    [5]武斌功.高速切削与高效切削的相容性分析.电子机械工程,2003,19(4):4749
    [6]李冬茹.现代高速切削与工具技术.新技术新工艺,2006,(1):10-15
    [7]M.A.Elbestawi,L.Chen and C.E.Becze.El-Wardany,High-speed milling of dies and molds in their hardened state,Ann.CIRP,1997,46:57-62.
    [8]R.C.Dewes,D.K.Aspinwall,A review of ultra high speed milling of hardened steels,J.Mater.Process.Technol.1997,69:1-17.
    [9]艾兴.高效加工技术及其应用研究.中国工程科学,2000,2(11):40-51
    [10]袁哲俊.精密和超精密加上技术的新进展.工具技术,2006,40(3):3-9
    [11]Salomon C.J.Process for the machining of metals or similarly acting materials when being worked by cutting tools.German Patent.1931.
    [12]King.P.I and Vanghn R.L.A synaptic view of high speed machining form Salmon to the present.High speed machining.Edited by Komanduri,Subramanian K.et.al.ASME,U.S.A,1984,1-13.
    [13]艾兴,刘战强等.高速切削刀具材料的进展和未来.制造技术与机床,2001,(8):21-25.
    [14]张伯霖,潘珊珊等.直线电机及其在超高速机床上的应用.中国机械工程,1997,(4):85-88.
    [15]王贵成.高速加工工具系统.北京:国防-上业出版社,2005.
    [16]沈杜行.入世后我国刀具企业面临的真正挑战及其对策.工具技术,2002,36(1):6-10
    [17]E.Budak,Y.Altintas and E.J.A.Armarego.Prediction of milling force coefficients form orthogonal cutting data.Trans.ASME Journal of Manufacturing Scienceand Engineering,1996,118:216-224.
    [18]P.Lee and Y.Altintas.Prediction of ball-end milling force form orthogonal cutting data.Int.J.Mach.Tools Manufact.1996,36(9):1059-1072
    [19]E.Shamoto and Y.Altintas.Prediction of shear angle in oblique cutting with maximum shear stress and minimum energy principle,ASME International Mechanical Engineering Congress and Exposition,MED-1997,6:121-128.
    [20]Martin Baker,Finite element simulation of high-speed cutting forces,Journal of Materials Processing Technology,2006,176:117-126.
    [21]K.H.Fuh and R.M.Hwang,A predicted milling force model for high speed milling operation,Iint.J.Mach.Tools.Manufact.,1997,37:969-979.
    [22]J.C.Hamann,EL.Maitre and D.Guillot,Selective transfer built-up layer displacement in high speed machining-consequences on tool wear and cutting force,Annals of the CIRP,1994,43:69-72.
    [23]Shuting Lei,Wenjie Liu.High-speed machining of titanium alloys using the driven rotary tool.International Journal of Machine Tools & Manufacture,2002,(42):653-661.
    [24]J.D.Kim and Y.H Kang.High-speed machining of aluminum using diamond endmills,International Journal of Machine Tools & Manufacture,1997,37(8):1155-1165.
    [25]刘战强,万熠,艾兴.高速铣削中切削力的研究.中国机械工程,2003,14(9):734-736.
    [26]M.Elhachimi,S.Torbaty and P.Joyot.Mechanical modelling of high speed drilling.1:predicting torque and thrust.International Journal of Machine Tools & Manufacture.,1999,39:553-568
    [27]M.Elhachimi,S.Torbaty and P.Joyot.Mechanical modelling of high speed drilling.2:predicted and experimental results.International Journal of Machine Tools & Manufacture,1999,39:569-581.
    [28]胡家国,杨志钢,李迎.高速铣削铝合金切削力研究.工具技术,2003,37:33-36.
    [29]Ezugwu,E.O.and Pashby,I.R.,High speed milling of Nickel-based superalloys,Journal of Materials Processing Technology,1992,79:429-437.
    [30]P.Koshy,R.C.Dewes,D.K.Aspinwall.High speed end milling of hardened AISI D2 tool steel(58 HRC).Journal of Materials Processing Technology,2002,127:266-273.
    [31]M.A.Elbestawi,L.Chen,C.E.Becze.High speed milling of dies and moulds in their hardened state,Ann.CIRP,1997,46(1):57-62.
    [32]J.Vivancos,C.J.Luis and L.Costa,Optimal machining parameters selection in high speed milling of hardened steels for injection moulds.Journal of Materials Processing Technology,2004,155-156:1505-1512.
    [33]W.Bouzid Sai.An investigation of tool wear in high-speed turning of AIS14340 steel.Int.J.Adv.Manuf.Technology,2004,
    [34]R.E.Haber,J.E.Jiménez and C.R.Peres.An investigation of tool-wear monitoring in a high-speed machining process.Sensors and Actuators A,2004,(116):539-545.
    [35]C.E Cheung,W.B.Lee.A theoretical and experimental investigation of surface roughness formation in ultra-precision diamond turning.International Journal of Machine Tools &Manufacture.2000,40:979-1002.
    [36]Takasu S,Masuda M and Nishiguchi T.Influence of Study Vibration with Small Amplitude Upon Surface Roughness in Diamond Machining.Annals of CIRP,1985,34(1):463-467.
    [37]K.Y.Lee,et al.Simulation of surface roughness and profile in high-speed end milling.J.Mater.Process,Technol.2001,113:410-415.
    [38]Mustafa I'lhan Gokler,Alp Mithat Ozanozgu.Experimental investigation of effects of cutting parameters on surface roughness in the WEDM process.International Journal of Machine Tools & Manufacture,2000,40:1831-1848.
    [39]Ming-Yung Wang,Hung-Yen Chang.Experimental study of surface roughness in slot end milling AL2014-T6.International Journal of Machine Tools & Manufacture,2004,44:51-57.
    [40]P.M.Escalona and Z.Cassier.Influence of the critical cutting speed on the surface finish of turned steel.Wear,1998,218:103-109.
    [41]D.K.Back,T.J.Ko and H.S.Kim.Optimization of feedrate in a face milling operation using a surface roughness model.International Journal of Machine Tools & Manufacture,2001,41:451-462.
    [42]杨国艳,赵晓明,许黎明.高速铣削加工中进给量和进给间隔对表面粗糙度的影响.上海交通大学学报,2005,39(1):108-112
    [43]K.Y.Lee,et al.Simulation of surface roughness and profile in high-speed end milling.J.Mater.Process,Technol.2001,113:410-415.
    [44]王素玉,艾兴,赵军.高速铣削表面粗糙度建模与预报.制造技术与机床,2006,8:65-68.
    [45]王素玉.高速铣削加工表面质量的研究.山东大学,2006.
    [46]Dong,W.P,Mainsah and E,Blunt.Three Dimensional Surface Topography;Measurement,Interpretation and Applications.London and Bristol,Pennsylvania,PentonPress.1994.
    [47]王洪祥,孙涛,董申等.超精密车削表面微观形貌的几何建模与仿真研究.中国机械工程,2002,13(13):1131-1134.
    [48]李荣彬,张志辉,李建广.超精密加工的三维表面形貌预测.中国机械工程,2000,11(8):845-848.
    [49]F.Klocke,G.Eisennbla"tter,Dry cutting,Annals of the CIRP,1997,46(2):519-526.
    [50]刘志峰,张崇高,任家隆.干切削加工技术及应用,北京:机械工业出版社,2005。
    [51]A.E.Diniz,R.Micaroni,Cutting conditions for finish turning process aiming:the use of dry cutting,International Journal of Machine Tools and Manufacture,2002,42(8):899-904.
    [52]A.E.Diniz,Adilson Jose'de Oliveira.Optimizing the use of dry cutting in rough turning steel operations.International Journal of Machine Tools & Manufacture,2004,44:1061-1067.
    [53]王西彬,杨广勇,超高速干铣削灰铸铁的研究,兵工学报,1999,20(3):263-267.
    [54]H.A.Kishawya,M.Dumitrescub,E.-G.Ngb.Effect of coolant strategy on tool performance,chip morphology and surface quality during high-speed machining of A356 aluminum alloy.International Journal of Machine Tools & Manufacture,2005,45:219-227.
    [55]O.Cak1r,M.Klyak,E.Altan.Comparison of gases applications to wet and dry cuttings in turning.Journal of Materials Processing Technology,2004,153-154:35-41.
    [56]Shaw.M.C.,Vyas A.The mechanism of chip formation with hard turning steel..Annals of the CIRP,1998,47(1):77-82.
    [57]J.Vivancos,C.J.Luis,J.A.Ortiz.Analysis of factors affecting the high-speed side milling of hardened die steels.Journal of Materials Processing Technology,2005,162-163:696-701.
    [58]曾宝平.小直径铣刀高速加工淬硬钢研究.广西大学,2003.
    [59]张雪萍,赵国伟,蒋辉等.精密干切削淬硬零件表面完整性试验分析.上海交通大学学报,2006,40(6):922-926.
    [60]刘献礼,文东辉,侯世香.硬态干式切削机理及技术研究综述.中国机械工程,2002,13(11):973-976.
    [61]于峻一,吴博达.机械加工振动的诊断、识别与控制.北京:清华大学出版社,1995.
    [62]寥伯瑜,周新民,尹志宏.现代机械动力学及其工程应用.北京:机械工业出版社,2004.
    [63]Chi-Wei Lin.High speed effects and dynamic analysis of motorized spindles for high speed end milling.Ph.D,Purdue University,2001.
    [64]王玉金,赵韩,罗继伟 高速机床主轴支承系统轴承配置分析.制造技术与机床,2003,(1):44-46.
    [65]黄红武,熊万里,陆名彰.高速大功率精密电主轴中的关键技术,湖南大学学报(自然科学版),2002,29(5):49-54.
    [66]钱木,蒋书运.高速磨削用电主轴结构动态优选设计.中国机械工程,2005,16,(10):864-868
    [67]Bordatchev,E.V,Orban,P.E.and Rehom,A.Experimental analysis and modeling of the dynamic performance of machine tool spindle-bearing systems.Proceedings of the SPIE-The International Society for Optical Engineering,2001,4191:92-103.
    [68]Jorgensen,B.R.and Shin,Y,C.Dynamics of Spindles-Bearing Systems at High Speeds Including Cutting Load Effects.Journal of Manufacturing Science and Engineering,1998,120:551-560.
    [69]Zverv,I.,Pyoun,Y.S.and Lee,K.B.An elastic deformation model of high speed spindles built into ball bearings.Journal of Materials Processing Tech,2005,170(3):570-578.
    [70]王树林,王贵成,梁彦学.HSK工具系统的力学模型及其应用.农业机械学报,2003,(4):122-124
    [71]王树林,王贵成,梁彦学.高速加工刀具的动平衡失稳.中国机械工程,2003,(17):1554-1546
    [72]Smith,S.and J.Tlusty,Current trends in high speed machining.Journal of Manufacturing Science and Engineering,1997,119,664-666,
    [73]Tsutsumi,M.:Static and dynamic stiffness of 1/10 tapered joints for automatic changing.Int.J.Japan Soc.Prec.Eng.,1995,29(4):301-306
    [74]A.G..Reborn,J.Jiang,P.E.Orban.Modelling and experimental investigation of spindle and cutter dynamics for a high-precision machining center.Int J Adv Manuf Technol,2004,24:806-815.
    [75]Smith,S.,Jacobs,T.,Halley,J.,The Effect of Drawbar Force on Metal Removal Rate in Milling,Annals of the CIRP,1999,48/1:293-296.
    [76]Tlusty,J.,Smith,S.,Wmfough,W.,Techniques for the Use of Long Slender End Mills in High-Speed Machining,Annals of the CIRP,1996,45/1:393-396.
    [77]T.L.Schmitz,M.A.Daviesl,K.Medicus.Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis.Annals of the CIRP,2001,50(1):263-268.
    [78]S.C.Lin,M.EChang.A study on the effects of vibrations on the surface finish using a surface topography simulation model for turning.International Journal of Machine Tools and Mnufacture,1998,38:763-782.
    [79]Thomas.M.Beauchamp Y.,Youssef A.Y.,Effect of tool vibrations on surface roughness during lathe dry turning process.18th International Conference on Computers and Industrial Engineering,1996,31(3/4):637 - 644.
    [80]陈延军,史耀耀.高速机床进给机构及铣削系统振动分析.噪声与振动控制,2006,4:42-45.
    [81]杨尧.金属切削加工中的振动分析及控制途径.工具技术,2004,3(38):26-27.
    [82]Kraishey M.K.,Pezeshki C.,Bayoumi E,Time Series based analysis for primary chatter in metal cutting,Journal of sound and vibration,1995,180(1),67-87.
    [83]Dimla D.E.Lister P.M.On-line cutting tool condition monitoring I:force and vibration anlyses,Int.J.Mach.Tools Manufact.2000,40,739-768.
    [84]A.Devillez and D.Dudzinski.Tool vibration detection with eddy current sensors in machining process and computation of stability lobes using fuzzy classifiers.Surveillance 5CETIM Senlis,2004,11-13.
    [85]D.E.Dirnla,P.M.Lister,On-line metal cutting tool condition monitoring.I:force and vibration analysis,International Journal of Machine Tools and Manufacture,2000,40:739-768.
    [86]H.Li,X.Li,Modelling and simulation of chatter in milling using a predictive force model,International Journal of Machine Tools and Manufacture,2000,40:2047-2071.
    [87]J.Tlusty.High-speed machining.Annals of the CIRP,1993,42(2),733-738.
    [88]Taylor,F.W.,On the Art of Cutting Metals,ASME,1907.
    [89]S.A.Tobias,and W.Fishwick.A Theory of Regenerative Chatter,The Engineer.London.1958.
    [90]H.E.Merrit,Theory of self-excited machine tool chatter.Transactions ASME,Journal of Engineering for Industry,1965,87(4):447-454.
    [91]Tlusty,J.,Zaton,and W.,Ismail,E,Stability Lobes in Milling.Annals of the CIRP,1983,32/1:309-313.
    [92]B.Rao,and Y.C.Shin,A comprehensive dynamic cutting force model for chatter prediction in turning.International Journal for Machine Tools and Manufacture,1999,39(10):1631-1654.
    [93]Y.Altintas.Manufacturing Automation.Metal Cutting Mechanics,Machine tool Vibrations and CNC Design.Cambridge University Press,2000.
    [94]J.R.Baker and K.E.Rouch.Stability analysis of boring bars with asymmetry.Machining Science and Technology,2002,6(1):81-95
    [95]Smith.,S.,Tlusty,J.,Update on high-speed milling dynamics.Transactions of the ASME Journal of Engineering for Industry,1990,112:142-149
    [96]S.A.Tobias.Machine Tool Vibration.Blackie,1965
    [97]Tlusty.J.Dynamics of High-Speed Milling.ASME Journal of Engineering for Industry[J]. 1986,108(2),56-67
    [98]徐安平,张大卫,黄田.基于再生颤振的端铣动态铣削过程建模与仿真.河北工业大学学报,1998,27(1):59-65
    [99]T.Insperger,and G.Stépén,Semi-discrimination method for delayed systems,International Journal for Numerical Methods in Engineering,2002,55:503-518.
    [100]T.Insperger,B.P.Mann,G.Stépén.Stability of up-milling and down-milling,part 1:alternative analytical methods.International Journal of Machine Tools & Manufacture,2003,43:25-34.
    [101]T.Insperger,and G.Stépén,Stability of high-speed milling.Proceedings of the ASME 2000DETC,Symposium on Nonlinear Dynamics and Stochastic Mechanics,Orlando,Florida,AMD- 2000,241:119-123.
    [102]Altintas,Y.,and Budak,E.,Analytical Prediction of Stability Lobes in Milling,CIRP Annals,1995,44(1):357-362.
    [103]Budak,E.,Altintas,Y.,Analytical Prediction of Chatter Stability Conditions for Multi-Degree of Freedom Systems in Milling,Part Ⅰ:Modeling,Part Ⅱ:Applications,Transactions of the ASME Journal of Dynamic Systems,Measurement and Control,1998,120:20-36.
    [104]M.E.Merchant.Mechanics of the metal cutting process.Trans.ASME Journal of Applied Mechanics,1944,168-175.
    [105]E.J.Armarego and R.H.Brown.The machining of metals.Prentice-Hall,1969.
    [106]Recht R F.A dynamic analysis of high speed machining.High speed machining.Edited by R.Komanduri,K.Suvramanian et al.ASME,U.S.A,1984,83-93.
    [107]北京市编委会.金属切削理论与实践(上册).北京:北京出版社,1985
    [108]H.T.Young,P.Mathew and P.L.B.Oxley.Allowing for nose radius effects in predicting the chip flow direction,Cutting forces in bar mining,Proc.Inst.Mech.Eng.1987,201(C3)213-226.
    [109]Chou,Y.Kevin and Song,Hui.Tool nose radius effects on finish hard turning.Journal of Materials Processing Technology;2004,148,(2),259-269
    [110]倪振华等编.振动力学.西安:西安交通大学出版社,1989.
    [111]王树林.高速加工中HSK工具系统性能及其应用基础的研究.江苏大学,2003.
    [112]Wu W.G,Wang G.C.Adaptive Feedback Control on Radiation Mode Amplitude.Conference Proceedings of the Seventh International Conference on Electronic Measurement &Instruments,2005,Vol.3:399-403.
    [113]Wu W.G,Wang G.C.Active Control of Sound Radiation from Vibrating Structure with Time Domain Acoustic Radiation Modes.Journal of the Chinese Society of Mechanical Engineers,2006 27(2):229-234.
    [114]吴卫国,王贵成等.基于远场方法的结构声辐射模态研究.应用基础与工程科学学报,2006,14(1),93-99
    [115]吴卫国,王贵成等.振动板辐射噪声的结构主动控制.振动与冲击,2006,25(5),10-15
    [116]吴卫国,王贵成等.利用辐射模态计算振动结构辐射声功率.农业机械学报,2006,37(10),108-111
    [117]张幼桢,金属切削理论.北京:航空工业出版社,1990
    [118]S.Takasu,M.Masuda and T.Nishiguchi.Influence of steady vibration with small amplitude upon surface roughness in diamond machining,Annals of the CIRP,1985,(34),463-467.
    [119]杨国艳 赵晓明 许黎明 高速铣削加工中进给量和进给间隔对表面粗糙度的影响 上海交通大学学报,2005,39,(1):108-112.
    [120]何永利 段虹 王仲民 铝合金高速切削表面粗糙度的实验研究 机械设计与制造2006,1:117-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700