用户名: 密码: 验证码:
子午沙鼠的分子进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
子午沙鼠(Meriones meridianus)属啮齿目(Rodentia),仓鼠科(Cricetidae),沙鼠亚科(Gerbillinae),沙鼠属(Meriones),是欧亚大陆中部荒漠、半荒漠的鼠种。
     本文利用PCR-直接测序的方法,以mtDNA控制区基因为遗传标记,研究子午沙鼠的分子进化。共测定和分析了8个种群(格尔木、榆中、武威、金塔、苏干湖、东大山、民勤、沙坡头)88个样本,得到512bpDNA序列,共发现75个变异位点,56个单倍型。子午沙鼠8个种群间碱基含量差异显著,且T—C间的转换次数(52次)明显比A—G间(17次)的高的多。这些说明子午沙鼠种群mtDNA控制区基因的变异主要是由嘧啶的变异引起的。8个种群间无共享单倍型。
     斑块生境对基因交流有阻隔作用,榆中种群与其他7个种群间没有基因交流。格尔木种群与其他种群间存在遗传分化(P<0.01),但是又与东大山种群,民勤种群和沙坡头种群有比较高的基因流(分别为1.104,1.125,1.699)。提示着格尔木种群与东大山、民勤和沙坡头这三个种群之间历史上曾发生过隔离事件。
     种群间基因流与种群的地理距离存在着显著的负相关关系,分化指数与地理距离之间存在着正相关关系,提示地理距离对种群间的交流存在影响。核苷酸多样性与温度呈显著的正相关关系。
     根据分子钟分析,格尔木种群和榆中种群是大约在20万年前与其他种群产生分歧的。岐点分布法分析提示子午沙鼠的种群可能在1.53万年前经历了种群扩张事件,验证了间冰期对物种扩张的重要作用。
Mid-day gerbil(Meriones meridianus)is a species of rat,which lived in desert,semi-desert of Central Eurasian continent.It distributes in northern China Mongolia,Kazakhstan,rajikistan,Afghanistan,Iran and other East Asian and Central Asian countries and regions.
     We used polymerase chain reaction(PCR)and direct sequencing methods to infer their molecular evolution based on mitochondrial DNA(mtDNA) control-region data.This study seqenced and analyzed 88 Mid-day gerbils inluding 8 populations,gained 512bp DNA sequence.A total of 75 variable sites defined 56 haplotypes in 88 88 Mid-day gerbils.
     There were significant differences in nucleotide composition among the population level.Transitions between T and C(54)are much more than transitions between A and G(17),which showed that the differences of nucleotide composition in the Mid-day gerbil were caused by pyridine.
     Patch habitat could be a barrier to gene exchange,there is no gene flow between Yuzhong population and other populations.Geermu population and other populations have genetic differentiation(P<0.01),but have gene flow with Dongdashan,Minqin and Shapotou population,respectively.This indicate that Geermu population and this 3 populations had occurred isolated incidents.
     There was significant negative relationship between geographical distance and the gene flow,and significant positive relationship between geographical distance and the genetic differetial index(Fst).This indicate that geographical distance have influence on intercommunion between populations.There was significant negative relationship between the nucleotide diversity and temperature.
     According to molecular clock,Yuzhong population and Geermu population divaricated to other populations at 200 thousand years ago.Mismatch distribution analysis indicate Mid-day gerbil population had experienced a population expansion at 15.3 thousand years ago,which validated interglacial have important effect on species expansion.
引文
[1] Aris-Brosou S,Excoffier. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism.Mol Biol Evol, 1996,13(3):494-504.
    [2] Austin J D,Lougheed S C,Moler P E, Boag p T.Phylogenetics, zoogeography, and the role of dispersal and vicariance in the evolution of the Rana catesbeiana (Anura:Ranidae)species group. Biological Iournal of the Li nnean Society .2003,80:601 - 624.
    [3] Avise J C , Lansman R B and Shade R O. The use of restriction endonucleases to mease mitochondrial DNA sequence relatedness in natureal population. I . Population structure and evolution in the genus Peromyscus[J]. Genetics ,1979,92-279.
    [4] Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Niegel JE, Reeb CA and Saunders N C. Intraspecific phylogeography: the mitochondrial DNA bridgebetween population genetics and systematics. Ann. Rev. Ecol. Syst., 1987,18:489-522.
    [5] Avise J C, Mitochondrial DNA and evolutionary genetics of higher animals[J]. Philos.Trans. R. Soc. London, B. 1986,312:328-334.
    [6] Avise J C. Molecular population structure and the biogeographic history of a reginal fauna: a case history with lessons for conserv. biol.[J]. Oikos ,1992,63:62-76.
    [7] Avise J C. The history and preview of phylogeography: a personal reflection [J]. Mol.ecol. 1998,7:371-379.
    [8] Avise J C,Walker D,Johns G C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceeding of the Royal Society, 1998,265:1702 - 1712.
    [9] Avise J C. Molecular Markers, Natural History and Evolution. Chapman and Hall,NewYork. 1994.
    [10] Avise J C. Toward a regional conservation genetic perspective: Phylogeography of fauna in the southeastern United States. In: Avise J C and Hamrick J L (eds), Conservation genetics: case histories from nature. Chapman & Hall, New York, 1996,431-470.
    
    [11] Bensasson D, Zhang DX, Hartl DL and Hewitt GM. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution, 2001,16:314-321.
    
    [12] Bernatchez L and Wilson C C. Comparative phylogeography of Nearctic and Palearctic fishes[J]. Mol.ecol. 1998.7:431-452.
    [13] Bibb M J,VanEtten R A,Wright C T,Wallberg M W,and Clayton D A. Sequence and gene oraganization of mouse mitochondrial DNA.Cell, 1981,26:167-180.
    [14] Brant S V, Orti G. Phylogeography of the northern short-tailed shrew, Blarina brevicauda (Insectivora:Soricidae):Past fragmentation and postglacial recolonization. Molecular Ecology, 2003,12:1435-1449.
    [15] Brown G.G. and Gastora F J. Mitochondrial DNA polymorphism: Evolutionary studies on the genus Rattus[J]. Annals of New York Acad. of Sci. ,1981,361:135-153.
    [16] Brown WM.Evolution of mitochondrial DNA. In: Nei M and Keohn RK(eds). Evolution of genes and proteins. Sinaver: Sunderland Mass, 1983 ,62-68.
    [17] Brown WM, George M and Wilson AC.Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA ,1979,76(4): 1967-1971.
    [18] Cann RL, Stoneking M and Wilson AC. Mitochondrial DNA and human evolution. Nature, 1987,325:31-36.
    
    [19] Ehrlich P R and Roughgarden J. The Science of Ecology. New York: Macmillian,1987.
    [20] Eldridge M D B, King J M., Loupis A K,Spencer P B S, Taylor A C, Pope L C, Hall G. P. Unprecedinted low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby[J]. Conserv. biol. 1999,13:531-541.
    [21] Fahlbusch V , Qiu Z D , Storch G. The Neogene mammalian faunas of Ertemte and Harr Obo in Nei Mongol , China. 1. Report on field work in 1980 and preliminary results. Scientia Sinica, Ser B , 1983 ,26 : 205-224.
    [22] Fu Y X. Statistical tests of neutrality of mutations against population growth, and background selection.Genetics, 1997, 147(2):915-925.
    [23] Gadaleta G., Pepe G, Gandia G., et al. Compaete nucleotide sequence of the Rattus norvegicus mitochondrial genome[J].J. Mol. Evol. 1989,28:497-516.
    [24] Gyllensten UB. and Wilson AC. Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genetical Research, 1987,49: 25-29.
    [25] Huang ZH, Liu NF. Genetic structure of chukar partridge (Alectoris chukar) populations in the Longdong Loess Plateau, China. J. Ornithol,2004,145:137-141.
    [26] Harrison R G.. Animal mitochondrial DNA as a genetic makers in population and evolutionary biology[J].Trends Ecol. Evol. 1989,4:6-11.
    [27] Harrison R. Molecular changes at speciation[J]. Arm. Rev. Ecol. Syst. 199,122:281-308.
    [28] Hewitt G M. Postglacial distribution and species substructure: lessons from pollen, insects and hybrid zones. In: Lees DR and Edwards D(eds). Evolutionary patterns and processes. Linnaean Society symposium Series no.14. Academic Press,London, 1993.87-123.
    [29] Hewitt G.M. Some genetic consequences of ice ages, and their role in divergence and speciation[J]. Biol. J. Linn. Soc. 1996,58:247-276.
    [30] Hudson R R. Gene genealogies and the coalescent process.In:Futuyma D J,Antonovics J eds.,In Oxford Survey of Evolutionary biology.New York:Oxford University Press, 1990,1-44
    [31] Hillis DW. Molecular systematics. Sinauer Associates, Sunderland, Massachusetts. USA. 1996.
    [32] Hoffmann A A and Blows M W. Species borders ecological and evolutionary perspectives[J]. Trends Ecol.Evol. 1994,9:223-227.
    [33] Holder,K.,montgomerie R,Frisen VL.,A test of the glacial refuguium hypothesis using patterns of mtochondrial and nuclear DNA sequence variation in rock patarmigan(Lagopusmutus). Evolution, 1999,53(6): 1936-1950.
    [34] Jaeger J J, Les Rongeurs du Miocene moyen et superieur du Maghreb. Palaeovertebrata , 1977,8(1): 1-166
    [35] Kimura M. Evolutionary rate at the molecular level. Nature, 1968, 217:624-626.
    [36] Kuznetsov, A A. tacts of Meriones meridianus and M.tamariscinus (Rodentia, Cricetidae) in sands of the Volga-Ural region.. Zoologicheskii Zhurnal ,2004,83 (6):733-744.
    [37] Lawton J H.Range,population abundance and conservation[J]. Trends ecol. evol. 1993,8:409-413.
    [38] Li M,Wei F W,Goossens B,Feng Z J, Tamate H B,Bruford M W,Funk S M. Mitochondrial phylogeography and subspecific var-iation in the red panda (Ailurus fulgens): implications for conservation.Molecular Biology and Evolution, 2005, 36:78 - 89.
    [39] Lodish H. Molecular Cell Biology. 4thed. W.H.Freeman Co. New York. 2000.
    [40] Sorenson M D,Ast J C,Dimcheff D E,Yuri T,Mindell D P .Primer for a PCR-Based approach to mitochondrial genome sequencing in birds and other vertibrates. Molecular Phylogenetics and Evolution, 1999,12:105-114.
    [41] Morrone J J and Crisci J V. Historical biogeography: introduction to methods[J]. Ann. Rev. Ecol. Syst. 1995,26:373-401.
    [42] Nass M M K and Nass S. Intramitochondrial fibers with DNA characteristics. J. Cell Biology, 1963,19:591-611.
    [43] Nass MMK and Nass S. Intramitochondrial fibers with DNA characteristics. J.Cell Biology, 1963,19:591-611.
    [44] Nei M and Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press, London. 2000.
    [45] Parker R.C. and Watson R.M. Restriction endonucleaes cleavage maps of rat and mouse mitochondrial DNA[J]. Nus. Acid Res, 1977,4:1291-1299.
    [46] Chevret P,Dobigny G.Systematic and evolution of the subfamily Gerbillinae (Mammalia, Rodentia, Muridae).Molecular Phylogenetics and Evolution,2005, 35: 674-688.
    [47] Petrusewicz, K. Suggested list of more important concepts in productivity stages (definitions and symbols). In: Petrusewicz, K. ed. Secondary Productivity of Terrestrial Ecosystems. Waraszawa: Krakow, 1967,51—58.
    [48] Platnick N.I. and Nelson G. A method for analysis of historical biogeography[J]. Systematic Zoology,1978,27:1-16.
    [49] Randi, E. and Lucchini V. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris.[J] Mol Evol, 1998,47(4): 449-62.
    [50] Saccone C, Gissi C, Lanave C,Larizza A,Pesole G Reyes A. Evolution of the mitochondrial genetic system: an overview[J]. Gene, 2000,261:153-159.
    [51] Saunders M A,Edwards S V.Dynamics and phylogenetic implications of mtDNA control region sequences in New World Jays (Aves:Corvidae)[J]. Journal of Molecular Evolution, 2000,51:97-109.
    [52] Saunders NC. Genetic variation and geographic differentiation in mtDNA of the horseshoe crab, Limulu polypherass. Genetics, 1986, 112:613-627.
    [53] Schaub S , Bber einige fossile Simplicidentaten aus China und der Mongolei . Abh Schweiz Pal Ges,1934,54:1-40
    [54]Smith JM and Smith NH.Recombination in animal mitochondrial DNA.Mol.Biol.Evol.,2002,19:2330-2332.
    [55]Taberlet P,Fumaglli L and Wust-saucy A.Comparative phylogeography and postglacial colonization routes in Europe.Molecular Ecology,1998,7:477-494.
    [56]Tajima F.Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.Genetics,1989a,123(3):585-595.
    [57]Tajima F.The effect of change in population size on DNA polymorphism.Genetics,1989b,123(3):597-601.
    [58]Tajima F.Measurement of DNA polymorphism.In:Takahata N,Clark A G..Mechanisms of Molecular Evolution.Introduction to Molecular Paleopopulation Biology,Tokyo,Sunderland,MA:Japan Scientific Societies Press,Sinauer,Inc,1993,37-59.
    [59]Teilhard de Chardin P.Mammiferes Tertiaires de Chine et de Mongolie.Ann Paleont,1926,15:1-52.
    [60]Tong H.Origine et evolution des Gerbillidae(Mammalia,Rodentia)en Afrique du Nord.Me m.Soc.Geol.France,1989,155,1-120.
    [61]Turner T F,Trexler J C,Kuhnand D N et al..Life history variation and comparative phylogeography of darters(Pisces:Percidae)from the North American Central highlands[J].Evolution,1996,50:2023-2036.
    [62]Wayne R.Conservation genetics;applyany where.World Conservation,1996,1:15-17.
    [63]Wilson A C,Cann R L,Carr S M,Geoge M,GylienstenU B,Helimbychowski K M,Higuchi R G,Palumbi S R,Prager E M,Sage R D,and Stoneking M.Mitochondrial DNA and two perspectives on evolutionary genetics[J].Biol.J.Linnaean Sot,1985,26:375-400.
    [64]Xie J Y,Zhang Z B.Mitochondrial DNA phylogeography of populations of cricetulus triton in the north china plain.Journal of Mammalogy,2005,86(4):833-840.
    [65]Young C C.Fossil Nagetiere aus Nord2China.Paleont Sin,Ser C,1927,5(3):1-82
    [66]Qiu Z D,Storch G.The early Pliocene micromammalian fauna of Bilike,Inner Mongolia,China(Mammalia:Lipotyphla,Chiroptera,Rodentia,Lagomorpha).Senckenbergiana lethaea,2000,80(1):173-229
    [67]Zardoya R,Meyer A.Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates[J].Mol.Biol.Evol.,1996,13(7):933-942.
    [68]Zhang D X and Hewitt G M.Nuclear integrations:challenges for mitochondrial DNA markers.Trends in Ecology and Evolution,1996,11:247-251.
    [69]Zink R M.Comparative phylogeography in North American birds[J].Evolution,1996,50:308-317.
    [70]Zuckerkandl E and Pauling L.Evolutionary divergence and convergence in proteins.In:Bryson V and Vogel HJ(eds)New York:Academic Press,1965,97-166.
    [71]曹兴山.甘肃第四纪古地理环境.甘肃地质学报,1996,5(2):40-56.
    [72]曹国强,陈世瑞,徐银凤,彭德华,袁文芳.柴达木盆地西部中.新生代沉积构造演化.中国地质,2005,32(1):33-40.
    [73]胡德夫;盛和林.准噶尔盆地沙质荒漠啮齿动物群落在短命植物存在期的空间-食物资源利用.兽类学报,1999,19(1):25-36.
    [74]兰宏,陈志平,王应祥等.三种姬鼠(Apodemus)的线粒体DNA变异研究[A].见:张洁 中国兽类生物学研究[M].北京,中国林业出版社,1995,277-285.
    [75]梁君,周立志,赵天飙,张保卫,宁恕龙.长爪沙鼠线粒体细胞色素b基因的遗传变异及地理分化[J].兽类学报,2007,27(2):138-145.
    [76]李传夔.山西榆社上新世沙鼠化石.古脊椎动物学报,1981,19(4):321-326.
    [77]李俊生,宋延龄,曾治高.种荒漠啮齿动物食物组成与消化道长度的比较.动物学报,2003,49(2):171-17.
    [78]李强,王晓鸣,邱铸鼎.内蒙古高特格上新世哺乳动物群.古脊椎动物学报,2003,41(2):104-114.
    [79]李菁菁,彭统序,温硕洋,谢以权.褐家鼠线粒体DNA遗传多态的研究[J].动物学研究,1999,20(1):247-251.
    [80]刘迺发,黄族豪.中国石鸡生物学.北京,中国科学技术出版社,2007,212-213.
    [81]罗泽珣,陈卫,高武等.中国动物志,兽纲 第六卷 啮齿目 下册仓鼠科.北京,科学出版社,2000,100-113.
    [82]侯希贤,董维惠,周延林,王利民,鲍伟东.子午沙鼠种群数量动态及预测.生态学报,2000,20(4):711-714
    [83]宁恕龙,周立志,张保卫,赵天飙,邹桂.基于线粒体细胞色素b基因的中国大沙鼠系统地理格局.动物学报,2007,53(4):630-640.
    [84]潘宝平,卜问俊.线粒体基因组的遗传与进化研究进展[J].生物学通报,2005,40(8):1-3.
    [85]邱铸鼎.甘肃兰州盆地中中新世泉头沟动物群的唾鼠类和沙鼠类.古脊椎动物学报,2001,39(4):297-305.
    [86]邱铸鼎,郑绍华,张兆群.陕西蓝田晚中新世灞河组沙鼠类化石.古脊椎动物学报,2004,43(3)pp.193-204.
    [87]史顺娣,沈沽.长爪沙鼠线粒体DNA限制性物理图谱的研究[J].中国实验动物杂志,1994,4(3):136-142.
    [88]孙儒泳.动物生态学原理(第3版).北京:北京师范大学出版社,2001.
    [89]宋恺,刘荣堂.子午沙鼠的生态研究[J].兽类学报,1984,4:291-300.
    [90]王香亭.宁夏脊椎动物志.银川:宁夏人民出版社,1990.
    [91]王香亭.甘肃脊椎动物志.兰州:甘肃科学技术出版社,1991.
    [92]王继文.动物线粒体假基因的识别及其在进化生物学中的应用.动物学杂志,2004,39(3):103-108.
    [93]王静,李明,魏辅文等.分子系统地理学及其应用[J].动物分类学报,2001,26(4):432-439.
    [94]王永贵,李义民,刘丽峰,李健,祁兰英,陈宗颜.对柴达木盆地形成过程的初步探讨.青海科技,2007,5:24-26.
    [95]卫明,侯鹏,黄族豪,刘迺发.环境因子对大石鸡种群遗传结构的影响.生态学报,2002,22(4):528-534.
    [96]徐宏发,王静波.分子系统学研究进展.生态学杂志,2001,20(3):41-46.
    [97]张东生等.第四纪环境.北京:科学出版社,1997.
    [98]张亚平,施立明.动物线粒体DNA多态性的研究概况.动物学研究,1992,13(3):289-298.
    [99]张兆群.宁夏和甘肃上新世小哺乳动物区系.第七届中国古脊椎动物学学术年会论文集.北京:中国海洋出版社,1999,167-177.
    [100]赵肯堂.内蒙古啮齿动物.呼和浩特:内蒙古人民出版社,1981,159-162.
    [101]赵天飘,李新民,张忠兵,张春福,齐林.大沙鼠和子午沙鼠种群空间分布格局的研究.兽类学报,1998,18(2):131-136.
    [102]赵兴波,李宁,吴常信.猪线粒体DNAD-loop的遗传变异分析.遗传,1997,19(增刊):23-26.
    [103]郑绍华,张兆群.甘肃灵台文王沟中新世晚期-更新世早期的小哺乳动物.古脊椎动物学报,2000,38(1):58-71.
    [104]周立志,马勇,李迪强.沙鼠亚科物种空间分布格局及其与环境因素的关系.动物学报,2001,47(6):616-624.
    [105]周延林,王利民,鲍伟东,侯希贤,董维惠.子午沙鼠种群繁殖特征分析.兽类学报,1999,19(1):62-67.
    [106]邹喻苹,葛颂,王晓东.系统与进化植物学中的分子标记.北京:科学出版社,2001,140-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700