用户名: 密码: 验证码:
采用基于CDR3δ肽结合特性的免疫—生物化学技术策略鉴定TCRγδ所识别的新型配体-hMSH2蛋白
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管人类外周血γδT细胞在整个T细胞群体中所占比例较少,但其在机体对抗感染和肿瘤的免疫应答中的重要作用却深受关注。然而,至今为止,γδT细胞所识别的抗原则很少被鉴定。不了解T细胞受体(TCR)γδ所识别配体,也就不可能深入了解γδT细胞的生物学功能。因此,进一步发现和鉴定TCRγδ所识别配体则成为γδT细胞研究领域亟待解决的突出问题。如何通过新的技术策略,来发现TCRγδ所识别新型配体是本研究着重考虑的科学问题,这也是进一步了解TCRγδ抗原识别特异性和多样性机制,揭示γδT细胞的生物学功能的关键问题。
     TCR的抗原结合部位是由六个抗原决定簇(CDR)形成的,这六个CDR在识别抗原时作用是不相同的,其CDR3区在抗原识别时占有主导地位。鉴于TCRδCDR3区(CDR3δ)与抗体重链的CDR3区在结构和功能上的相似性,因此,我们提出了CDR3δ的一级结构是决定TCRγδ识别抗原特异性的关键部位的学术假说。这一假说已为我们实验室前期工作所验证。我们根据卵巢上皮癌(OEC)组织浸润的γδT细胞(γδTIL)TCR的一个CDR3δ的基因序列(OT3),人工合成了OT3肽,并通过体外一系列OT3肽与靶细胞、靶组织或来源于靶细胞的蛋白的体外结合实验,验证OT3肽的结合特异性,所采用的方法包括OT3肽介导的生物传感器,免疫荧光技术,酶免疫技术和OT3肽竞争结合实验。同时,构建了用OT3序列替代抗体重链CDR3区序列的OT3移植抗体OT3Ab,也进行相应实验。本研究又重复了部分上述验证工作。结果显示,OT3肽和OT3Ab在对靶细胞、靶组织或来源靶细胞的蛋白的结合活性上享有相似的特异性。这就证明了CDR3δ确实在TCRγδ抗原识别特异性上起关键作用,也提示OT3肽能作为一个特异的探针,去筛选TCRγδ识别的抗原。
     在上述验证工作的基础上,本研究共采用了三种技术策略去寻找TCRγδ识别的蛋白抗原:一是以OT3肽为探针在噬菌体随机展示十二肽库中筛选与OT3肽结合的十二肽,通过序列比对获得相应蛋白;二是以OT3肽为探针在人卵巢癌cDNAλ噬菌体表达文库筛选与OT3肽结合的克隆,通过测序鉴定蛋白;三是通过OT3肽偶联的亲和层析,从OEC肿瘤细胞系(SKOV3细胞)的总蛋白中分离与OT3肽特异性结合的蛋白,再利用质谱技术鉴定蛋白的种类。应用第一种技术策略,我们获得了三个OT3肽特异结合的十二肽。结合和功能验证实验结果显示,这些十二肽不但能特异性地结合TCRγδ,还能在体外促进γδT细胞活化,提示这些十二肽具有TCRγδ的表位肽活性。然而,在BLAST比对中未发现与这些多肽在序列上相匹配的人类相关蛋白,提示这些十二肽可能为来源于其它种属的表位肽。筛选人卵巢癌cDNAλ噬菌体表达文库要求探针具有较高的特异性和亲和力,在这两方面OT3肽不如一般的抗体,因此第二种策略也失败了。通过第三种策略,我们成功鉴定了三个TCRγδ识别的肿瘤相关抗原,它们是丙酮酸激酶3,人mutS同源蛋白2(hMSH2)和热休克蛋白(HSP)60。由于已有报道HSP60能被TCRγδ所识别,故鉴定出HSP60表明我们的策略是可行的。而丙酮酸激酶3以及与DNA损伤修复有关的hMSH2可能是TCRγδ识别的新的蛋白抗原。
     本研究就hMSH2是否为TCRγδ配体这一问题进行了验证。RT-PCR结果显示,在卵巢癌细胞系SKOV3中,hMSH2 cDNA存在散在分布的点突变。SKOV3细胞培养上清中检测到分泌形式的hMSH2。用Western blotting在SKOV3细胞总蛋白中还发现一个60kD的hMSH2的缺失突变表达形式。而且,在包括SKOV3细胞在内的很多肿瘤细胞系细胞膜上均检测到hMSH2的表达。免疫组化结果证明,肿瘤组织中也有异位表达的hMSH2。另外,Vδ2γδT细胞对SKOV3细胞的细胞毒活性也能被抗hMSH2抗体部分封闭。
     同时,本研究还构建和表达了五种重组的hMSH2蛋白,包括hMSH2全长蛋白,分别含hMSH2 N端两个结构域和C端两个结构域的蛋白片段,以及SKOV3细胞表达的含有散在突变的两个分段蛋白。所有的这五个蛋白都能特异性与Vδ2γδT细胞结合,并刺激其活化增殖,分泌γ干扰素,并且促进Vδ2γδT细胞对靶细胞的杀伤活性。
     此外,本研究还利用昆虫病毒表达系统,得到了比原核大肠杆菌表达系统更具生物活性的hMSH2蛋白,这为hMSH2蛋白进一步结构与功能研究奠定了基础。
     综上所述,本研究取得了以下学术成果:
     1、证明了CDR3δ在决定TCRγδ识别抗原特异性上的关键作用,TCRγδ识别抗原时仅仅依赖CDR3δ一级结构的特异性,因此人工合成的CDR3δ肽OT3是寻找TCRγδ抗原的很奏效的探针;
     2、建立了一个采用基于CDR3δ肽结合特性的免疫-生物化学技术策略鉴定TCRγδ所识别的蛋白抗原的新的有效的方法;
     3、首次发现在癌变的情况下,异位表达的hMSH2很可能是一个新的Vδ2γδT细胞所识别的肿瘤配体分子,其生物学意义在于对固有免疫系统的预警作用;
     4、证明了昆虫病毒表达系统是一个稳定而有效的真核表达系统,在昆虫细胞中能完成很多翻译后的修饰,在使表达的外源蛋白保有天然蛋白的生物学活性上至关重要。
     在上述的四点成果中,第二项和第三项最具有创新性。第二项成果解决了一项长期困扰免疫学界的难题,为鉴定TCRγδ所识别新型配体提供了一个有效的关键技术。第三项成果揭示了γδT细胞免疫监视的新型作用方式,为全面阐明γδT细胞生物学功能提供了重要的线索,也为肿瘤的诊治提供了一个重要的靶标分子。
Human T lymphocytes,bearing T cell receptor(TCR)γδ,play an important role in anti-tumor/microbe immune responses although they only account for a small proportion in human T lymphocyte pool.However,to date,only few antigens recognized by humanγδT cells have been defined.To better understandγδT cell function,a crucial issue is to identify more ligands forγδT cell.The present study focuses on that how to use a new technical strategy to identify protein ligands recognized byγδT cell.It is also the key point to understand the principles governing TCRγδspecificity and diversity and to reveal the biological functions ofγδT cell.
     The antigen-binding site of TCR is formed primarily by six complementarity determining regions(CDRs).Sequence diversity in antigen receptors is not evenly distributed among all six CDRs,but is highly concentrated in one or two CDR3.It is supposed that the primary structure of CDR3δ,due to its similarity to V_H CDR3 of BCR in gene composition,could serve as the key determinant of specificity in antigen binding by the TCRγδ.This hypothesis has been confirmed.The binding activity of a synthesized CDR3δpeptide OT3,derived from tumor infiltrating lymphocytes(TILs) in ovarian epithelial carcinoma(OEC),was analyzed through a series of in vitro binding assays including OT3 peptide-mediated SPR assay,immunofluorescence assays,enzyme immunoassay,and OT3 peptide competition test.OT3 grafted-Ig was also employed to repeat major tests.OT3 and OT3 grafl-Ig shared a similar binding specificity to target cells or tissues,suggesting that CDR3δplayed a determinant role in antigen recognizing of TCRγδand OT3 peptide could be employed as a specific probe to identify putative protein ligands for TCRγδ.
     Based on the binding specificity of OT3 peptide,three technical strategies were used to identify TCRγδ-recognized proteins.First is to pan OT3 specific 12-peptides in a 12-mer random peptide phage-displayed library with OT3 peptide;seconed is to scan OT3 specific proteins in a human ovarian cancer lambda cDNA library with OT3 peptide;third is to identify OT3 peptide-binding proteins within an OEC tumor cell line SKOV3 cell total protein extracts by affinity chromatography and liquid chromatography-electrospray ionization tandem mass spectrometry(LC-ESI MS/MS) analysis.With the first strategy, three OT3-specific 12-peptides were gained,which not only bind toγδT cells,but also functionally activateγδT cells in vitro and could be served as epitopes for TCRγδ.But there were no matched human proteins to the liner sequence of these functional epitopes in Basic local alignment search tool(BLAST) analysis,suggesting that they would be epitopes of other species.High specificity and powerful binding were needed for scanning a cDNA library and the second strategy failed.Only the third immuno-biochemical strategy worked and with this strategy,we successfully identified three candidate tumor associated antigen for TCRγδ,including pyruvate kinase 3,human mutS homolog 2 (hMSH2) and heat shock protein(HSP) 60.Identification of HSP60 confirms the validity of this method because HSP60 is an identified ligand for TCRγδ.Pyruvate kinase 3 and hMSH2,which is very important in DNA mismatch repair,may be new protein ligands recognized by TCRγδ.
     According to analysis of MS,hMSH2 showed possible sequence characteristics as ligand for TCRγδ.In present study,we put forward lots of validation works on the role of hMSH2.RT-PCR results indicated that there seemed to be mutations in the mRNA of hMSH2 in OEC cell line SKOV3 cells.A soluble form of hMSH2 in SKOV3 culture supernatant and a 60kD shortened hMSH2 were found in Western blotting.There were surface expressions of the mutational hMSH2 on the surface of SKOV3 cells and several other tumor cell lines,including Hela,803,HepG2,NCI-H520 and Daudi.Ectopically expressed hMSH2 were also detected in tumor tissues.In addition,the cytotoxicity of Vδ2γδT cells,but not Vδ1 ones against SKOV3 cells,could be blocked by anti-hMSH2 antibody partially.
     Meanwhile,five recombinant proteins have been expressed and purified,including the normal full-length of hMSH2,hMSH2 segments containing the first two domains near N terminal or the last two domains near C terminal and hMSH2 N/C segments with dot-mutations respectively.All five recombinant hMSH2 proteins not only bind to Vδ2γδT cells,but also functionally trigger the proliferation of Vδ2γδT cells in vitro.Tested proteins accelerated the activation cytokines(for example Interferon-γ) secretion of Vδ2γδT cells and the cytotoxicity of Vδ2γδT cells to SKOV3 cells also be promoted by recombinant hMSH2 proteins.
     Moreover,full length of hMSH2 recombinant protein was successfully expressed in baculovirus expression system holding more activity than that expressed by E.coli.It laid a foundation for the further researches on hMSH2.
     Taken together,our findings:
     First,confirmed the critical role of CDR3δin antigen binding specificity of TCRγδ. The antigen recognition of TCRγδprimarily depends on CDR3δand synthetic CDR3δpeptide is an excellent probe for new ligands of TCRγδ.
     Second,put forward a novel,effective and simple immuno-biochemical strategy to identify protein ligands recognized byγδT cells based on CDR3δpeptide.
     Third,reported at first time that ectopically expressed hMSH2 in malignant situation might become a novel biomarker on tumor cells for Vδ2γδT cells.The ectopic expression of hMSH2 on tumor cells may alert the immune system on the early stage of tumor pathogenesis.
     Last,proved baculovirus expression system is a powerful and versatile eukaryotic expression system.The insect cell,unlike bacterium,is capable of performing many of the post-translational modifications that are required for forming biologically active proteins.
     In the four achievements above,the second and third achievements make more senses. The immuno-biochemical strategy solved a difficult problem puzzled immunology for a long time and provided a novel,effective and simple technique to identify ligands for TCRγδ.The discovery of ectopically expressed hMSH2 suggested a new pathway for immunosurveillance ofγδT cell.Ectopically expressed hMSH2 would be an important target molecule in tumor immunotherapy.
引文
1. Mak TW, and Ferrick DA (1998) The γ/δ T-cell bridge: linking innate and acquired immunity. Nat Med 4: 764.
    2. Hayday A (2000) γ/δ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol. 18: 975.
    3. Takeda K, Kaisho T and Akira S (2003) Toll-like receptors. Annu. Rev. Immunol. 21, 335-376.
    4. Natarajan K, Dimasi N, Wang J, Mariuzza RA and Margulies DH (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annu Rev Immunol. 20, 853-885.
    5. Morita CT, RA Mariuzza and MB Brenner (2000) Antigen recognition by human T cells: pattern recognition by the adaptive immune system. Springer Semin Immunopathol. 22, 191.
    6. Rock EP, Sibbald PR, Davis MM and Chien YH (1994) CDR3 length in Antigen specific immune Receptors. J Exp Med. 179, 323-328.
    7. Viey E, Fromont G, Escudie B, Morel Y, Da Rocha S, Chouaib S and Caignard A (2005) J Immunol. 174, 1338-1347.
    8. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L and De Libero G (2003) J Exp Med. 197, 163-168.
    9. Kunzmann V, Bauer E, Feurle J, Weissinger F, Tony HP and Wilhelm M. (2000) Blood. 96, 384-392.
    10. Maeurer MJ, Martin D, Walter W, Liu K, Zitvogel L, Halusczcak K, Rabinowich H, Duquesnoy R, Storkus W and Lotze MT. (1996) J Exp Med. 183,1681-1696.
    11. Zhao J, Huang J, Chen H, Cui L and He W (2006) Biochem Biophys Res Commun. 339,232-40.
    12. Cao W and He W (2004) Immunobiology. 209,283-290.
    13. Zhang, H., Hu, H., Jiang, X., He, H., Cui, L., and He, W. (2005) Immunol Invest. 34, 453-468.
    14. Thomas, M. L., Samant, U. C, Deshpande, R. K., and Chiplunkar, S. V. (2000) Cancer Immunol Immunother. 48, 653-659.
    15. Scotet, E., Martinez, L. O., Grant, E., Barbaras, R., Jeno, P., Guiraud, M., Monsarrat, B., Saulquin, X., Maillet, S., Esteve, J. P., Lopez, F., Perret, B., Collet, X., Bonneville, M., and Champagne, E. (2005) Immunity. 22, 71-80.
    
    16. Davis, M. M., Lyons, D. S., Altman, J. D., McHeyzer-Williams, M., Hampl, J., Boniface, J. J., and Chien, Y. (1997) Ciba Found Symp. 204, 94-104.
    17.Xu JL,Davis MM.(2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities.Immunity.13:37-45.
    18.Allison,T.J.,Winter,C.C.,Fournie,J.J.,Bonneville,M.,and Garboczi,D.N.(2001)Nature.411,820-824.
    19.Erin J.Adams,Yueh-Hsiu Chien,K.Christopher Garcia.(2005) Structure of a γδT cell receptor in complex with the nonclassical MHC T22.Science 308,227-231.
    20.Xu,C.,Zhang,H.,Hu,H.,He,H.,Wang,Z.,Xu,Y.,Chen,H.,Cao,W.,Zhang,S.,Cui,L.,Ba,D.,and He,W.(2007) Gammadelta T cells recognize tumor cells via CDR3delta region Mol Immunol 44,302-310.
    21.Mitchell RJ,Farrington SM,Dunlop MG,Campbell H.(2002) Mismatch repair genes hMLH1 and hMSH2 and colorectal cancer:a HuGE review.Am J Epidemiol 156,885-902.
    22.Kabelitz,D.,Wesch,D.,and He,W.(2007) Cancer Res 67,5-8.
    23.Spada FM,Grant EP,Peters PJ,et al.(2000) Self-recognition of CD1 by γ/δ T cells:implications for innate immunity.J Exp Med,191:937-948.
    24.Hata S,Clabby M,Devlin P,et al.(1989) Diversity and organization of human T cell receptor δ variable gene segments.J Exp Med.169,41-57.
    25.Takihara Y,Tkachuk D,Michalopoulos E,et al.(1988) Sequence and organization of the diversity,joining,and constant region genes of the human T-cell δ-chain locus.Proc Natl Acad Sci U.S.A.85,6097-6101.
    26.王欣之,傅志强。噬菌体展示随机肽库及其在抗原表位研究上的应用。中国兽医寄生虫病,2005,14(10):42-45。
    27.李中齐。噬菌体呈现技术在肿瘤研究中的应用。免疫学杂志,2002,18(1):69-71。
    28.Kersey,P.J.,Duarte,J.,Williams,A.,Karavidopoulou,Y.,Birney,E.,and Apweiler,R.(2004) Proteomics 4,1985-1988.
    29.Chen H,He X,Wang Z,Wu D,Zhang H,Xu C,He H,Cui L,Ba D,and He W.(2008)Identification for TCRγδ-recognized epitopes/proteins via CDR3δ peptide-based immuno-biochemical strategy.J Biol Chemistry.May 2;283(18):12528-37.
    30.Jacob S and Praz F.(2002)DNA mismatch repair defects:role in colorectal carcinogenesis.Biochimie,2002,84(1):27-47.
    31.Thibodeau SN,French AJ,Cuninghanl JM,et al.(1998) Microsatellite instability in colorectal cancer:different molecular phenotypes and the principal involvement of hMSH2.Cancer Res.58:1713-1719.
    32.Dietmaier W,Wallinger S,Booker T et al.(1997) Diagnostic microsatellite instability:definition and correlation with mismatch repair protein expression.Cancer Res,57:4749-4753.
    33.Samimi,G.,Fink,D.,Varki,N.M.,Husain,A.,Hoskins,W.J.,Alberts,D.S.,and Howell,S.B.(2000) Clin Cancer Res 6,1415-21.
    34. Chen, Y., Wang, J., Fraig, M. M., Metcalf, J., Turner, W. R., Bissada, N. K., Watson, D. K and Schweinfest, C. W. (2001) Cancer Res 61, 4112-21.
    35. Spagnoletti, I., Pizzi, C., Galietta, A., Di, M. M, Mastranzo, P., Daniele, S., Limite, G., Pettinato, G., and Contegiacomo, A. (2004) Oncol Rep 11,845-51.
    36. Jung, C. Y., Choi, J. E., Park, J. M., Chae, M. H., Kang, H. G., Kim, K. M., Lee, S. J., Lee, W. K., Kam, S., Cha, S. I., Kim, C. H., Han, S. B., Jung, T. H., Jeon, S. H., and Park, J. Y. (2006) Cancer Epidemiol Biomarkers Prev 15, 762-8.
    37. Rakheja, D., Kapur, P., Tomlinson, G. E., and Margraf, L. R. (2005) Pediatr Dev Pathol 8,615-20.
    38. Burgess, S. (1977) Molecular weights of lepidopteran baculovirus DNAs: Derivation by electron microscopy. J. Gen. Virol. 37:501-510.
    39. Kidd, IM and VC. Emery. (1993) The use of baculoviruses as expression vectors [J]. Applied Biochemistry and Biotechnology, 42:137-159.
    1 Hayday AC.(2000).γδ cells:a right time and a right place for a conserved third way of protection.Annu Rev Immunol.18:975-1026.
    2 Saito H,Kranz DM,Takagaki Y,Hayday AC,Eisen HN,Tonegawa S.Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences.Nature 1984;309:757-762.
    3 Chien YH,Iwashima M,Kaplan KB,Elliott JF,Davis MM.A new T-cell receptor gene located within the alpha locus and expressed early in Tcell differentiation.Nature 1987;327:677-682.
    4 Lindsten T,Fowlkes BJ,Samelson LE,Davis MM,Chien YH.Transient rearrangements of the T cell antigen receptor alpha locus in early thymocytes.J Exp Med 1987;166:761-775.
    5 Chien YH,et al.T-cell receptor delta gene rearrangements in early thymocytes.Nature 1987;330:722-727.
    6 Kabelitz D,Wesch D,Hinz T.(1999).).γδT cells,their TCR usage and role in human diseases.Springer Semin Immunopathol 21:55-75.
    7 Carding SR,Egan PJ.(2002).Gammadelta T ceils:functional plasticity and heterogeneity.Nat Rev Immunol.2(5):336-45.
    8 Spanopoulou E,Zaitseva F,Wang FH,Santagata S,Baltimore D,Panayotou G.(1996).The homeodomain region of Rag-1 reveals the parallel mechanisms of bacterial and V(D)J recombination.Cell.18;87(2):263-76.
    9 Davis,M.M.Bjorkman,P.J.1988.T-cell antigen receptor genes and T-cell rcognition.Nature 334:395
    10 Bonneville M,Fournie JJ.Sensing cell stress and transformation through Vgamma9Vdelta2 T cell-mediated recognition of the isoprenoid pathway metabolites.Microbes Infect 2005;7:503-509.
    11 Born WK, Reardon CL, O'Brien RL. The function of gammadelta T cells in innate immunity. Curr Opin Immunol 2006;18: 31-38.
    12 Delfau MH, Hance AJ, Lecossier D, Vilmer E, Grandchamp B. (1992). Restricted diversity of V gamma 9-JP rearrangements in unstimulated human gamma/delta T lymphocytes. Eur J Immunol. 22(9):2437-43.
    13 McVay, LD, Jaswal, SS, Kennedy, C, Hayday, A. and Carding, SR The generation of human gammadelta T cell repertoires during fetal development. J Immunol (1998) 160, 5851-60
    14 Chowers Y, Holtmeier W, Harwood J, Morzycka-Wroblewska E, Kagnoff MF. (1994). The V delta 1 T cell receptor repertoire in human small intestine and colon. J Exp Med. 180(1): 183-90.
    15 Zhang, Y. 1995. The role of short homology repeats and TdT in generation of the invariant γδ antigen receptor repertoire in the fetal thymus. Immunity 3: 439
    16 Havran, WL, Chien, YH, & Allison, JP (1991). Recognition of self antigens by skin-drived T cells with invariant γδ receptors. Science 252, 1430 1432.
    17 Jameson, J., Ugarte, K., Chen, N., Yachi, P., Fuchs, E., Boismenu, R., Havran, WL (2002). A Role for Skin gammadelta T Cells in Wound Repair. Science 296: 747-749
    18 Bendelac, A., Rivera, MN, Park, SH, and Roark, JH (1997). Mouse CD1-specific NK1 T cells: development, specificity,and function. Annu. Rev. Immunol. 15, 535-562.
    19 Exley M, Garcia J, Balk SP, Porcelli S. Requirements for CD1d recognition by human invariant V 24 + CD4 CD8 T cells. J Exp Med 1997; 186: 109-20.
    20 Li, H., Lebedeva, MI, Llera, AS, Fields, BA, Brenner, MB and Mariuzza, RA. (1998). Structure of the Vδ domain of a human γδT cell antigen receptor. Nature 391, 502-506.
    21 H Spits, X Paliard, VH Engelhard, and JE de Vries (1990) Cytotoxic activity and lymphokine production of T cell receptor (TCR)- alpha beta+ and TCR-gamma delta+ cytotoxic T lymphocyte (CTL) clones recognizing HLA-A2 and HLA-A2 mutants. Recognition of TCR-gamma delta+ CTL clones is affected by mutations at positions 152 and 156. J Immunol 144: 4156-4162.
    22 Chien YH, Jores R, Crowley MP. (1996). Recognition by gamma/delta T cells. Annu Rev Immunol. 14:511-32.
    23 Allison, TA, Winter, CC, Fournie, JJ, Bonneville, M, and Garboczi, DN. Structure of a human gamma delta T-cell antigen receptor. (2001). Nature 411, 820-824.
    24 Bork, P., Holm, L. and Sander, C (1994). The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol 242, 309-320.
    25 Fields, BA, Ober, B., Malchiodi, EL, Lebedeva, MI,Braden, BC, Ysern, X., Kim, JK, Shao, X., Ward, ES, Mariuzza, RA (1995). Crystal structure of the Va domain of a T cell antigen receptor. Science, 270, 1821-1824.
    26 Garcia, K. C, Degano, M, Stanfield, R. L, Brunmark, A, Jackson, M. R, Peterson, P. A, Teyton, L, & Wilson, I. A. (1996) Structural basis of plasticity in T-Cell receptor recognition of a self peptide MHC antigen Science 274, 209-219.
    27 Garboczi, DN, Ghosh, P., Utz., U., Fan, QR, Biddison, WE and Wiley, DC (1996). Structure of the Complex between Human T Cell Receptor, Viral Peptide, and HLA-A2, Nature 384, 134-141
    28 Rock EP, Sibbald PR, Davis MM, Chien YH. (1994). CDR3 length in antigen-specific immune receptors. J Exp Med 179: 323-328
    29 Davodeau F, Peyrat MA, Hallet MM, Houde I, Vie H, BonneviUe M. (1993). Peripheral selection of antigen receptor junctional features in a major human gamma delta subset. Eur J Immunol. 23(4): 804-8.
    30 Panchamoorthy G, McLean J, Modlin RL, Morita CT, Ishikawa S, Brenner MB, Band H. (1991). A predominance of the T cell receptor V gamma 2/V delta 2 subset in human mycobacteria-responsive T cells suggests germline gene encoded recognition. J Immunol. 147(10):3360-9.
    31 Adams EJ, Chien YH, Garcia KC. Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22. Science 2005; 308:227-231.
    32 C. T. Morita, R. A. Mariuzza, M. B. Brenner, Springer Semin. Immunopathol. 22, 191 (2000).
    33 S. R. Carding et al., J. Exp. Med. 172, 1225 (1990).
    34 K. C. Garcia et al., Science 274, 209 (1996).
    35 Shin S, et al. Antigen recognition determinants of gammadelta T cell receptors. Science 2005; 308:252-255.
    36 Chien YH, Konigshofer Y. Antigen recognition by γδT cells. Immunol. Rev. 2007; 215: 46-58
    37 O'Brien R.L, et al. γδT-cell receptors: functional correlations. Immunol. Rev. 2007; 215: 77-88
    38 Ehrich EW, Devaux B, Rock EP, Jorgensen JL, Davis MM, Chien YH. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J Exp Med 1993; 178:713-722.
    39 Schild H, et al. The nature of major histocompatibility complex recognition by gamma delta T cells. Cell 1994; 76:29-37.
    40 Fremont DH, Dai S, Chiang H, Crawford F, Marrack P, Kappler J. Structural basis of cytochrome c presentation by IE(k). J Exp Med 2002; 195:1043-1052.
    41 Sciammas R, Bluestone JA. HSV-1 glycoprotein I-reactive TCR gamma delta cells directly recognize the peptide backbone in a conformationally dependent manner. J Immunol 1998; 161:5187-5192.
    42 Wu J, Groh V, Spies T. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial gamma delta T cells. J Immunol 2002; 169:1236-1240.
    43 Scotet E, et al. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 2005; 22: 71-80.
    44 Hampl J, Schild H, Litzenberger C, Baron M, Crowley MP, Chien YH. The specificity of a weak gamma delta TCR interaction can be modulated by the glycosylation of the ligand. J Immunol 1999; 163:288-294.
    45 Villanueva MS, Beckers CJ, Pamer EG. Infection with Listeria monocytogenes impairs sialic acid addition to host cell glycoproteins. J Exp Med 1994; 180:2137-2145.
    46 Wittel UA, Goel A, Varshney GC, Batra SK. Mucin antibodies - new tools in diagnosis and therapy of cancer. Front Biosci 2001; 6:D1296-D1310.
    47 Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H. (2003). Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett. 544(1-3):4-10.
    48 Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197:163-168.
    49 Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys 2000; 373:231-241.
    50 Thompson K, Rojas-Navea J, Rogers MJ. Alkylamines cause Vgamma9Vdelta2 T-cell activation and proliferation by inhibiting the mevalonate pathway. Blood 2006; 107:651-654.
    51 Bukowski JF, Morita CT, Band H, Brenner MB. Crucial role of TCR gamma chain junctional region in prenyl pyrophosphate antigen recognition by gamma delta T cells. J Immunol 1998; 161:286-293.
    52 Miyagawa F, et al. Essential contribution of germline-encoded lysine residues in Jgamma1.2 segment to the recognition of nonpeptide antigens by human gammadelta T cells. J Immunol 2001; 167:6773-6779.
    53 Groh, V., A. Steinle, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 1998; 279:1737-1740.
    54 Groh, V., R. Rhinehart, H. Secrist, S. Bauer, K. H. Grabstein, and T. Spies. 1999. Broad tumor-associated expression and recognition by tumor-derived γδT cells of MICA and MICB. Proc. Natl. Acad. Sci. USA 96:6879.
    55 Halary F, et al. Shared reactivity of Vdelta2neg gammadelta T cells against cytomegalovirusinfected cells and tumor intestinal epithelial cells. J Exp Med 2005;201:1567-1578.
    56 Spada FM, et al. Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 2000; 191:937-948.
    57 Poccia F, Agrati C, Martini F, Capobianchi MR, Wallace M, Malkovsky M. Antiviral reactivities of gammadelta T cells. Microbes Infect 2005; 7:518-528.
    58 Flament C, Benmerah A, Bonneville M, Triebel F, Mami-Chouaib F. Human TCR-gamma/delta alloreactive response to HLA-DR molecules. Comparison with response of TCR-alpha/beta. J Immunol 1994; 153:2890-2904.
    59 Bonneville M, Fournie JJ. Sensing cell stress and transformation through Vgamma9Vdelta2 T cell-mediated recognition of the isoprenoid pathway metabolites. Microbes Infect 2005;7:503-509.
    60 Espinosa E, Belmant C, Sicard H, Poupot R, Bonneville M, Fournie JJ. Y2Ktl state-of-theart on non-peptide phosphoantigens, a novel category of immunostimulatory molecules. Microbes Infect 2001;3:645-654.
    61 Poupot M, Fournie JJ. Non-peptide antigens activating human Vgamma9/Vdelta2 T lymphocytes. Immunol Lett 2004;95:129-138.
    62 Bonneville M, Scotet E. Human Vγ9Vδ2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 2006; 18:539-546.
    63 Shiflett AM, Bishop JR, Pahwa A, Hajduk SL. Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J Biol Chem 2005;280:32578-32585.
    64 Beckman EM, Melian A, Behar SM, Sieling PA, Chatterjee D, Furlong ST, Matsumoto R, Rosat JP, Modlin RL, Porcelli SA. (1996). CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by asecond member of the human CD1 family. J Immunol. 157(7):2795-803
    65 Porcelli SA. (1995). The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol. 59:1-98.59:1-98.
    66 Spada FM, Grant EP, Peters PJ, Sugita M, Melian A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB. (2000). Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med. 191(6):937-48.
    67 Porcelli S, Brenner MB, Greenstein JL, Balk SP, Terhorst C, Bleicher PA. (1989). Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature. 341(6241):447-50.
    68 Faure F, Jitsukawa S, Miossce C, Hercend T. (1990). CD1c as a target recognition structure for human T lymphocytes: analysis with peripheral blood gamma/delta cells. Eur J Immunol. 20(3):703-6.
    69 Zwirner N W, Dole K, Stastny P. (1999). Differential surface expression of MICA by endothelial cells, fibroblasts, keratinocytes, and monocytes. Hum Immunol. 60: 323-30.
    70 Zwirner NW, Fernandez-Vina MA, Stastny P. (1998). MICA, a new polymorphic HLA- related antigen, is expressed mainly by keratinocytes, endothelial cells, and monocytes. Immunogenetics. 47(2): 139-48.
    71 Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T. 1996. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci U S A. 93 (22): 12445-50.
    72 Li, P., S. T. Willie, S. Bauer, D. L. Morris, T. Spies, and R. K. Strong. 1999. Crystal structure of the MHC class I homolog MHC-A, a γδ T cell ligand. Immunity, 10(5): 577-584
    73 Bauer S, Groh V, Wu J et al. (1999). Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 285 (5428): 727-9.
    74 Sophie Hue, etal. (2003). Potential role of NKG2D/MHC class I-related chain A interaction in intrathymic maturation of single-positive CD8 T cells. J Immunology 171:1909-17.
    75 Kristina Somersalo, etal. (2004). Cytotoxic T lymphocytes form an antigen-independent ring junction. J Clin. Invest. 113(1):49-57
    76 Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T. C. (2001). Costimulation of CD8 alpha beta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. Mar; 2 (3): 255-60.
    77 Hisashi Arase, etal. (2002). Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science. 296:1323-6
    78 Groh, V. Jennifer Wu, Cassian Yee & Thomas Spies. (2002). Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 419: 734-738
    79 Zhao J, Huang J, Chen H, Cui L, He W. Vdeltal T cell receptor binds specifically to MHC I chain related A: molecular and biochemical evidences. Biochem Biophys Res Commun 2006;339:232-240.
    80 Jennifer Wu, Veronika Groh, Thomas Spies. (2002). T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial γδT cells. J Immunology. 169:1236-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700