用户名: 密码: 验证码:
新型~(18)F标记的氨基酸类正电子发射断层显像药物前体的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子发射断层显像(PET)是近年来迅速发展起来的一种先进的核医学诊断技术,在临床上已广泛用于肿瘤、神经精神疾病和心血管疾病等的诊断和基础研究。PET的应用和发展离不开PET显像药物,标记显像药物所用放射性核素氟-18(~(18)F)以其具有相对长的半衰期、允许有较充足的药物标记和显像研究时间、其类氢特性不会引起标记分子的空间结构和生物活性发生明显改变等优点受到人们的关注。但目前临床上常用的氟-18(~(18)F)PET显像药物非常单一,传统药物[~(18)F]FDG在病情诊断方面存在一定的局限性,因此开发和筛选其它适宜的~(18)F标记药物前体以及成功标记~(18)F的工作成为了目前研究的重点。
     本文研究的主要内容是合成易于~(18)F进行饱和碳链上亲核标记的氨基酸类和肾上腺素类放射性显像药物前体,具体如下:
     针对传统多巴胺代谢显像剂6-[~(18)F]氟-L-多巴亲核标记前体合成繁琐、直接向多巴的芳香环上引入~(18)F困难等问题,我们以L-多巴为起始原料,通过简单的合成方法得到了L-多巴芳环的3位C-O侧链上连有易离去基团、便于~(18)F进行亲核标记的目标产物。
     以L-苯丙氨酸、L-酪氨酸和L-多巴为起始原料,在温和的反应条件下,经过一系列碘化反应、基团保护反应及与丁炔醇端位炔的Sonogashira交叉偶联反应等得到了三个芳香环上连有C-C侧链的新型~(18)F标记前体。这些前体的C-C侧链上连有易离去基团,可与~(18)F发生脂肪族亲核取代反应。引入侧链的方法虽然改变了原料的结构,但并不会影响其活性基团,同时这些化合物易于标记~(18)F、在体内代谢稳定,非常适于作为显像剂前体。
     以提取自植物的脱氧肾上腺素(辛弗林)为原料,制备了C-O侧链上连有易离去基团、可用于亲核氟化标记反应的PET心肌交感神经受体显像剂前体,这一方法合成步骤简便,所得目标产物收率较高。
Positron Emission Tomography (PET) is a powerful medical imaging method that has found wide applications in the last decade for research and clinical diagnosis of tumor, neuropsychosis and cardiovascular disease. PET radiopharmaceticals play an important role in application and development of PET. One of the positron emitting isotopes is fluorine-18 that is often used as a substitute for hydrogen in organic molecules with a half-life of 110 minutes which allows complex synthesis and detailed imaging studies and similar properties of hydrogen. However, there is few fluorine-18 labeled imaging agents can be used for clinical diagnosis except [~(18)F]FDG. Exploitation and screening of other precursors of fluorine-18 radiopharmaceticals and successful labeling fluorine-18 has become the high light in the PET research field now.
     Here synthesis of the new precursors of ~(18)F-labeled amino acids and ~(18)F-structural analogues of norepinephrine radiopharmaceuticals was described in this paper.
     Some main factors limiting the development of ~(18)F-labeled radiopharmaceuticals are the complicated preparation steps to synthesis of the precursors used in nucleophilic fluorination and the low radiochemical yield of nucleophilic aromatic substitution. So we designed the target products which have the good leaving groups on the C-O side chain and could proform aliphatic nucleophilic displacement. Methanesulfonate ethyl, methylbenzenesulfonate ethyl and nitrobenzenesulfonate ethyl were introduced into 3-phenolic hydroxyl group of L-DOPA to give the precursors of O-(3-[~(18)F]fluoroethyl)-L-DOPA by simple experimental procedure.
     The precursors of ~(18)F-labeled fluorobutyl-L-phenylalanine, ~(18)F-labeled fluorobutyl-L-tyrosine and ~(18)F-labeled fluorobutyl-L-DOPA were synthesized from L-phenylalanine, L-tyrosine and L-DOPA through iodination reaction, group protection and Sonogashira cross-coupling reaction with but-3-yn-1-ol and so on under mild reaction conditions. The method for introducing C-C side chain with good leaving group changed the structure of materials, but the changes didn’t affect the active groups of the amino acids. As the three prepared stable non-natural amino acid analogues were slowly metabolized in vivo, the pharmacokinetic analysis became quite simple and little defluorination was observed when they were labeled by fluorine-18.
     Synephrine extracted from plant was a kind of adrenergic agonist and could be used to prepare the precursors which had the good leaving groups on the C-O side chain and could proform aliphatic nucleophilic displacement with good yields. After completion of Fluorine-18 labeling, the agents could be used in assessment of the integrity of cardiac sympathetic nervous system with PET.
引文
1.王世真,周前.核医学正迈进PET时代.国外医学放射医学核医学分册, 1997, 21, 244-248.
    2.张岚, 6-[18F]氟-L-多巴的制备及其临床前实验研究: [博士学位论文],上海;中国科学院上海原子核研究所, 2002.
    3. Wahl, R. L., Eds. Principles and Practice of Positron Emission Tomography. Lippincott Williams & Wilkins: Philadelphia, 2003.
    4. Tamaki, N.; Kuge, Y., Eds. PET and molecular imaging: state of the art and future perspectives. International Congress Series, 1264. Elsevier Science: New York, 2004.
    5. Gardner S. F.; Green J. A.; Bednarczyk E. M.; Farnett, L.; Miraldi, F. Principles and clinical applications of positron emission tomography. Am. J. Health Syst. Pharm., 1992, 49, 1499-1506.
    6. Phelps, M. E.; Mazziotta, J. C.; Schelbert, H. R., Eds. Positron Emission Tomography and autoradiography: principal applications for the brain and the heart. Raven Press: New York, 1986.
    7.唐刚华.正电子发射断层显像及其在医药学研究中的应用.中国药科大学学报, 2002, 33, 1-5.
    8. Fowler, J. S.; Wolf, A. P. Working against time: rapid radiotracer synthesis and imaging the human brain. Acc. Chem. Res., 1997, 30, 181-188.
    9. Elsinga, P. H. Radiopharmaceutical chemistry for position emission tomography. Methods, 2002, 27, 208-217.
    10. Schlyer, D. J. PET tracer and radiochemistry. Annals Academy Med., 2004, 33, 146-154.
    11. Smart, B. E. Fluorine substituent effects (on bioactivity). J. Fluorine Chem., 2001, 109, 3-11.
    12. Ding, Y.-S. 18F-labeled biomolecules for PET studies in the neurosciences. J. Fluorine Chem., 2000, 101, 291-295.
    13. Varagnolo, L.; Stokkel, M. P. M.; Mazzi, U.; Pauwels, E. K. J. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl. Med. Biol., 2000, 27, 103-112.
    14. Beuthien-Baumann, B.; Hamacher, K.; Oberdorfer, F.; Steinbach, J. Preparation of fluorine-18 labelled sugars and derivatives and their application as tracer for positron-emission-tomography. Carbohydr. Res., 2000, 327, 107-118.
    15. Katzenellenbogen, J. A. Steroids labeled with 18F for imaging tumors by positron emission tomography. J. Fluorine Chem., 2001, 109, 49-54.
    16. Couturier, O.; Luxen, A.; Chatal, J.-F.; Vuillez, J.-P.; Rigo, P.; Hustinx, R. Fluorinated tracers for imaging cancer with positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31, 1182-1206.
    17. Helus, F.; Maier-Borst, W.; Sahm, U.; Wiebe, L. I. F-18 cyclotron production methods. Radiochem. Radioanal. Lett., 1979, 38, 395-401.
    18. Guillaume, M.; Luxen, A.; Nebeling, B.; Agentini, M.; Clark, J. C.; Pike, V. W. Recommendations for fluorine-18 production. Appl. Radiat. Isot., 1991, 42, 749-762.
    19. Nickles, R. J.; Hichwa, R. D.; Daube, M. E.; Hutchins, G. D.; Congdon, D. D. An 18O2-target for the high yield production of 18F-fluoride. Appl. Radiat. Isot., 1983, 34, 625-629.
    20. Shiue, C. Y.; Salvadori, P. A.; Wolf, A. P.; Fowler, J. S.; MacGregor, R. R. A new improved synthesis of 2-Deoxy-2-[18F]Fluoro-D-Glucose from 18F-Labeled acetyl hypofluorite. J. Nucl. Med., 1982, 23, 899-903.
    21. Chirakal, R.; Firnau, G.; Schrobilgen, G. J.; Mckay, J.; Garnett, E. S. The synthesis of [18F]Xenon difluoride from [18F]fluoride gas. Appl. Radiat. Isot., 1984, 35, 401-404.
    22. Attiná, M.; Cacace, F.; Walt, A. Labeled aryl fluorides from the nucleophilic displacement of activated nitro groups by 18F-F-. J. Label. Compd. Radiopharm., 1983, 20, 501-514.
    23. Brodack, J. W.; Dence, C. S.; Kilbourn, M. R.; Welch, M. J. Robotic production of 2-deoxy-2[18F]fluoro-D-glucose: A routine method of synthesis using tetrabutylammonium [18F]fluoride. Appl. Radiat. Isot., 1988, 39, 699-703.
    24. Irie, T.; Fukushi, K.; Ido, T.; Nozaki, T.; Kasida, Y. 18F-Fluorination by crown ether—metal fluoride: (I) On labeling 18F-21-fluoroprogesterone. Appl. Radiat. Isot., 1982, 33, 1449-1452.
    25. Luxen, A.; Satyamurthy, N.; Bida, G. T.; Barrio, J. R. Stereospecific approach to the synthesis of [18F]2-deoxy-2-fluoro-D-mannose. Appl. Radiat. Isot., 1986, 37, 409-413.
    26. Kim, D. W.; Choe, Y. S.; Chi, D. Y. A new nucleophilic fluorine-18 labeling method for aliphatic mesylates: reaction in ionic liquids shows tolerance for water. Nucl. Med. Biol., 2003, 30, 345-350.
    27. Stone-Elander, S.; Elander, N. Microwave applications in radiolabelling with short-lived positron-emitting radionuclides. J. Label. Compd. Radiopharm., 2002, 45, 715-746.
    28. Ding, Y.-S.; Shiue, C.-Y.; Fowler, J. S.; Wolf, A. P.; Plenevaux, A. No-carrier-added (NCA) aryl [18F]fluorides via the nucleophilic aromatic substitution of electron-rich aromatic rings. J. Fluorine Chem., 1990, 48, 189-205.
    29. Kaneko, S.; Ishiwata, K.; Hatano, K.; Omura, H.; Ito, K.; Senda, M. Enzymatic synthesis of no-carrier-added 6-[18F]fluoro-L-dopa withβ-tyrosinase. Appl. Radiat. Isot., 1999, 50, 1025-1032.
    30.唐刚华;张岚;唐小兰;汪勇先;尹端沚. 6-氟-L-多巴合成及其对映纯度测定的研究.药学学报, 2001, 36, 739-742.
    31. Zhang, L.; Tang, G.; Yin, D.; Tang, X.; Wang, Y. Enantioselective synthesis of no-carrier-added (NCA) 6-[18F]fluoro-L-DOPA. Appl. Radiat. Isot., 2002, 57, 145-151.
    32. Yin, D.; Zhang, L.; Tang, G.; Tang, X.; Wang, Y. Enantioselective synthesis of no-carrier-added (NCA) 6-[18F]fluoro-L-DOPA. J. Radioanal. Nucl. Chem., 2003, 257, 179-185.
    33. Lemaire, C.; Gillet, S.; Guillouet, S.; Plenevaux, A.; Aerts, J.; Luxen, A. Highly enantioselective synthesis of no-carrier-added 6-[18F]Fluoro-L-dopa by chiral phase-transfer alkylation. Eur. J. Org. Chem., 2004, 2899-2904.
    34. Palmer, A. J.; Clark, J. C.; Goulding, R. W. The preparation of fluorine-18 labelled radiopharmaceuticals. Appl. Radiat. Isot., 1977, 28, 53-65.
    35. Kn(?)chel, A.; Zwernemann, O. Development of a no-carrier-added method for 18F-labelling of aromatic compounds by fluorodediazonation. J. Label. Compd. Radiopharm., 1996, 38, 325-336.
    36. Pike, V. W.; Aigbirhio, F. I. Reactions of cyclotron-produced [18F]fluoride with diaryliodonium salts—a novel single-step route to no-carrier-added [18]fluoroarenes. J. Chem. Soc., Chem. Commun., 1995, 2215-2216.
    37. Shah, A.; Pike, V. W.; Widdowson, D. A. The synthesis of [18F]fluoroarenes from the reaction of cyclotron-produced [18F]fluoride ion with diaryliodonium salts. J. Chem. Soc., Perkin Trans. 1, 1998, 2043-2046.
    38. Pike, V. W.; Butt, F.; Shah, A.; Widdowson, D. A. Facile synthesis of substituted diaryliodonium tosylates by treatment of aryltributylstannanes with Koser’s reagent. J. Chem. Soc., Perkin Trans. 1, 1999, 245-248.
    39. Wust, F. R.; Kniess, T. Synthesis of 4-[18F]fluoroiodobenzene and its application in sonogashira cross-coupling reactions. J. Label. Compd. Radiopharm., 2003, 46, 699-713.
    40. Ermert, J.; Hocke, C.; Ludwig, T.; Gail, R.; Coenen, H. H. Comparison ofpathways to the versatile synthon of no-carrier-added1-bromo-4-[18F]fluorobenzene. J. Label. Compd. Radiopharm., 2004, 47,429-441.
    41. Wust, F. R.; Kniess, T. No-carrier added synthesis of 18F-labelled nucleosidesusing Stille cross-coupling reactions with 4-[18F]fluoroiodobenzene. J. Label.Compd. Radiopharm., 2004, 47, 457-468.
    42. Wadsworth, H. J.; Widdowson, D. A.; Wilson, E.; Carroll, M. A. Radical trap influoridation of iodonium salt. WO 2005/061415, 2005.
    43. Wadsworth, H. J.; Devenish, T. Fluoridation method. WO 2005/097713, 2005.
    44. Carroll, M. A.; Kamara, L. M.; Widdowson, D. A.; Pike, V. W. Studies towards6-[18F]Fluorodopa using iodonium salts: preparation of 6-Fluoro-m-tyramine. J.Label. Compd. Radiopharm., 2005, 48, 519-520.
    45. Laverman, P.; Boerman, O. C.; Corstens, F. H. M.; Oyen, W. J. G. Fluorinatedamino acids for tumor imaging with positron emission tomography. Eur. J. Nucl.Med. Mol. Imaging, 2002, 29, 681-690.
    46. Heiss, W. D.; Hilker, R. The sensitivity of 18-fluorodopa positron emissiontomography and magnetic resonance imaging in Parkinson's disease. Eur. J.Neurol., 2004, 11, 5-12.
    47. Eckert, T.; Eidelberg, D. Neuroimaging and therapeutics in movement disorders.NeuroRx, 2005, 2, 361-371.
    48. Hoegerle, S.; Altehoefer, C.; Ghanem, N.; Brink, I.; Moser, E.; Nitzsche, E.18F-DOPA positron emission tomography for tumour detection in patients withmedullary thyroid carcinoma and elevated calcitonin levels. Eur. J. Nucl. Med.Mol. Imaging, 2001, 28, 64-71.
    49. Pauwels, T.; Dethy, S.; Goldman, S.; Monclus, M.; Luxen, A. Effect ofcatechol-O-methyl transferase inhibition on peripheral and central metabolism of6-[18F]fluoro-L-DOPA. Eur. J. Pharmacol., 1994, 257, 53-58.
    50. Culbert, P. A.; Adam, M. J.; Jivan, S. Facile synthesis ofN-trifluoroacetyl-3,4-dimethoxy-6-trimethyl-stannylphenethylamine: Aconvenient precursor to 6-[18F]Fluorodopamine Appl. Radiat. Isot., 1995, 46,883-885.
    51. Dolle, F.; Demphel, S.; Hinnen, F.; Fournier, D.; Vaufrey, F.; Crouzel, C.6-[18F]Fluoro-L-DOPA by radiofluorodestannylation: a short and simplesynthesis of a new labeling precursor. J. Label. Compd. Radiopharm., 1998, 41,105-114.
    52. Füchtner, F.; Angelberger, P.; Kvaternik, H.; Hammerschmidt, F.; Simovsc, B. P.; Steinbach, J. Aspects of 6-[18F]fluoro-L-DOPA preparation: precursor synthesis, preparative HPLC purification and determination of radiochemical purity. Nucl. Med. Biol., 2002, 29, 477-481.
    53. Luthra, S. K.; Brady, F.; Wadsworth, H. J. Solid-phase electrophilic fluorination. WO 03/002489, 2003.
    54. Arukwe, J.; Black, A. M. A.; Brown, J.; Carroll, M. A.; Devenish, P. A.; Jiang, S.; Jones, C. L.; Nairne, R. J. D.; Olsson, A.; Wadsworth, H. J.; Widdowson, D. A.; Wilson, E. M. F. Toward [F-18]F-Dopa: The Introduction of [F-18]Fluoride into Electron-rich Aromatic Systems via Iodonium Salts (Abstract), Annual Congress of the European Association of Nuclear Medicine, Helsinki, September 2004.
    55. VanBrocklin, H. F.; Blagove, M.; Hoepping, A.; O’Neil, J. P.; Klose, M.; Schubiger, P. A.; Ametamey, S. A new precursor for the preparation of 6-[18F]Fluoro-L-m-tyrosine ([18F]FMT): efficient synthesis and comparison of radiolabeling. Appl. Radiat. Isot., 2004, 61, 1289-1294.
    56. Beuthien-Baumann, B.; Bredow, J.; Burchert, W.; Füchtner, F.; Bergmann, R.; Alheit, H.-D.; Reiss, R.; Hliscs, R.; Steinmeier, R.; Franke, W.-G.; Johannsen, B.; Kotzerke, J. 3-O-Methyl-6-[ 18F]fluoro-L-DOPA and its evaluation in brain tumour imaging. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30, 1004-1008.
    57. Chirakal, R.; Firnau, G.; Garnet, E. S. High yield synthesis of 6-[18F]Fluoro-L-Dopa. J. Nucl. Med., 1986, 27, 417-421.
    58. Adam, M. J.; Jivan, S. Synthesis and separation of 3-O-Methyl-2- and 6-[18F]-fluorodopa. J. Label. Compd. Radiopharm., 1992, 31, 39-43.
    59. Adam, M. J.; Lu, J.; Jivan, S. Stereoselective synthesis of 3-O-methyl-6-[18F]fluorodopa via fluorodestannylation. J. Label. Compd. Radiopharm., 1994, 34, 565-570.
    60. Füchtner, F.; Steinbach, J. Efficient synthesis of the 18F-labelled 3-O-methyl-6-[18F]fluoro-L-DOPA. Appl. Radiat. Isot., 2003, 58, 575-578.
    61. Wester, H. J.; Herz, M.; Weber, W.; Heiss, P.; Senekowitsch-Schmidtke, R.; Schwaiger, M.; St-cklin, G. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-Tyrosine for tumor imaging. J. Nucl. Med., 1999, 40, 205-212.
    62. Weber, W. A.; Wester, H. J.; Grosu, A. L.; Herz, M.; Dzewas, B; Feldmann, H.-J.; Molls, M.; St-cklin, G.; Schwaiger, M. O-(2-[18F]Fluoroethyl)-L-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur. J. Nucl. Med. Mol. Imaging, 2000, 27, 542-549.
    63. P(?)pperl, G.; G-tz, C.; Rachinger, W.; Gildehaus, F.-J.; Tonn, J.-C.; Tatsch, K. Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur. J. Nucl. Med. Mol. Imaging, 2004, 31, 1464–1470.
    64. Wang, H.-E.; Wu, S.-Y.; Chang, C.-W.; Liu, R.-S.; Hwang, L.-C.; Lee, T.-W.; Chen, J.-C.; Hwang, J.-J. Evaluation of F-18-labeled amino acid derivatives and [18F]FDG as PET probes in a brain tumor-bearing animal model. Nucl. Med. Biol., 2005, 32, 367-375.
    65. Tang, G.; Wang, M.; Tang, X.; Luo, L.; Gan, M. Pharmacokinetics and radiation dosimetry estimation of O-(2-[18F]fluoroethyl)-L-tyrosine as oncologic PET tracer. Appl. Radiat. Isot., 2003, 58, 219-225.
    66. Hamacher, K.; Coenen, H. H. Efficient routine production of the 18F-labelled amino acid O-(2-[18F]fluoroethyl)-L-tyrosine. Appl. Radiat. Isot., 2002, 57, 853-856.
    67. Wienhard, K.; Herholz, K.; Coenen, H. H.; Rudolf, J.; Kling, P.; Stocklin, G.; Heiss, W. D. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)Fluorotyrosine. J. Nucl. Med., 1991, 32, 1338-1346.
    68. Hustinx, R.; Lemaire, C.; Jerusalem, G.; Moreau, P.; Cataldo, D.; Duysinx, B.; Aerts, J.; Fassotte, M.-F.; Foidart, J.; Luxen, A. A combined PET/CT scanner: the choices. J. Nucl. Med., 2003, 42, 533-539.
    69. Coenen, H. H.; Franken, K.; Kling, P.; St-cklin, G. Direct electrophilic radiofluorination of phenylalanine, tyrosine and dopa. Appl. Radiat. Isot., 1988, 39, 1243-1250.
    70. Lemaire, C.; Plenevaux, A.; Damhaut, P.; Guillaume, M.; Christiaens, L.; Comar, D. NCA asymmetric synthesis of 2-[18F]fluoro-L-tyrosine. J. Label. Compd. Radiopharm., 1993, 32, 139-140.
    71. Hess, E.; Sichler, S.; Kluge, A.; Coenen, H. H. Synthesis of 2-[18F]fluoro-L-tyrosine via regiospecific fluoro-de-stannylation. Appl. Radiat. Isot., 2002, 57, 185-191.
    72. Tomiyoshi, K.; Amed, K.; Muhammad, S.; Higuchi, T.; Inoue, T.; Endo, K.; Yang, D. Synthesis of isomers of 18F-labelled amino acid radiopharmaceutical: position 2- and 3-L-18F-alpha-methyltyrosine using a separation and purification system. Nucl. Med. Commun., 1997, 18, 169-175.
    73. Inoue, T.; Shibasaki, T.; Oriuchi, N.; Aoyagi, K.; Tomiyoshi, K.; Amano, S.; Mikuni, M.; Ida, I.; Aoki, J.; Endo, K. 18Fα-Methyl Tyrosine PET Studies in Patients with Brain Tumors. J. Nucl. Med., 1999, 40, 399-405.
    74. Inoue, T.; Koyama, K.; Oriuchi, N.; Alyafei, S.; Yuan, Z.; Suzuki, H.; Takeuchi, K.; Tomaru, Y.; Tomiyoshi, K.; Aoki, J.; Endo, K. Detection of Malignant Tumors: Whole-Body PET with Fluorine-18α-Methyl Tyrosine versus FDG preliminary Study Radiology, 2001, 220, 54-62.
    75. Watanabe, H.; Inoue, T.; Shinozaki, T.; Yanagawa, T.; Ahmed, A. R.; Tomiyoshi, K.; Oriuchi, N.; Tokunaga, M.; Aoki, J.; Endo, K. Takagishi, K. PET imaging of musculoskeletal tumours with fluorine-18α-methyltyrosine: comparison with fluorine-18 fluorodeoxyglucose PET. Eur. J. Nucl. Med. Mol. Imaging, 2000, 27, 1509-1517.
    76. Moon, B. S.; Lee, T. S.; Lee, K. C.; An, G. I.; Cheon, G. J.; Lim, S. M.; Choi, C. W.; Chi, D. Y.; Chun, K. S. Syntheses of F-18 labeled fluoroalkyltyrosine derivatives and their biological evaluation in rat bearing 9L tumor. Bioorg. Med. Chem. Lett. 2007, 17, 200-204.
    77. Hoyte, R. M.; Lin, S. S.; Christman, D. R.; Atkins, H. L.; Hauser, W.; Wolf, A.P. Organic radiopharmaceuticals labeled with short-lived nuclides III. 18F-labeled phenylalanines. J. Nucl. Med., 1971, 12, 280-286.
    78. Lemaire, C.; Guillaume, M.; Christiaens, L.; Palmer, A. J.; Cantineau, R. A new route for the synthesis of [18F]fluoroaromatic substituted amino acids: No carrier added L-p-[18F]fluorophenylalanine. Appl. Radiat. Isot., 1987, 38, 1033-1038.
    79. Murakami, M.; Takahashi, K.; Kondo, Y.; Mizusawa, S.; Nakamichi, H.; Sasaki, H.; Hagami, E.; Iida, H.; Kanno, I.; Miura, S.; Uemura, K. The comparative synthesis of 18F-fluorophenylalanines by electrophilic substitution with 18F-F2 and 18F-AcOF. J. label. Compds. Radiopharm., 1988, 25, 573-578.
    80. Shoup, T. M.; Olson, J.; Hoffman, J. M.; Votaw, J.; Eshima, D.; Eshima, L.; Camp, V. M.; Stabin, M.; Votaw, D.; Goodman, M. M. Synthesis and evaluation of [18F]1-Amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J. Nucl. Med., 1999, 40, 331-338.
    81. Shoup, T. M.; Goodman, M. M. Synthesis of [F-18]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC): a PET tracer for tumor delineation. J. Label. Compd. Radiopharm., 1999, 42, 215-225.
    82. Martarello, L.; McConathy, J.; Camp, V. M.; Malveaux, E. J.; Simpson, N. E.; Simpson, C. P.; Olson, J. J.; Bowers, G. D.; Goodman, M. M. Synthesis of syn- and anti-1-Amino-3-[18F]fluoromethyl-cyclobutane-1-carboxylic acid (FMACBC), potential PET ligands for tumor detection. J. Med. Chem., 2002, 45, 2250-2259.
    83. B(?)rner, A. R.; Langen, K.-J.; Herzog, H.; Hamacher, K.; Müller-Mattheis, V.; Schmitz, T.; Ackermann, R.; Coenen, H. H. Whole-body kinetics and dosimetry of cis-4-[18F]fluoro-L-proline. Nucl. Med. Biol., 2001, 28, 287-292.
    84. Langen, K.-J.; Jarosch, M.; Hamacher, K.; Mühlensiepen, H.; Weber, F.; Floeth, F.; Pauleit, D.; Herzog, H.; Coenen, H. H. Imaging of gliomas with cis-4-[18F]fluoro-L-proline. Nucl. Med. Biol., 2004, 31, 67-75.
    85. Langen, K.-J.; Hamacher, K.; Bauer, D.; B-rner, S.; Pauleit, D.; Herzog, H.; Floeth, F. W.; Zilles, K.; Coenen, H. H. Preferred stereoselective transport of the D-isomer of cis-4-[18F]fluoro-proline at the blood–brain barrier. J. Cereb. Blood Flow Metab., 2005, 25, 607-616.
    86. Hamacher, K. Synthesis of n.c.a. cis- and trans-4-[18F]fluoro-L-proline, radiotracer for PET-investigation of disordered matrix protein synthesis. J. Label. Compd. Radiopharm., 1999, 42, 1135-1142.
    87. Luxen, A.; Guillaume, M.; Melega, W. P.; Pike, V. W.; Solin, O.; Wagner, R. Production of 6-[18F]fluoro-L-DOPA and its metabolism in vivo—a critical review, Nucl. Med. Biol., 1992, 19, 149-158.
    88. Firnau, G.; Firnau, G., Chirakal, R.; Garnett, E. S. Aromatic radiofluorination with [18F]fluorine gas: 6-[18F]fluoro-L-DOPA. J. Nucl. Med., 1984, 25, 1228-1233.
    89. Luxen, A.; Barrio, J. R. Fluorination of substituted veratroles via regioselective mercuration. Tetrahedron Lett., 1988, 29, 1501-1504.
    90. Schrecker, A. W.; Hartwell, J. T. The absolute configuration of lignans. J. Am. Chem. Soc., 1957, 79, 3827-3831.
    91. Lemaire, C.; Guillaume, M.; Cantineau, R.; Christiaens, L. No-carrier-added regioselective preparation of 6-[18F]Fluoro-L-Dopa. J. Nucl. Med., 1990, 31, 1247-1251.
    92. Lemaire, C.; Guillaume, M.; Cantineau, R.; Plenevaux, A.; Christiaens, L. An approach to the asymmetric synthesis of L-6-[18F]fluorodopa via NCA nucleophilic fluorination. Appl. Radiat. Isot., 1991, 42, 629-635.
    93. Furlano, D. C.; Kirk, K. L. An improved synthesis of 4-fluoroveratrole. Efficient route to 6-fluoroveratraldehyde and 6-fluoro-D, L-DOPA. J. Org. Chem., 1986, 51, 4073-4075.
    94. Lemaire, C.; Damhaut, P.; Plenevaux, A.; Comar, D. Enantioselective synthesis of 6-[fluorine-18]-fluoro-L-Dopa from no-carrier-added fluorine-18-fluoride. J. Nucl. Med., 1994, 35, 1996-2002.
    95.王明伟;尹端沚;程登峰;李谷才;郑明强;周伟;汪勇先.直接亲核放射氟化法合成O-(2-[18F]氟乙基)-L-酪氨酸.核技术, 2006, 29, 522-526.
    96. Schirrmacher, R.; Comagic, S.; Schirrmacher, E.; R-sch, F. Synthesis of a technetium-99m labelled L-tyrosine derivative with the fac-99mTc(I)(CO)3-core using a simple kit-procedure. J. Labelled Compd. Radiopharm., 2004, 47, 477-483.
    97. Sichler, S.; Kluge, A. Precursor for radiodiagnostic agents and the production thereof. WO 2001/027122, 2001.
    98. Wechalekar, K.; Sharma, B.; Cook, G. PET/CT in oncology—a major advance. Clin. Radiol., 2005, 60, 1143-1155.
    99. Fowler, J. S.; Volkow, N. D.; Wang, G.-J.; Ding, Y.-S.; Dewey, E. L. PET and drug research and development. J. Nucl. Med., 1999, 40, 1154-1163.
    100. Phelps, M. E. PET: the merging of biology and imaging into molecular imaging. J. Nucl. Med., 2000, 41, 661-681.
    101. Jones, T. Molecular imaging with PET– the future challenges. Br. J. Radiol., 2002, 75, S6-15S.
    102. Price, P. M.; Jones, T. The role of PET scanning in radiotherapy. Br. J. Radiol., 2005, supplement 28, 2-4.
    103. Iyer, M.; Sato, M.; Johnson, M.; Gambhir, S. S.; Wu, L. Applications of molecular imaging in cancer gene therapy. Curr. Gene Ther., 2005, 5, 607-618.
    104. Garnett, E. S.; Firnau, G.; Nahmias, C. Dopamine visualized in the basal ganglia of living man. Nature, 1983, 305, 137-138.
    105. Bodor, N.; Sloan, K. B.; Higuchi, T.; Sasahara, K. Improved delivery through biological membranes. 4. Prodrugs of L-DOPA. J. Med. Chem., 1977, 20, 1435-1445.
    106. Wells, G. J.; Tao, M.; Josef, K. A.; Bihovsky, R. 1,2-Benzothiazine 1,1-Dioxide P2-P3 Peptide Mimetic Aldehyde Calpain I Inhibitors. J. Med. Chem., 2001, 44, 3488-3503.
    107. Gaucher, A.; Dutot, L.; Barbeau, O.; Hamchaoui, W.; Wakselman, M.; Mazaleyrat, J. -P. Synthesis of terminally protected (S)-β3-H-DOPA by Arndt–Eistert homologation: an approach to crownedβ-peptides Tetrahedron: Asymmetry, 2005, 16, 857-864.
    108. Taschner, E.; Chimiak, A.; Bator, B.; Soko-owska, T. Neue veresterungsmethoden in der peptidchemie, VIII. Darstellung von tert.-butylestern freier aminos-uren. Justus Liebigs Ann. Chem., 1961, 646, 134-136.
    109.许艳杰.天然环酯肽Hirsutellide A和链状多肽Tasiamide的合成研究: [博士学位论文],天津;天津大学, 2004.
    110. Belokon, Y. N.; North, M.; Churkina, T. D.; Ikonnikov, N. S.; Maleev, V. I. Chiral salen–metal complexes as novel catalysts for the asymmetric synthesis ofα-amino acids under phase transfer catalysis conditions. Tetrahedron, 2001, 57, 2491-2498.
    111. Kendall, J. T. An efficient synthesis of [ring-14C]-L-tyrosine from [U-14C]-phenol. J. Label. Compd. Radiopharm., 2000, 43, 505-514.
    112. Iwata, M.; Kuzuhara, H. N-(ω-tosyloxyalkyl)phthalimides as reactive general synthons for introducing alkylamino groups and their application for the“self-proliferative”synthesis of open-chain polyamines. Chem. Lett., 1986, 15, 369-372.
    113. Fedorynski, M.; Wojciechowski, K.; Matacz, Z.; Makosza, M. Reactions of organic anions. 86. Sodium and potassium carbonates: efficient strong bases in solid-liquid two-phase systems. J. Org. Chem., 1978, 43, 4682-4684.
    114. Kolodziejczyk, A. M.; Manning, M. A convenient method for O-alkylation of N-substituted tyrosines using a crown ether. J. Org. Chem., 1981, 46, 1944-1946.
    115. Bender, J. L.; Shen, Q. -D.; Fraser, C. L. Poly(ε-caprolactone) macroligands withβ-diketonate binding sites: synthesis and coordination chemistry. Tetrahedron, 2004, 60, 7277-7285.
    116. Bouazza, F.; Renoux, B.; Bachmann, C.; Gesson, J. -P. Total Synthesis and Conformational Analysis of the Antifungal Agent (-)-PF1163B. Org. Lett., 2005, 5, 4049–4052.
    117. Brieger, G.; Nestrick, T. J. Catalytic transfer hydrogenation. Chem. Rev., 1974, 74, 567–580.
    118. Jonestone, R. A. W.; Wilby A H.; Entwistle, I. D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem. Rev., 1985, 85, 129–170.
    119. Duzee, E. M.; Adkins, H. Hydrogenation and Hydrogenolysis of Ethers. J. Am. Chem. Soc., 1935, 57, 147–151.
    120. Utamura, T.; Kuromatsu, K.; Suwa, K.; Koizumi, K.; Shingu, T. Synthesis and 1H and 13C-nuclear magnetic resonance spectral of all positional isomers of tetra-O-acetyl-D-glucopyranoses, and their monobenzyl and monotrityl derivatives. Chem. Pharm. Bull., 1986, 34, 2341–2353.
    121. ElAmin, B.; Anantharamaiah, G. M.; Royer, G. P.; Means, G. E. Removal of benzyl-type protecting groups from peptides by catalytic transfer hydrogenation with formic acid. J. Org. Chem., 1979, 44, 3442–3444.
    122. Rao, V. S.; Perlin, A. S. Removal of O-benzyl protecting-groups of carbohydrate derivatives by catalytic, transfer hydrogenation. Carbohydr. Res., 1980, 83, 175–177.
    123. Jung, M. E.; Usui, Y.; Vu, C. T. Rapid and efficient synthesis of a fully functionalized synthon for the bottom half of the antiparasitic agent, ivermectin. Tetrahedron Lett., 1987, 28, 5977–5980.
    124. Bieg, T.; Szeja, W. Removal of O-benzyl protective groups by catalytic transfer hydrogenation. Synthesis, 1985, 76–77.
    125. Bieg, T.; Szeja W. Regioselective hydrogenolysis of benzyl glycosides. Carbohydr. Res., 1990, 205, C10–11.
    126. Anantharamaiah, G. M.; Sivanandaiah, K. M. Transfer hydrogenation; a convenient method for removal of some commonly used protecting groups in peptide synthesis. J. Chem. Soc., Perkin. Trans. 1, 1977, 490–491.
    127. Hanessian, S.; Liak, T. J.; Vanasse, B. Facile cleavage of benzyl ethers by catalytic transfer hydrogenation. Synthesis, 1981, 396–397.
    128. Pearlman W. M. Noble metal hydroxides on carbon nonpyrophoric dry catalysts. Tetrahedron Lett., 1967, 8, 1663–1664.
    129. Felix, A. M.; Heimer, E. P.; Lambros, T. J. Tzougraki, C.; Meienhofer, J. Rapid removal of protecting groups from peptides by catalytic transfer hydrogenation with 1,4-cyclohexadiene. J. Org. Chem., 1978, 43, 4194–4196.
    130. Rao, V. S.; Perlin, A. S. Catalytic transfer hydrogenation of benzylic and styryl compounds with palladium/carbon and 2-propanol. Selective removal of O-benzyl groups from carbohydrate derivatives. Can. J. Chem., 1983, 61, 652–657.
    131. Binkley, R. W.; Ambrose, M. G.; Hehemann, D. G. Synthesis of deoxyhalogeno sugars. Displacement of the (trifluoromethanesulfonyl)oxy (triflyl) group by halide ion. J. Org. Chem., 1980, 45, 4387–4391.
    132. Shieh, W. C.; Carlson, J. A. A simple asymmetric synthesis of 4-arylphenylalanines via palladium-catalyzed cross coupling reaction of arylboronic acids with tyrosine triflate. J. Org. Chem., 1992, 57, 379–381.
    133. Ková-, P. A short synthesis of 2-deoxy-2-fluoro-D-glucose. Carbohydr. Res., 1986, 153, 168–170.
    134. Lei, H.; Stoakes, M. S.; Schwabacher, A. W.; Herath, K. P. B.; Lee, J. Efficient synthesis of a phosphinate bis-Amino acid and its use in the construction of amphiphilic peptides. J. Org. Chem., 1994, 59, 4206–4210.
    135. Paquette, L. A.; Mitzel, T. M.; Isaac, M. B.; Crasto, C. F.; Schomer, W. W. Diastereoselection during 1,2-Addition of the allylindium reagent toα-thia andα-amino aldehydes in aqueous and organic solvents. J. Org. Chem., 1997, 62, 4293–4301.
    136. Osby, J. O.; Martin, M. G.; Ganem, B. An exceptionally mild deprotection of phthalimides. Tetrahedron Lett., 1984, 25, 2093–2096.
    137. Herrmann, W. A.; Ofele, K.; von Preysing, D.; Schneider, S. K. Phospha-palladacycles and N-heterocyclic carbene palladium complexes: efficient catalysts for CC-coupling reactions. J. Organomet. Chem., 2003, 687, 229–248.
    138. Pirguliyev, N. S.; Brel, V. K.; Zefirov, N. S.; Stang, P. J. Stereoselective synthesis of conjugated alkenynes via palladium-catalyzed coupling of alkenyl iodonium salts with terminal alkynes. Tetrahedron, 1999, 55, 12377–12386.
    139. Bohm, V. P. W.; Herrmann, W. A. Coordination chemistry and mechanisms of metal-catalyzed C-C coupling reactions, 13: a copper-free procedure for the palladium-catalyzed Sonogashira reaction of aryl bromides with terminal alkynes at room temperature. Eur. J. Org. Chem., 2000, 3679–3681.
    140. Andrus, M. B.; Lepore, S. D.; Turner, T. M. Total synthesis of stipiamide and designed polyenes as new agents for the reversal of multidrug resistance. J. Am. Chem. Soc., 1997, 119, 12159–12169.
    141. Paterson, I.; Davies, R. D. M.; Marquez, R. Total synthesis of the callipeltoside aglycon. Angew. Chem. Int. Ed., 2001, 40, 603–607.
    142. Kaliappan, K. P.; Ravikumar, V. Angucyclinone Antibiotics: Total syntheses of YM-181741, (+)-Ochromycinone, (+)-Rubiginone B2, (-)-Tetrangomycin, and MM-47755. J. Org. Chem., 2007, 72, 6116–6126.
    143. Sharma, G. V. M.; Babu, K. V. RCM mediated synthesis of macrosphelides I and G. Tetrahedron: Asymmetry, 2007, 18, 2175–2184.
    144. Hu, L. -Y.; Ryder, T. R.; Rafferty, M. F.; Taylor, C. P.; Feng, M. R.; Kuo, B. -S.; Lotarski, S. M.; Miljanich, G. P.; Millerman, E.; Siebers, K. M.; Szoke, B. G. The discovery of [1-(4-dimethylamino-benzyl)-piperidin-4-yl]-[4-(3,3-dimethylbutyl) -phenyl]-(3-methyl-but-2-enyl)-amine, an N-type Ca+2 channel blocker with oral activity for analgesia. Bioorg. Med. Chem., 2000, 8, 1203–1212.
    145. Lee, S. J.; Terrazas, M. S.; Pippel, D. J.; Beak, P. Mechanism of electrophilic chlorination: experimental determination of a geometrical requirement for chlorine transfer by the endocyclic restriction test. J. Am. Chem. Soc., 2003, 125, 7303–7312.
    146. Hirsh, A. J.; Molino, B. F.; Zhang, J.; Astakhova, N.; Geiss, W. B.; Sargent, B. J.; Swenson, B. D.; Usyatinsky, A.; Wyle, M. J.; Boucher, R. C.; Smith, R. T.; Zamurs, A.; Johnson, M. R. Design, synthesis, and structure-activity relationships of novel 2-substituted pyrazinoylguanidine epithelial sodium channel blockers: drugs for cystic fibrosis and chronic bronchitis. J. Med. Chem., 2006, 49, 4098-4115.
    147. White, J. D.; Amedio, J. C. Total synthesis of geodiamolide A, a novel cyclodepsipeptide of marine origin. J. Org. Chem., 1989, 54, 736–738.
    148. Roy, G.; Nethaji, M.; Mugesh, G. Interaction of anti-thyroid drugs with iodine: the isolation of two unusual ionic compounds derived from Se-methimazole. Org. Biomol. Chem., 2006, 4, 2883–2887.
    149. Curtis, N. R.; Kulagowski, J. J.; Leeson, P. D.; Mawer, I. M.; Ridgill, M. P.; Rowley, M.; Grimwood, S.; Marshall, G. R. Synthesis and SAR of diiodotyrosine-derived glycine-site N-methyl-D-aspartate receptor ligands. Bioorg. Med. Chem. Lett., 2006, 6, 1145–1150.
    150. Inoue, M.; Carson, M. W.; Frontier, A. J.; Danishefsky, S. J. Total synthesis and determination of the absolute configuration of frondosin b. J. Am. Chem. Soc., 2001, 123, 1878–1889.
    151. Rutschmann, J.; Schreier, E. 6-Bromo-3,4-dihydroxyphenylalanines. US 3366666, 1968.
    152. Kirschbaum, S.; Waldmann, H. Three-step access to the tricyclic benzo[α]quinolizine ring system. J. Org. Chem., 1998, 63, 4936–4946.
    153. Namavari, M.; Bishop, A.; Satyamurthy, N.; Bida, G.; Barrio, J. R. Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: A high yield synthesis of 6-[18F]fluoro-L-dopa. Appl. Radiat. Isot., 1992, 43, 989–996.
    154. Carvalho, C. F.; Sargent, M. V. Boron trichloride as a selective demethylating agent for hindered ethers. J. Chem. Soc., Chem. Commun., 1984, 227–229.
    155. Bhatt, M. V.; Babu, J. R. New reagents 3: aluminium iodide– a highly regioselective ether-cleaving reagent with novel cleavage pattern. Tetrahedron Lett., 1984, 25, 3497–3500.
    156. Marwick, T. H.; Shan, K.; Patel, S.; Go, R. T.; Lauer, M. S. Incremental value of Rubidium-82 positron emission tomography for prognostic assessment of known or suspected coronary artery disease. Am. J. Cardiol., 1997, 80, 865–870.
    157. Jadvar, H.; Parker, J. A., Eds. Clinical PET and PET/CT. Springer Publishing: London, 2005.
    158. Segall, G. Assessment of myocardial viability by positron emission tomography. Nucl. Med. Commun., 2002, 23, 323–330.
    159. Bax, J. J.; Poldermans, D.; Elhendy, A. Boersma, E.; Rahimtoola, S. H. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr. Probl. Cardiol., 2001, 26, 147–181.
    160. Cecchi, F.; Olivotto, I.; Gistri, R.; Lorenzoni, R.; Chiriatti, G.; Camici, P. G. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N. Engl. J. Med., 2003, 349, 1027–1035.
    161. Mazzadi, A. N.; André-Fou-t, X.; Duisit, J.; Gebuhrer, V.; Costes, N.; Chevalier, P.; Rodriguez, C.; Schott, J. -J.; Marec, H. L.; Guicheney, P.; Bars, D. L.; Janier, M. Cardiac retention of [11C]HED in genotyped long QT patients: a potential amplifier role for severity of the disease. Am. J. Physiol. Heart Circ. Physiol., 2003, 285, H1286–H1293.
    162.李贵平. PET/CT在心血管系统中的临床应用.中国医疗器械信息, 2007, 13, 8–10.
    163. N(?)gren, K.; Halldin, C.; Swahn, C. -G.; Suhara, T.; Farde, L. [11C]Metaraminol, a false neurotransmitter: Preparation, metabolite studies and positron emission tomography examination in monkey. Nucl. Med. Biol., 1996, 23, 221–227.
    164. Rosario, R. B. D.; Jung, Y. -W.; Caraher, J.; Chakraborty, P. K.; Wieland, D. M. Synthesis and preliminary evaluation of [11C]-(–)-phenylepnrine as a functional heart neuronal PET agent. Nucl. Med. Biol., 1996, 23, 611–616.
    165. Dort, M. E. V.; Tluczek, L. Synthesis and carbon-11 labeling of the stereoisomers of meta-hydroxyephedrine (HED) and meta-hydroxypseudoephedrine (HPED). J. Label. Compd. Radiopharm., 2000, 43, 603–612.
    166. Ding, Y. S.; Fowler, J. S.; Gatley, S. J.; Dewey, S. L.; Wolf, A. P. Synthesis of high specific activity (+)- and (–)-6-[18F]fluoronorepinephrine via the nucleophilic aromatic substitution reaction. J. Med. Chem., 1991, 34, 767–771.
    167. Lui, E.; Chirakal, R.; Firnau, G. Enzymatic synthesis of (–)-6-[18F]-fluoronorepinephrine from 6-[18F]-fluorodopamine by dopamineβ-hydroxylase. J. Label. Compd. Radiopharm., 1998, 41, 503–521.
    168. Mislankar, S. G.; Gildersleeve, D. L.; Wieland, D. M.; Massin, C. C.; Mulholland, G. K.; Toorongian, S. A. 6-[18F]fluorometaraminol: a radiotracer for in vivo mapping of adrenergic nerves of the heart. J. Med. Chem., 1988, 31, 362–366.
    169. Langer, O.; Valette, H.; Dollé, F.; Halldin, C.; Loc’h, C.; Fuseau, C.; Coulon, C.; Ottaviani, M.; Bottlaender, M.; Mazière, B.; Crouzel, C. High specific radioactivity (1R,2S)-4-[18F]fluorometaraminol: a PET radiotracer for mapping sympathetic nerves of the heart. Nucl. Med. Biol., 1996, 23, 233–238.
    170. Langer, O.; Dollé, F.; Valette, H.; Halldin, C.; Vaufrey, F.; Fuseau, C.; Coulon, C.; Ottaviani, M.; N-gren, K.; Bottlaender, M.; Maziére, B.; Crouzel, C. Synthesis of high-specific-radioactivity 4- and 6-[18F]fluorometaraminol- PET tracers for the adrenergic nervous system of the heart. Bioorg. Med. Chem., 2001, 9, 677–694.
    171. Dort, M. E. V.; Jung, Y. -W.; Sherman, P. S.; Kilbourn, M. R.; Wieland, D. M. Fluorine for Hydroxy Substitution in Biogenic Amines: Asymmetric Synthesis and Biological Evaluation of Fluorine-18-Labeledβ-Fluorophenylalkylamines as Model Systems. J. Med. Chem., 1995, 38, 810–815.
    172. Ermert, J.; Hamacher, K.; Coenen, H. H. N.C.A. 18F-labelled norephedrine derivatives viaα-aminopropiophenones. J. Label. Compd. Radiopharm., 2000, 43, 1345–1363.
    173. Tahtaoui, C.; Parrot, I.; Klotz, P.; Guillier, F.; Galzi, J.; Hibert, M,; Ilien, B. Fluorescent Pirenzepine Derivatives as Potential Bitopic Ligands of the Human M1 Muscarinic Receptor. J. Med. Chem., 2004, 47, 4300–4315.
    174. Butler, C. L.; Nelson, W. L.; Renfrew, A. G.; Cretcher, L. H. Cinchona Alkaloids in Pneumonia. I. Miscellaneous Alkaloids and Some Hydrocupreine Ethers. J. Am. Chem. Soc., 1935, 57, 575–578.
    175. Musachio, J. L.; Shah, J.; Pike, V. W. Radiosyntheses and reactivities of novel [18F]2-fluoroethyl arylsulfonates. J. Label. Compd. Radiopharm., 2005, 48, 735–747.
    176. Perfluoroalkyl derivatives of sulphur. Part IV. Perfluoroalkanesulphonic acids. Gramstad, T.; Haszeldine, R. N. J. Chem. Soc., 1956, 173–180.
    177. Hauptschein, M.; Grosse A. V. Perfluoroalkyl Halides Prepared from Silver Perfluoro-fatty Acid Salts. I. Perfluoroalkyl Iodides. J. Am. Chem. Soc., 1951, 73, 2461–2463.
    178. Gu, W.; Liu, S.; Silverman, R. B. Solid-phase, Pd-catalyzed silicon-aryl carbon bond formation. synthesis of sansalvamide a peptide. Org. Lett., 2002, 4, 4171–4174.
    179. Schwarz, H.; Bumpus, F. M. Syntheses of an optically pure tetrapeptide contained in angiotensin. J. Am. Chem. Soc., 1959, 81, 890–897.
    180. Chankeshwara, S. V.; Chakraborti, A. K. Catalyst-free chemoselective N-tert-butyloxycarbonylation of amines in water. Org. Lett., 2006, 8, 3259–3262.
    181. Blouin, M.; Frenette, R. A new method for the preparation of aryl vinyl ethers. J. Org. Chem., 2001, 66, 9043–9045.
    182. Enrico, M.; Giorgio, O. A convenient preparation of selectively protected L-dopa derivatives from 3-iodo-L-tyrosine. Synth. Commun.; 2001, 31, 2115–2122.
    183. García, E.; Arrasate, S.; Lete, E.; Sotomayor, N. Diastereoselective intramolecularα-amidoalkylation reactions of L-DOPA derivatives. Asymmetric synthesis of pyrrolo[2,1-a]isoquinolines. J. Org. Chem.; 2005, 70, 10368–10374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700