用户名: 密码: 验证码:
单船中层拖网系统的建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代渔业的发展,渔船操作模拟器将在渔业教学与培训、渔业海事测评、渔业船舶事故预防安全措施评估、渔业港口规划等方面发挥越来越重要的作用。为在渔船操作模拟器中进行单船中层拖网作业过程的动态仿真,本文提出了一种单船中层拖网系统数学模型的建模方法,开发了单船中层拖网系统的仿真程序,并实现了单船中层拖网作业过程的三维可视化,为渔船操作模拟器的研究与开发打下了一定的基础。本文在以下几个方面做了重点研究:
     1.提出了一种单船中层拖网系统数学模型的建模方法,并通过场景管理软件OpenGVS(Open Generic Visual System)实现了单船中层拖网作业过程的三维可视化。在建模过程中,将单船中层拖网系统的数学模型分为渔船、拖网曳纲以及网具系统的数学模型,并通过边界条件实现了数学模型之间的耦合,从而可以进行单船中层拖网作业过程中收放网过程的动态仿真。论文的仿真结果验证了所提出建模方法的可行性。
     2.改进了船舶缆绳张力的计算模型,充分考虑了缆绳的自重和非线性应变。若缆绳的应变满足虎克定律,利用悬链线方程和虎克定律推导出缆绳张力和无应力长度的对应关系,并采用试算法计算缆绳张力;否则,忽略缆绳的自重,通过由缆绳的应变曲线图拟合的多项式来计算缆绳张力。根据计算出的缆绳破断强度对缆绳张力是否超出安全负荷以及缆绳是否破断进行了判断。计算实例验证了模型的正确性和实用性。
     3.基于船舶操纵性分离建模理论,采用荷兰船模试验水池B系列螺旋桨的敞水试验结果,利用Akima插值获得了不同类型的调距桨在不同螺距比下的四象限推力系数和扭矩系数,求得调距桨的推力和扭矩,建立了调距桨船舶的平面运动数学模型。模型充分考虑了风、流对船舶操纵的影响,可用于调距桨船舶常速域和低速域的操纵运动仿真。仿真研究表明:仿真结果同实船试验结果吻合,本文建立的模型是合理的,能够满足大型船舶操纵模拟器对船舶运动数学模型仿真精度的要求。
     4.提出了一种网具系统模型的数值解法。利用同某一个质量点相连的其它质量点的已知位移代替其实际位移来求解该质量点所受到的弹性力,从而可进行每个质量点方程的单独求解,避免了直接求解巨大的非线性微分方程组,减少了计算时间。采用隐式Newmark-β方法以及牛顿迭代法对每一质量点的运动方程进行单独求解,增大了模型可稳定求解的时间步长。
     5.利用有限差分法建立了拖网曳纲的三维水动力模型。通过欧拉角的转换关系获得了曳纲微元段矢量动力平衡方程在曳纲局部坐标系下的方程组形式;在建模过程中,将网板视为曳纲的尾部节点,根据达朗伯原理建立了网板的平衡方程,并将其作为曳纲模型的尾部边界条件。通过在时间和空间上对拖网曳纲平衡方程组进行中心差分以及首尾边界条件的处理,将该方程组转换为定解代数方程组,并采用牛顿迭代法求解。模型考虑了均匀流以及曳纲的收放速度对曳纲张力和形状的影响,能够用于拖网曳纲非定常运动的模拟。对有关文献提出的模型缆进行了仿真计算,并将仿真结果同该文献的计算结果进行间接比较,验证了模型的有效性。
     6.利用集中质量法建立了网具系统的数学模型,将网具系统离散为通过无质量弹簧连接的质量点的集合,根据牛顿第二定律建立了质量点的动力学方程,并考虑了均匀流对网具系统运动的影响。分别对单一网片和中层拖网的运动进行了动态仿真,并将仿真结果同水池试验结果进行了比较,从而验证了模型的合理性。
With the development of modem fishery, fishing simulator will play a more and more important role in the fishery education and training, fishery maritime evaluation, assessment for preventing fishing ship accidents and fishing port planning, etc. To simulate the dynamic behaviors of single-boat mid-water trawl system in fishing simulator, a modeling method to establish the mathematical model of single-boat mid-water trawl system is proposed. Also, simulation software is developed and visualization of the system is realized, which lay a good foundation for the development of fishing simulator. The primary research and contributions of this dissertation summarized here are:
     1. A modeling method to establish the mathematical model of single-boat mid-water trawl system is proposed, and visualization of the system is realized by using scene management software OpenGVS (Open Generic Visual System) . The mathematical model of the system is divided into mathematical models of trawler, warp and fishing net, which are connected by boundary conditions reflecting the influence of each other. By using this modeling method, the dynamic simulation of the process of drawing in and giving out the fishing net is realized. The feasibility of proposed modeling method is verified by simulation results.
     2. Considering mooring line weight and non-linear elongation, the mathematical model for calculating mooring line tension is improved. When the line elongation obeys Hooke's law, the relationship between line's tension and original length is induced by using catenary equation and Hooke's law, and the line tension is obtained through trial. Otherwise, the line weight is neglected and the line tension is calculated by using the polynomial obtained through line stress-strain curve. Whether line tension exceeds safety load and line is broken or not is judged by calculatied line broken intensity. The correctness and practicability of the model are verified by computation instances.
     3. A maneuvering mathematical model for Controllable-Pitch Propeller (CPP) ships with three degrees of freedom is established according to separate modeling theory. Based on Netherlands Ship Model Basin's open-water tests, CPP thrust coefficients and torque coefficients in four-quadrant with different pitch ratio of screw and different types of CPP are obtained by using Akima interpolation. Therefore, CPP thrusts and torques are obtained. With the influences of wind and current, the model can be used for maneuvering simulation of ships equipped with CPP in ordinary-speed and low-speed fields. Simulation results being similar to the sea-trial test shows that the model is reasonable and its precision can meet the requirement of full mission ship-handling simulator.
     4. A numerical calculation method for the mathematical model of fishing nets is proposed. Instituting variables of position of mass points of calculated positions to calculate connected mass points' elastic force, equations of mass point can be solely calculated. This method can avoid solving the huge nonlinear equations directly, and computing time can be reduced. Also, Newmark-βintegration method is used to calculate the equations of mass point, which can stably take large time steps.
     5. The dynamic model of warp is established by using finite difference method. The equilibrium equations under local coordinate are obtained through Euler angle transformation. In the modeling of warp, otter door is treated as the end node. The equilibrium equation of otter door is established through d'Alembert's principle. It provides the end boundary condition of the dynamic model of warp. By central difference in time and space and boundary conditions, equilibrium equations of warp are transformed into the definite equations and solved by Newton's iteration. The model also takes into account influences of uniform current and winch speed of warp, and can be used to simulate unsteady warp motions. Simulation computations of a model towed cable proposed in a paper have been done. Comparing the computation results with that given in the paper, the rationality of the model is verified.
     6. A hydrodynamic model of fishing net is established according to the lumped mass model, which divides fishing net into finite mass points connected with springs without mass. According to Newton's Second Law, equation of mass point is set up tak- ing the influence of uniform current into account. Dynamic behaviors of a panel net and a mid-water trawl are simulated. Comparing the computation results with that of flume experiments, the rationality of the model is verified.
引文
[1]郭瑞莲,李琦.航海模拟器在海洋渔业中的应用前景[J].航海教育研究,2007,24(zl):53-55.
    [2]Gun-Ho Lee,Chun-Woo Lee,Moo-Youl Choe.Implementation of a 3D Fishing Simulator [EB/OL].http://www.nftc.no/NFTC2006/proceedings.html
    [3]Fishing Gear Handling Training[EB/OL].http://www.transas.com/products/simula tors/sim_products/navigational/special/fishing/
    [4]Fishing Simulators[EB/OL].http://www.poseidon.no/SimulatorProducts/Fishing/ta bid/84/Default.aspx
    [5]Computer Fishing Simulator for trawling and purse seining[EB/OL].http://www.enet.ru/eng/sokolov/simulator.htm
    [6]施朝健,王捷.舟山航海学校船桥模拟器及有关技术[J].上海海运学报,1996,17(1):49-52.
    [7]尹勇,金一丞,李志华.分布式航海仿真系统中的网络通信[J].系统仿真学报,2000,(11):621-624.
    [8]石爱国,蔡烽,侯建军等.舰船操纵性数模参数计算和仿真验证[J].系统仿真学报,2002,14(3):406-408.
    [9]杨神化,李丽娜,索永峰等.船舶碰撞过程动态仿真系统的研究与应用[J].集美大学学报(自然科学版),2008,(3):39-43.
    [10]贾欣乐,杨盐生.船舶运动数学模型—机理建模与辨识建模[M].大连:大连海事大学出版社,1999.
    [11]野本谦作,田口賢士。本田啓之輔,他.船の操縦性に就ぃて(1)[J].日本造船学会論文集,1956,(99):75-82.
    [12]野本谦作,田口暨士.船の操縦性に就ぃて(2)[J].日本造船学会論文集,1957,(101):57-66.
    [13]野本謙作.船舶操纵性和控制及其在船舶设计中的应用[Z].北京:中国船舶科学研究中心,1982.
    [14]周永余,陈永冰,周岗等.航向、航迹自动操舵仪船舵控制系统的研制[J].中国惯性技术学报,2005,13(3):47-51.
    [15]任俊生.高速水翼船非线性运动建模及控制的研究[D].大连:大连海事大学,2005.
    [16]张显库,赵翔宇.船舶转向的鲁棒控制及其优化设计[J].哈尔滨工程大学学报,2006,27(3):319-322.
    [17]胡江强.基于克隆选择优化的船舶航向自适应控制[D].大连:大连海事大学,2008.
    [183 Abkowitz M.A.Lectures on ship hydrodynamics steering and manoeuvrability[R].Hydro- and Aerodynamics Laboratory.Report No.Hy-5.Denmark,1964.
    [19]Abkowitz M.A.Measurement of hydrodynamic characteristics from ship manoeuvring trails by system identification[J].Transactions of SNAME,1980,88:283-318.
    [20]Chislett M.S.and Strom-tejsen J.Planar motion mechanism tests and full-scale steering and manoeuvring predictions for a MARINER class vessel[R].Hydro-and Aerodynamics Laboratory.Report No.Hy-6.Denmark,1965.
    [21]Norrbin N.H.Theory and observation on the use of a mathematical model for ship manoeuvring in deep and confined waters[A].Proceeding of Eighth Symp on Naval Hydrodynamics[C].Pasadena:1970.
    [22]Jacobs W.R.Estimation of stability derivatives and indices of various ship forms and comparison with experimental results[R].Davidson Laboratory R-1035,1964.
    [23]#12
    [24]浜本刚突.MMG報告-Ⅱ操缀性数学モデルの理論的背景[J].日本造船学会誌,1977,(577):322-329.
    [25]#12
    [26]小瀬邦治.MMG報告-Ⅳ拘束操縦性弑験の方法及び弑驗装置[J].日本造船学会誌,1977,(579):22-31.
    [27]小川陽弘,畏谷川和彦,芳村康男.操縦逗勤数学モデル の实験的梭証と改良[J].日本造船学会誌,1980,(616):565-576.
    [28]藤野正隆,葛西宏直,小林弘明.低速·浅水域操縦逗勤数学モブルの梭討:MSS鞭告I[J].日本造船学会誌,1989,(717):122-129.
    [29]#12
    [30]#12
    [31]小濑邦治,深沢塔一,末光啓二,他.低速時の操縦運勤モデルの実用化:MSS報告Ⅳ[J].日本造船学会誌,1989,(721):403-411.
    [32]M.Fujino.Prediction of ship maneuverability:State of the art[A].Proceeding of the International Conference MAESIM' 1996[C].Lyngby:A.A.BALKEA /ROTTERDAM/BROOKFIELD,1996:371-387.
    [33]Evgeny Nikolaev,Tatyana Inutina,Marina Lebedeva.On ship manoeuvrability estimation based on IMO resolution No.A.751(18)[A].Proceeding of the International Conference MAESIM' 1996[C].Lyngby:A.A.BALKEMA/ROTTERDAM/BROOKFIELD,1996:303-307.
    [34]Peter Oltmann.On the influence of speed on the maneuvering behaviour of a container[A].Proceeding of the International Conference MARSIM' 1996[C].Lyngby:A,A.BALKEMA /ROTTERDAR/BROOKFIELD,1996:515-523.
    [35]贾传荧,杨盐生,蒋维清等.基于电子海图的船舶操纵仿真器[J].中国造船,1994,(2):98-110.
    [36]黄图梁,楼连根,卢军等.船舶在波浪中操纵运动仿真[J].中国航海,1998,(2):8-15.
    [37]孙洪波.螺旋桨逆转工况下船舶运动建模与仿真[D].大连:大连海事大学,2007.
    [38]Tae-Il Lee,Kyoung-Soo Ahn,Hyoung-Suk Lee,etal.On an Empirical Prediction of Hydrodynamic Coefficients for Modern Ship Hulls[A].Proceeding of the International Conference MARSIM' 2003[C3.Kanazawa:The Society of Naval Architects of Japan,2003:RC-1-1~RC-1-5.
    [39]Katrien Eloot,Marc Vantorre,Guillaume Delefortrie.Prediction of ship maneuverability of an 800 TEU container ship in deep and shallow water:mathematical modeling and captive model testing[A].Proceeding of the International Conference MARSIM' 2006[C].Terschelling:Maritime Institute Willem Barentsz,2006:M-3-1~ M-3-9.
    [40]Peter Oltmann.Identification of hydrodynamic damping derivatives-A pragmatic approach[A].Proceeding of the International Conference MARSIM' 2003[C].Kanazawa:The Society of Naval Architects of Japan,2003:RC-3-1~RC-3-9.
    [41]Michele Viviani,Roberta Depascale,Luca Sebastiani,etal.Alternative methods for the identification of hydrodynamic coefficients from standard manoeuvres[A].Proceeding of the International Conference MARSIM' 2003[C].Kanazawa:The Society of Naval Architects of Japan,2003:RC-5-1~RC-5-9.
    [42]Susumu Tanaka,Koyu Kimura.A numerical study on hydrodynamic interaction among oblique ship hull,propeller and rudder[A].Proceeding of the International Conference MARSIM' 2003[C].Kanazawa:The Society of Naval Architects of Japan,2003:RC-21-1~RC-21-7.
    [43]Tsuyoshi ISHIGURO,Takuya HOMORI.Optimized hull form design at initial design stage considering maneuverability,propulsive performance and sea-keeping performace[A].Proceeding of the International Conference MARSIM' 2003[C].Kanazawa:The Society of Naval Architects of Japan,2003:RC-22-1~RC-22-9.
    [44]Claus D.Simonse,Fred Stern,Kristian Agdrup.CFD with PMM test validation for manoeuvring VLCC2 tanker in deep and shallow water[A].Proceeding of the International Conference MARSIM' 2006[C].Terschelling:Maritime Institute Willem Barentsz,2006:M-4-1~M-4-11.
    [45]Jaroslaw Artyszuk.A non-uniform current in ship manoeuvring[A].Proceeding of the International Conference MARSIM' 2006[C].Terschelling:Maritime Institute Willem Barentsz,2006:M-14-1~M-14-9.
    [46]Serge Sutulo,C.Guedes Soares.A unified nonlinear mathematical model for simulating ship manoeuvring and seaking in regular waves[A].Proceeding of the International Conference MARSIM' 2006[C].Terschelling:Maritime Institute Willee Barentsz,2006:M-13-1~M-13-10.
    [47]Zefer Ayaz,Osman/utah.On manoeuvringand control of large high-speed POD driven ships in waves[A].Proceeding of the International Conference MARSIM' 2006[C3.Terschelling:Maritime Institute Willem Barentsz,2006:M-26-1~M-26-11.
    [48]张秀凤,尹勇,金一丞.规则波中船舶运动六自由度数学模型[J].交通运输工程学报,2007,7(3):40-43.
    [49]Larry L.Daggett,John Christopher Hewlett,Vladimir Ankudinov,etal.Validation of Ship Motion in Shallow/Restricted Waters[A].Proceeding of the International Conference MARSIM' 2003[C].Karuazawa:The Society of Naval Architects of Japan,2003:RC-17-1~RC-17-10.
    [50]Da-Qing Li,Peter Ottosson,Peter Tr(a|¨)gardh.Prediction of bank effects by model tests and mathematical eodels[A].Proceeding of the International Conference MARSIM'2003[C].Kanazawa:The Society of Naval Architects of Japan,2003:RC-30-1~RC-30-12.
    [51]Marc Vantorre,Guillaume Delefortrie,Katrien Eloot,etal.Experimental inves- tigation of ship-bank interaction forces[A].Proceeding of the International Conference MARSIM'2003[C].Kanazawa:The Society of Naval Architects of Japan,2003:RC-31-1~RC-31-9.
    [52]Dr Andreas Gronarz.Ship-ship interaction:Overtaking and encountering of inland vessels on shallow water[A].Proceeding of the International Conference MARSIM' 2006[C].Terschelling:Maritime Institute Willem Barentsz,2006:M-1-1~M-1-5.
    [53]Tobias Haack,Stafan Kruger.Propulsion plant models for nautical maoeuvre simulations[EB/OL].http://Simulationswww.ssi.tuharburg.de/doc/Veroeffentlichunge n/2004/COMPIT2004_KRUEGER_HAACK,pdf
    [54]Eivind Ruth.Modelling and control of controllable pitch thrusters subject to large losses[D].Trondheim:Norwegian University of Science and Technology,2005.
    [55]SunXiaofeng,YinYong,ZhangXiufeng.Research on key technologies of fishing vessels simulator[A].The Sixth International Conference on System Simulation and Scientific Computing[C].Beijing:International Academic Publishers World Publishing Corporation,2005:36-40.
    [56]φyvind Notland Smogeli.Control of Marine Propellers-Prom Normal to Extreme Conditions[D].Trondheim:Norwegian University of Science and Technology,2006.
    [57]Junmin Mou,Zaojina Zou,Xiaotu Zhang.Manoeuvring simulation of a catamaran with water jets using a simplified model[A].Proceeding of the International Conference MARSIM' 2003[C].Kanazawa:The Society of Naval Architects of Japan,2003:RC-26-1~RC-26-7.
    [58]任俊生,杨盐生,刘秀文.操纵模拟器中高速水翼船运动数学模型的研究[J].系统仿真学报,2005,17(2):316-318.
    [59]Zhang Xiufeng,Yin Yong,Jin Yicheng.The moving mathematical models of tug with voith Schneider propeller~(?)[A].Proceeding of the International Conference MARSIM'2006[C].Terschelling:Maritime Institute Willem Barentsz,2006:M-15-1~M-15-6.
    [60]Kristian Agdrup,Anders S.Olsen,Dirk J(u|¨)rgens.Development of a mathematical model of a voith Schneider tug and experience from its application in an offshore simulation[A].Proceeding of the International Conference MARSIM' 2006[C].Terschelling:Maritime Institute Willem Barentsz,2006:M-21-1~M-21-11.
    [61]Tomihiro HARAGUCHI,Jun KAYANO,Yoshiaki TSUKADA.Prediction of the manoeuvrab- ility on a ship with a CRP POD propulsion system and an auxiliary rudder[A].Proceeding of the International Conference MARSIM' 2006[C].Terschelling:Maritime Institute Willem Barentsz,2006:M-24-1~ M-24-6.
    [62]Ю.В.巴克什特,Е.Г.洛芬费尔德A.A.鲁谢茨基(陶凡,王渊潮,进柱青译).可调螺距螺旋桨[M].北京:国防工业出版社.1966.
    [63]Takeda S.,Sato K,Yoshimura Y.Coasting Maueuver of Single CFF Equipped Ship [J].Journal of Japan Institute of Navigation,1991,86:243-350.
    [64]Kinzo INOUE,Kiyoshi TACHI,Masaru YASUDA.Unstable Yawing of a Ship Equipped CPP-П-Modeling of Yawing Motion after Zero Pitch Angle of CPP[J].Journal of Japan Institute of Navigation,1992,87:163-170.
    [65]Hideo Yabuki,Yasuo Yhshimura,Tsuyoshi Ishiguro,eta1.Turning motion of a ship with single CPP and single rudder during stopping maneuver under windy condition[R].Proceeding of the International Conference WARSIM' 2006[C].Terschelling:Maritime Institute Willem Barentsz,2006:M-6-1~ M-6-9.
    [66]庄毅.不同工况下调距桨舰最大航速及最大轮转速研究[D].大连:海军大连舰艇学院,2008.
    [67]Giannotti,J.,Kowalski,T.Trawler-Trawling Gear Interaction[J].OCEANS,1975,7:496-501.
    [68]M.KRISHNAMIJRTHY.Computation of Drag Force acting on Fishing Nets[J].OCEANS,1977.9:697-701.
    [69]弗里德曼(侯恩淮,高清廉译).渔具理论与设计[M].北京:海洋出版社,1988.
    [70]王尔光.中层拖网的水层控制[J].大连水产学院学报,1992,6(2):21-28.
    [71]余显炜.计算渔具力学导论[M].上海:上海科学技术文献出版社,2001.
    [72]黄锡昌。虞聪达,苗振清.中国远洋捕捞手册[M].上海:上海科学技术文献出版社,2003.
    [73]F.Hu,K.Matuda etal.Dynamic analysis of midwater trawl system by a two dimensional lumped mass method[J].Fisheries Sciencs,1995,61:229-233.
    [74]G.Niedzwiedz,M.Hopp.Rope and net calculations applied to problems in marine engineering and fisheries research[J].Archive of Fishery and Marine Research,1998,46(2):125-138.
    [75]J.S.Bessonneau,D.Marichal.Study of the Dynamics of Submerged Supple Nets(Applications to Trawls)[J].Ocean Engineering,1998,25(7):563-583.
    [76]Chun-Woo Lee,Ju-Hee Lee.Modeling of a midwater system with respecl to the vertical movements[J].Fisheries Scicence,2000,66:851-857.
    [77]Tsutomu Takagi,Katsuya Suzuki,Tomonori Hiraishi.Development of the numerical simulation method of dynamic fishing net shape[J].Nippon Suisan Gakkaishi,2002,68(3):320-326.
    [78]R.Wan,F.Hu,T.Tokai.A static analysis of the tension and configuration of submerged plane nets[J].Fisheries Science,2002,68(4):815-823.
    [79]Katsuya Suzuki,Tsutomu Takagi,Takashi Shimizu etal.Validity and visualization of a numberical model used to determine dynamic configurations of fishing nets[J].Fisheries Science,2003,69:695-705.
    [80]Li-xin Zhu,Zhen-lin Liang,Liu-yi Huang,etc.Numerical Simulation of Dynamic of Dynamic Response of Supple Nets[J].China Ocean Engineering,2006,20(3):443-456.
    [81]Cannon T C,Genin J.Dynaimc behavior of a materially damped flexible cable[J].Aeronautical Quarterly,1972,23:109-120.
    [82]Irvine H M,Caughey T K.The linear theory of free vibrations of a suspended cable[A].Proceeding of royal society of London,series A,1974,341:299-315.
    [83]Leonard J W,Recher W W.Nonlinear dynamics of cables with low initial tension [J].Journal of the Engineering Mechanics Division,ASCE,1972,98(EM 2):293-309.
    [84]Ma D,Leonard J.Slack-elasto-plastic dynamics of cable systems[J].Journal of the Engineering Mechanics Division ASCE,1979,105(EM 2):207-222.
    [85]Delmer T N,Stephen T C,Tremills J A.Numerical simulation of cable-towed acoustic arrays[J].Ocean Engineering,1988,15(5):511-548.
    [86]Walton T S,Polachech H.Calculation of transient motion of submerged cables[J].Mathematics of Computation,1960,14:27-46,
    [87]Huang S.Dynamic analysis of three-dimensional marine cables[J].Ocean Engineering,1994,21(6):587-605.
    [88]王延东.变长度缆的水动力分析[J].中国海洋平台,1998,13(3):19-21.
    [89]朱克强,李道根,李维扬.海洋缆体系统的统一凝集参数时域分析法[J].海洋工程,2002,20(2):100-104.
    [90]陆肇康,朱克强.海洋非定长缆索系统的三维动态仿真[J].华东船舶工程学院学报,2003,17(2):6-11.
    [91]王飞,黄国樑,刘天威.规则波作用下水下拖缆数值分析研究[J].海洋工程,2006,24(1):92-97.
    [92]Ablow CM,Schechter S.Numerical simulation of undersea cable dynamics[J].Ocean Engineering,1983,10(6):443-457.
    [93]Milinazzo F,Wilkie M,Latchman SA.An efficient algorithm for simulating the dynamics for towed cable systems[J].Ocean Engineering,1987,14(6):513-526.
    [94]李力波.海下缆索系统运动的动力学模拟[J].中国造船,1984,4:33-44.
    [95]张潞怡.6000米深拖系统非线性运动理论研究及仿真[D].上海:上海交通大学,1996.
    [96]Yang Sun,John W.Leonard.Dynamics of ocean cables with local low-tension regions[J].Ocean Engng,1998,25(6):443-463.
    [97]邓德衡,黄国樑。楼连根.拖曳线列阵阵形与姿态数值计算[J].海洋工程,1999,17(1):17-26.
    [98]朱军,熊鹰,王志国.拖缆系统直线定常运动仿真计算[J].海军工程大学学报,2001,13(2):17-20.
    [99]朱军,刘军.拖缆系统回转运动仿真计算[J].海军工程大学学报,2001,13(4):22-28.
    [100]李英辉.合成孔径声纳拖曳系统运动的理论与实验研究[D].哈尔滨:哈尔滨工程大学,2002.
    [I01]Z.Feng,R.Allen.Evalution of the effects of the communication cable on the dynamics of an underwater flight vehicle[J].Ocean Engineering,2004,31:1019-1035.
    [102]朱军,李炜,程虹.波浪作用下缆船拖带系统非线性运动数值模拟[J].海洋工程.2006.24(3):56-62.
    [103]Society of Naval Architects and Marine Engineers.Nomenclature for treating the motion of a submerged body through fluid,SNAME Technfcal and Research Bulletin No.1-5,1952.
    [104]#12
    [105]#12
    [106]#12
    [107]周昭明,盛子寅,冯悟时.多用途货船的操纵性预报计算[J].船舶工程,1983,(6):21- 29.
    [108]Clarke,D.,Gedling,P.,Hine,G.The application of manoeuvring criteria in hull design using linear theory[J].Transactions of RINA,1983,125:45-68.
    [109]M Hirano.On Calculation Method of Ship Manoeuvering Motion at Initial Design Phase[J].Journal of the Society of Naval Architects of Japan,1980,147:144-153.
    [110]Inoue S,Hirano M,Kijima K,etal.A Practical Calculation Method of Ship Manoeuvering Motion[J].International Shipbuilding Progress,1981,28(325):207-222.
    [111]Kijima Katsuro,Katsuno Toshiyuki,Nakiri Yasuaki,etal.On the manoeuvring performance of a ship with the parameter of loading condition[J].Journal of the Society of Naval Architects of Japan 1990,(168):141-148.
    [112]#12
    [113]#12
    [114]杨盐生,方祥麟.船舶操纵性能仿真预报[J].大连海事大学学报,1997,23(1):1-5。
    [115]邵世明,赵连恩,朱念昌.船舶阻力[M].北京:国防工业出版社,1985.
    [116]杨盐生.船舶阻力系数和推力系数计算的数据库方法[J].大连海事大学学报,1995.21(4):14-17.
    [117]Inoue S,Hirano M,Kijima K.Hydrodynamic derivatives on ship manoeuvring[J].International Shipbuilding Progress,1981,28(321):l12-125.
    [118]范尚雍.船舶操纵性[M].北京:国防工业出版社。1988.
    [119]Lewis G.D.W.A computer program to predict ship manoeuvring in the horizontal plane[R].Ship Science Report SS 2201.University of Southampton,1985.
    [120]刘正江.船舶倒车停止性能的研究[D].大连:大连海事大学,1987.
    [121]#12
    [122]杨盐生,于晓利.低速域船体流体动力的实用估算法[J].大连海事大学学报,1998,24(2):6-10.
    [123]王国强,盛振邦.船舶推进[M].上海:上海交通大学出版社,1994.
    [124]W.P.A.Van Lammrneren,J.D.van Manen,M.W.C.Oosterveld.The Wageningen B-Screw Series[J].Transactions of SNAME,1969290-317.
    [125]Assemberg F.,etal.VIER-KWADRANT VRIJVARENDESCHROEF-KARAKTERISTIEKEN VOOR B-SERIE SCHROEVEN";"FOURIER-REEKS ONTWIKKELING EN OPERATIONEEL GEBRUIK[R].Rapport No.60482-1-MS,1984:1-30.
    [126]尹勇,贾传荧,刘世宁.船用装载仪软件的设计和实现[J].中国航海,2000.(1):54-57.
    [127]#12
    [128]#12
    [129]李美菁.船舶在风浪流及浅水域中多工况操纵运动模拟计算[J].中国造船,1989,(1):36-49.
    [130]杨盐生.船舶靠离泊操纵数学模型的研究[J].大连海事大学学报,1996,22(4):11-15.
    [131]靳明君,张志国.悬链线柔索索长的计算[J].铁道标准设计,2004,(5):9-11.
    [132][日]VLCC研究会著,周沂译.超大型船操纵要点[M].北京:人民交通出版社,1982.
    [133]刘有钟.海船缆绳船艺[M].北京:人民交通出版社,1992.
    [134]周应祺.渔具力学[M].北京:中国农业出版社,2001.
    [135]L H Ronald,E K James.A Representation of Fluid Forces in Finite Segment Cable Models[R].AD report,AD-A090181,1980.
    [136]拖网网板计算和标准设计图协作组.拖网网板模型的风洞试验报告[R].上海市水产研究所,1976.
    [137]Michael T.Heath(张威,贺华,冷爱萍译).科学计算导论[M].北京:清华大学出版社,2005.
    [138]苏炜,詹杰民.渔网在波流作用下的等效网面方法[EB/OL],2006.http://www.paper.edu.cn.
    [139]朱淮冰.稳定快速的动画布料[D].杭州:浙江大学,2004.
    [140]威尔逊.结构静力与动力分析一强调地震工程学的物理方法[M].北京:中国建筑工业出版社,2006.
    [141]中国水产科学研究院东海水产研究所.东海所渔具模型实验室试验报告DT8916[R].东海水产研究所,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700