用户名: 密码: 验证码:
细观结构对多孔金属材料力学性能的影响及多目标优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔金属材料具有轻质、高强韧、吸能性能优异、高效散热、隔热等特性,是一种兼具功能和结构双重作用的新型工程材料,已经广泛应用于航空航天、汽车、海洋采油等领域。多孔金属材料的力学性能与其细观结构密切相关,研究多孔金属材料细观结构与其宏观力学性能之间的关系,深入分析材料变形的细观力学机制并在此基础上进行材料细观结构的优化设计,对促进多孔金属材料的设计开发和工程应用具有重大意义,也是本文工作的主要目的。本文研究了含有细观结构缺陷的二维蜂窝结构动态力学行为,对渗流法制备的开孔泡沫金属进行了细观结构优化设计,并进一步探讨了多孔金属材料多目标优化设计的方法。
     本文首先对胞壁随机移除的二维蜂窝结构动态力学行为进行有限元模拟,研究了不同胞壁移除比的蜂窝结构在动态冲击下的变形模式,发现蜂窝结构变形模式是由两种机制,即惯性效应引起的变形局部化和缺陷引起的多个变形带随机分布(变形分散化),共同作用所决定的。本文还研究了随机移除胞壁对蜂窝结构模式转换临界速度的影响,给出了临界速度的近似公式。对蜂窝结构平台应力速度效应的研究发现,当变形模式为过渡模式和动态模式时,平台应力与冲击速度的平方成正比。相同密度下,低缺陷蜂窝结构的平台应力在由过渡模式向动态模式转变的临界速度附近高于规则蜂窝结构,较高的随机缺陷则使蜂窝结构的平台应力在由准静态模式向过渡模式转变的临界速度附近显著下降。
     本文还研究了含随机固体填充孔蜂窝结构的动态力学行为。通过对不同孔洞填充比的蜂窝结构动态变形过程进行有限元模拟,发现含固体填充孔蜂窝结构与相同密度的规则蜂窝结构具有相同的变形模式和临界速度。准静态模式下,随孔洞填充比的增加,蜂窝结构压缩应力显著下降。蜂窝结构变形为过渡模式或动态模式时,固体填充孔将导致蜂窝结构冲击面应力出现尖峰,在应力尖峰以外的区域,蜂窝结构压缩应力可通过具有相同壁厚的规则蜂窝结构平台应力估算。蜂窝结构的平台应力表现出明显的速度效应,与冲击速度的平方成线性关系。低速冲击下,含固体填充孔的蜂窝结构平台应力随孔洞填充比的增大而显著降低,随着冲击速度的提高,一方面固体填充孔导致蜂窝结构应力应变曲线中出现应力尖峰,提高了蜂窝结构的吸能能力,另一方面含固体填充孔蜂窝结构中的崩塌变形耗散能高于规则蜂窝结构中的逐层剪切变形耗散能,含固体填充孔蜂窝结构平台应力在较高的冲击速度下可以比规则蜂窝结构平台应力提高10%以上。
     对渗流法制备开孔泡沫金属时盐粒的几何堆积方式进行了讨论,提出了引入二级孔洞,通过细观结构的设计来优化泡沫金属宏观力学性能的设想,并设计了优化的三维开孔泡沫金属绌观几何构型。建立了球形孔面心立方密排(FCC)堆积的双重孔径泡沫金属单胞有限元模型,并进行了单轴压缩过程的数值模拟。计算结果表明引入二级孔洞的泡沫金属弹性模量和压缩强度均明显高于相同密度的单一孔径泡沫金属,通过计算还获得了使材料性能最优的孔径比。对泡沫金属压缩变形机理的分析表明,单一孔径泡沫金属变形主要为斜杆的弯曲变形,引入二级孔洞后,更多的实体材料参与变形,泡沫金属中同时存在胞杆的轴向压缩与弯曲变形,提高了泡沫金属的强度,并使材料表现出与单一孔径泡沫金属不同的塑性流动特性。对双重孔径泡沫金属的实验研究验证了细观结构设计对材料性能的优化作用,材料弹性模量和屈服强度分别比单一孔径泡沫金属提高48%及19%,最优的孔径比和孔洞体积比分别为0.4和0.07~0.1。
     本文对单一孔径和双重孔径泡沫金属的稳态热传导过程进行了有限元模拟,得到不同相对密度和孔径比的开孔泡沫金属等效热传导系数。通过最小二乘法获得了双重孔径泡沫金属的屈服应力和隔热参数的拟合函数式,建立了包含强度、隔热和轻质三个目标函数的多目标优化设计数学模型,在构件质量一定的情况下,采用约束法将多目标优化问题转化为单目标优化问题进行求解,得到满足强度要求,同时使隔热性能最优的泡沫金属细观参数。最后,求得了相同质量的泡沫金属板构件隔热参数—屈服应力关系图,对单一孔径泡沫金属板和双重孔径泡沫金属板性能进行了比较,发现双重孔径泡沫金属板综合性能要显著优于单一孔径泡沫金属板。
Cellular metals exhibit low densities, high specific stiffness and strength, high energy-absorbing capabilities and novel thermal properties comparing to fully-dense metals. They have been widely used in many fields for their multi-functionality, such as aircraft, spacecraft, automobile and offshore oil production platforms. The strong connections between mechanical behavior and cell structures of cellular metals are generally acknowledged, but not complete and in-depth. In the present work, the influences of cell structure defects on the macroscopic mechanical properties of 2-D honeycombs are investigated, optimization design of cell structure for open-cell metal foams is developed, and further more, the multi-objective optimization design are carried out for specified metal foam structures.
     Finite element simulations are performed to study the effect of randomly removing cell walls on the dynamic crushing behaviour of honeycomb structures. The influences of the imperfection and impact velocity on the deformation mode and plateau stress are investigated. Simulation results reveal that both imperfection and impact velocity affect the deformation modes as well as the critical velocities of mode transition. It is found that the deformation mode of imperfect honeycomb is determined by the combined action of two mechanisms, i.e. the deformation localization caused by inertia effect and deformation bands dispersion introduced by random distributed defects. The plateau stress is found to be proportional to the square of the impact velocity when the imperfect honeycombs are deformed at transitional mode or dynamic mode. When the impact velocity is near the critical velocity between transitional mode and dynamic mode, honeycombs with small fraction of imperfection exhibit higher plateau stress, comparing to those of regular honeycombs having the same relative density. However, when the imperfection further increases, the plateau stress decreases obviously near the critical velocity between quasi-static mode and transitional mode.
     The dynamic crushing behavior of honeycombs with randomly distributed solid inclusions is studied. Simulation results reveal that the deformation mode and critical velocities remain the same as regular honeycombs after introduction of solid inclusions. The plateau stress of honeycombs with solid inclusions is found to be proportional to the square of impact velocity. Comparing to regular honeycombs with same density, the compression strength of honeycombs with solid inclusion is found to decrease significantly under low velocity impact. However, as the impact velocity increases, inertia effects would result in spinous stress protuberances in the stress-strain curves of honeycombs with solid inclusions, moreover, the cell wall crushing of honeycombs with solid inclusions dissipates more energy than shear bands of regular honeycombs, accordingly, plateau stress of honeycomb with solid inclusions can be 10% higher than that of regular honeycomb.
     A dual-size cellular structure design is proposed and used to improve the mechanical properties of open-cell metal foams fabricated by the infiltration technique. Assuming a spherical shape of cells and idealized face-centered cubic (FCC) arrangement of cells, numerical simulations on the axial compression of open-cell foams with dual-size cellular structure are performed. The results show that the stiffness and strength of metal foam with secondary cells are much higher than those of uniform cell foams. The analysis on the deformation mechanism reveals that cell wall bending is the dominated mechanism in uniform cell foams, however, In dual-size foams, larger proportion of solid materials deforms, lead to an increase on mechanical properties, the combined action of cell wall bending and axial compression also lead to a different flow behavior compared with uniform cell foams. According to the numerical results, optimal dual-size open-cell aluminum foams are then manufactured. Their mechanical properties are tested. The stiffness and yield strength of dual-size foams are 48% and 19% higher than uniform cell foam, respectively. The optimized radius ratio and volume ratio of secondary cells to large cells are acquired. The experimental results fit with numerical prediction qualitatively.
     The geometric model of dual-size foams is further used for steady heat conduction simulations. The effective thermal conductivity of open-cell foams having various density and cell radius ratios are calculated by FEA method. The fitting functions of yield stress and thermal insulation parameter of dual-size foams are constructed by least square method. The multi-objective optimization design model including three objective functions, i.e. yield stress, thermal insulation parameter and structure weight, is proposed for metal foam plate. Solving the model with restriction method, the optimized density, cell radius ratio and plate thickness are acquired. Finally, the relationship graph of thermal insulation parameter and yield stress of metal foam plate is provided. It reveals that the comprehensive performance of dual-size foam plate is much better than that of uniform cell foam plate.
引文
[1]Gibson LJ,Ashby MF.Cellular Solids:Structure and Properties.Cambridge University Press 1997.
    [2]Sosnik A.Process for making foamlike mass of metal.US Patent 1948;2434775.
    [3]Anon.urh http://baike.sososteel.com/view/2008/01/11/3140.html.搜搜钢百科2008.
    [4]#12
    [5]Banhart J.Manufacture,characterisation and application of cellular metals and metal foams.Progress in Materials Science 2001;46:559.
    [6]Degischer HP,Kriszt B.Handbook of Cellular Metals.Production,Processing,Applications.Wiley-VCH 2002.
    [7]Seeliger HW.Aluminium foam sandwich ready for market introduction.Advanced Engineering Materials 2004;6:448.
    [8]宋振纶,何德坪.铝熔休泡沫化过程中粘度对孔结构的影响.材料研究学报1997:11:274.
    [9]Yang DH,He DP,Yang SR.Thermal decomposition kinetics of TiHB2B and Al alloy melt foaming process.Science in China(B) 2004;47:512.
    [10]戴戈,何德坪,尚金堂.铝合金熔体粘度的实时精确检测与控制.材料研究学报2005;19:37.
    [11]朱震刚.金属泡沫材料研究.物理1999;28:84.
    [12]Mukai T,Miyoshi T,Nakano S,Somekawa H,Higashi K.Compressive response of a closed-cell aluminum foam at high strain rate.Scripta Materialia 2006;54:533.
    [13]Wallash JC,Gibson LJ.Defect sensitivity of a 3D truss material.Sciripta Materialia 2001;45:639.
    [14]Kaftandjian V,Peix G,Babot D,Peyrin F.High-Resolution X-Ray Computed Tomography Using a Solid-State Linear Detector.Journal of X-Ray Science and Technology 1996;13:94.
    [15]刘培生.多孔材料引论.清华大学出版社2004.
    [16]Davis GJ,Shu Z.Metallic foams:their production,properties and applications.Journal of Materials Science 1983;18:1899.
    [17]汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程1997;26:1.
    [18]Liu PS,Liang K,M.Functional materials of porous metals made by P/M,electroplating and some other techniques.Journal of Materials Science 2001;36:5059.
    [19]Schwartz DS,Shih DS,Lederich RJ,R.L.M,Deuser DA.Porous and cellular materials for structural applications.In:Schwartz DS,Shih DS,Evans AG,Wadley HNG,editors.MRS Symp.Proc.1998;521:225.
    [20]Seeliger HW.Metal foams.In:Banharf J,Eifert H,editors.Proc.Fraunhofer USA Symposium on Metal foams,Staton,USA,7-8 October.Bremen:MIT Press-Verlag 1997:79.
    [21]Seeliger HW.Metal foams and porous metal structures.In:Banharf J,Ashby MF,Fleck NA,editors.Int.Conf.,Bremen,Germany,14-16 June.Bremen:MIT Press-Verlag 1999:29.
    [22]吉布森,阿什比著,刘培生,译.多孔固体结构与性能(书名原文:Cellular Solids:Structure and Properties).北京:清华大学出版社2003.
    [23]蒂吉斯切(Degischer HP,克雷兹特(Kriszt,B.)主编,左孝青,周芸,译.多孔泡沫金属(书名原文:Handbook of Cellular Metals:Production,Processing,Applications).北京:化学工业出版社;工业装备与信息工程出版中心2005.
    [24]Ashby MF,Evans AG,Fleck NA,Gibson LJ,Hutchinson JW,Wadley HNG.Metal Foams:A Design Guide.Butterworth-Heinemann 2000.
    [25]Ridgeway JA.Cellarized metal and method of producing the same.US Patent,32974311967.
    [26]Akiyama S,Imagawa K,Kitahara A.Foamed metal and method for producing the same.European Patent,EP0210803A1.1986.
    [27]Wagner I,Hintz C,Sahm PR.Metal Matrix Composites and Metallic Foams.Proc.Euromat 99,Munich,Germany,T.W.Clyne,F.Simancik(eds),DGM/Wiley-VCH,Weinheim 2000:40.
    [28]San Marchi C,Mortensen A.Deformation of open-cell aluminum foam.Acta Materialia 2001;49:3959.
    [29]Despois JF,Mueller R,Mortensen A.Uniaxial deformation of microcellular metals.Acta Materialia 2006;54:4129.
    [30]Despois JF,Mortensen A.Permeability of open-pore microcellular materials.Acta Materialia 2005;53:1381.
    [31]Jeon I,Asahina T.The effect of structural defects on the compressive behavior of closed-cell Al foam.Acta Materialia 2005;53:3415.
    [32]Matijasevic B,Banhart J.Improvement of aluminium foam technology by tailoring of blowing agent.Scripta Materialia 2006;54:503.
    [33]Stanzick H,Wichmann M,Weise J,Banhart J,Helfen L,Baumbach T.Process control in aluminium foam production using real-time X-ray radioscopy.Advanced Engineering Materials 2002;4:814.
    [34]宝鸡有色金属研究所.粉末冶金多孔材料(上册).北京:冶金工业出版社1978.
    [35]Chen C.Manual for a UMAT User Subroutine.Technical Report CUED/C-MICROMECH/TR.4.Dept.of Engineering,Cambridge University,Cambridge 1998.
    [36] Anon. ABAQUS Theory Manual Version 5.8(section 4.4.6). Hibbitt, Karlsson & Sorensen,Inc., Pawtucket 1998.
    
    [37] Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids 2000;48:1253.
    
    [38] Zhu HX, Knott JF, Mills NJ. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. Journal of the Mechanics and Physics of Solids 1997;45:319.
    
    [39] Zhu HX, Mills NJ, Knott JF. Analysis of the high strain compression of open-cell foams.Journal of the Mechanics and Physics of Solids 1997;45:1875.
    
    [40] Mills NJ, Zhu HX. The high strain compression of closed-cell polymer foams. Journal of the Mechanics and Physics of Solids 1999;47:669.
    
    [41] Suh KW, Skochdopole RE. Encyclopedia of Chemical Technology, 3rd Edition.Kirk-Othmer 1980;2.
    
    [42] Shulmeister V, Van der Burg MWD, Van der Giessen E, Marissen R. A numerical study of large deformations of low-density elastomeric open-cell foams. Mechanics of Materials 1998;30:125.
    
    [43] Silva MJ, Hayes WC, Gibson LJ. The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. International Journal of Mechanical Sciences 1995;37:1161.
    
    [44] Silva MJ, Gibson LJ. The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. International Journal of Mechanical Sciences 1997;39:549.
    
    [45] Chen C, Lu TJ, Fleck NA. Effect of imperfections on the yielding of two-dimensional foams. Journal of the Mechanics and Physics of Solids 1999;47:2235.
    
    [46] Zhu HX, Hobdell JR, Windle AH. Effects of cell irregularity on the elastic properties of open-cell foams. Acta Materialia 2000;48:4893.
    
    [47] Zhu HX, Hobdell JR, Windle AH. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs. Journal of the Mechanics and Physics of Solids 2001;49:857.
    
    [48] Zhu HX, Windle AH. Effects of cell irregularity on the high strain compression of open-cell foams. Acta Materialia 2002;50:1041.
    
    [49] Fazekas A, Dendievel R, Salvo L, Brechet Y. Effect of microstructural topology upon the stiffness and strength of 2D cellular structures. International Journal of Mechanical Sciences 2002;44:2047.
    
    [50] Mills NJ. The high strain mechanical response of the wet Kelvin model for open-cell foams.International Journal of Solids and Structures 2007;44:51.
    
    [51] Gan YX, Chen C, Shen YP. Three-dimensional modeling of the mechanical property of linearly elastic open cell foams. International Journal of Solids and Structures 2005;42:6628.
    
    [52] Roberts AP, Garboczi EJ. Elastic properties of model random three-dimensional open-cell solids. Journal of the Mechanics and Physics of Solids 2002;50:33.
    
    [53] Kepets M, Lu TJ, Dowling AP. Modeling of the role of defects in sintered FeCrAlY foams.Acta Mechanica Sinica 2007;23:511.
    
    [54] Guo XE, Gibson LJ. Behavior of intact and damaged honeycombs: a finite element study.International Journal of Mechanical Sciences 1999;41:85.
    
    [55] Chuang CH, Huang JS. Elastic moduli and plastic collapse strength of hexagonal honeycombs with plateau borders. International Journal of Mechanical Sciences 2002;44:1827.
    
    [56] Yang MY, Huang JS. Elastic buckling of regular hexagonal honeycombs with plateau borders under biaxial compression. Composite Structures 2005;71:229.
    
    [57] Harders H, Hupfer K, Rosier J. Influence of cell wall shape and density on the mechanical behavior of 2D foam structures. Acta Materialia 2005;53:1335.
    
    [58] Simone AE, Gibson LJ. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Materialia 1998;46:2139.
    
    [59] Li K, Gao XL, Subhash G. Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids. International Journal of Solids and Structures 2005;42:1777.
    
    [60] Li K, Gao XL, Subhash G. Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams. Journal of the Mechanics and Physics of Solids 2006;54:783.
    
    [61] Papka SD, Kyriakides S. Inplane Compressive Response and Crushing of Honeycomb.Journal of the Mechanics and Physics of Solids 1994;42:1499.
    
    [62] Papka SD, Kyriakides S. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Materialia 1998;46:2765.
    
    [63] Papka SD, Kyriakides S. Biaxial crushing of honeycombs - Part I: Experiments.International Journal of Solids and Structures 1999;36:4367.
    
    [64] Papka SD, Kyriakides S. In-plane biaxial crushing of honeycombs - Part II: Analysis. International Journal of Solids and Structures 1999;36:4397.
    
    [65] Yang MY, Huang JS, Sam CP. In-plane elastic moduli and plastic collapse strength of regular hexagonal honeycombs with dual imperfections. International Journal of Mechanical Sciences 2008;50:43.
    
    [66] Honig A, Stronge WJ. In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping. International Journal of Mechanical Sciences 2002;44:1665.
    
    [67] Honig A, Stronge WJ. In-plane dynamic crushing of honeycomb. Part II: application to impact. International Journal of Mechanical Sciences 2002;44:1697.
    
    [68] Ruan D, Lu G, Wang B, Yu TX. In-plane dynamic crushing of honeycombs - a finite element study. International Journal of Impact Engineering 2003;28:161.
    [69]Zheng ZJ,Yu JL,Li JR.Dynamic crushing of 2D cellular structures:A finite element study.International Journal of Impact Engineering 2005;32:650.
    [70]Li K,Gao XL,Wang J.Dynamic crushing behavior of honeycomb structures with irregular cell shapes and non-uniform cell wall thickness.International Journal of Solids and Structures 2007;44:5003.
    [71]Mukai T,Kanahashi H,Miyoshi T.Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading.Scripta Materialia 1999;40.
    [72]Pual A,Ramamurty U.Strain rate sensitivity' of a closed-cell aluminum foam..Material Science and Engineering 2000;.A281:1.
    [73]Dannemann KA,Lankford J.High strain rate compression of closed-cell aluminium foams.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2000;293:157.
    [74]Mukai T,Miyoshi T,Nakano S.Compressive response of a closed-cell aluminum foam at high strain rate.Scripta Materialia 2005;54:533.
    [75]胡时胜,王悟,潘艺,周璟,李英华.泡沫材料的应变率效应.爆炸与冲击2003;23:13.
    [76]Deshpande VS,Fleck NA.High strain rate compressive behaviour of aluminium alloy foams.International Journal of Impact Engineering 2000;24:277.
    [77]Lee S,Barthelat F,Moldovan N,Espinosa HD,Wadley HNG.Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials.International Journal of Solids and Structures 2006;43:53.
    [78]Wang ZH,Ma HW,Zhao LM.Studies on the dynamic compressive properties of open-cell aluminum alloy foams.Scripta Materialia 2006:83.
    [79]Tan PJ,Reid SR,Harrigan JJ,Zou Z,Li S.Dynamic compressive strength properties of aluminium foams.Part Ⅰ-experimental data and observations.Journal of the Mechanics and Physics of Solids 2005;53:2174.
    [80]Tan PJ,Reid SR,Harrigan JJ,Zou Z,Li S.Dynamic compressive strength properties of aluminium foams.Part Ⅱ -'shock' theory and comparison with experimental data and numerical models.Journal of the Mechanics and Physics of Solids 2005;53:2206.
    [81]刘耀东,虞吉林,郑志军.惯性效应对多孔金属材料动态力学行为的影响.高压物理学报2008;已接收.
    [82]Calmidi VV,Mahajan RL.The effective thermal conductivity of high porosity fibrous metal foams.Journal of Heat Transfer-Transactions of the Asme 1999;121:466.
    [83]Lu TJ,Chen C.Thermal transport and fire retardance properties of cellular aluminium alloys.Acta Materialia 1999;47:1469.
    [84]Bhattacharya A,Calmidi VV,Mahajan RL.Thermophysical properties of high porosity metal foams.International Journal of Heat and Mass Transfer 2002;45:1017.
    [85]Boomsma K,Poulikakos D.On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam.International Journal of Heat and Mass Transfer 2001;44:827.
    [86]卢天健,何德坪,陈常青,赵长颖,方岱宁,王晓林.超轻多孔金属材料的多功能特性及应用.力学进展2006:36:517.
    [87]Kim SY,Pack JW,Kang BH.Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger.Journal of Heat Transfer-Transactions of the Asme 2000;122.
    [88]Lu T J,Stone HA,Ashby MF.Heat transfer in open-cell metal foams.Acta Materialia 1998;46:3619.
    [89]Lu W,Zhao CY,Tassou SA.Thermal analysis on metal-foam filled heat exchangers.Part Ⅰ:Metal-foam filled pipes.International Journal of Heat and Mass Transfer 2006;49:2751.
    [90]Zhao CY,Lu T J,Hodson HP.Natural convection in metal foams with open cells.International Journal of Heat and Mass Transfer 2005;48:2452.
    [91]Zhao CY,Lu W,Tassou SA.Thermal analysis on metal-foam filled heat exchangers.Part Ⅱ:Tube heat exchangers.International Journal of Heat and Mass Transfer 2006;49:2762.
    [92]Venkataraman S,Haftka RT,Sankar BV,Zhu HD,Blosser ML.Optimal functionally graded metallic foam thermal insulation.Aiaa Journal 2004;42:2355.
    [93]Steeves CA,Fleck NA.Collapse mechanisms of sandwich beams with composite faces and a foam core,loaded in three-point bending.Part 1:analytical models and minimum weight design.International Journal of Mechanical Sciences 2004;46:561.
    [94]Chen C,Harte.AM,Fleck NA.The plastic collapse of sandwich beams with a metallic foam core.International Journal of Mechanical Sciences 2001;43:1483.
    [95]Hanssen AG,Langseth M,Hopperstad OS.Optimum design for energy absorption of square aluminium columns with aluminiurn foam filler.International Journal of Mechanical Sciences 2001;43:153.
    [96]Evans AG,Hutchinson JW,Ashby MF.Multifunctionality of cellular metal systems.Progress in Materials Science 1998;43:171.
    [97]Zhu H,Sankar BV,Haftka RT,Venkataraman S,Blosser M.Optimization of functionally graded metallic foam insulation under transient heat transfer conditions.Structural and Multidisciplinary Optimization 2004;28:349.
    [98]Gu S,Lu T J,Evans AG.On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity.International Journal of Heat and Mass Transfer 2001;44:2163.
    [99]李录贤,李跃明,洪灵,闫桂荣,陈常青,申胜平.强度与振动教育部重点实验室近期研究工作进展.力学进展2008;2:256.
    [100]Rakow JF,Waas AM.Response of actively cooled metal foam sandwich panels exposed to thermal loading.Aiaa Journal 2007;45:329.
    [101] Chen C, Lu TJ, Fleck NA. Effect of inclusions and holes on the stiffness and strength of honeycombs. International Journal of Mechanical Sciences 2001;43:487.
    
    [102] Hibbitt. ABAQUS/Explicit User's Manual. Karlsson &Sorensen, Inc. 2002;V6.3.
    
    [103] Prakash 0, Bichebois P, Brechet Y, Louchet F, Embury JD. A note on the deformation behaviour of two-dimensional model cellular structures. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 1996;73:739.
    
    [104] Luxner MH, Stampfl J, Pettermann HE. Numerical simulations of 3D open cell structures -influence of structural irregularities on elasto-plasticity and deformation localization. International Journal of Solids and Structures 2007;44:2990.
    
    [105] Daxner T, Bohm HJ, Rammerstorfer FG. in Metal Foams and Porous Metal Structure, J.Banhart, M. F. Ashby, N. A. Fleck(eds) 1999;MIT Verlag,Bremen:283.
    
    [106] Daxner T, Rammerstorfer FG, Bohm HJ. Adaptation of density distributions for optimising aluminium foam structures. Materials Science and Technology 2000;16:935.
    
    [107] Warren WE, Kraynik AM. Foam mechanics: the linear elastic response of two-dimensional spatiallly periodic cellular materials. Mechanics of Materials 1987;6:27.
    
    [108] Li JR, Cheng HF, Yu JL, Han FS. Effect of dual-size cell mix on the stiffness and strength of open-cell aluminum foams. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2003;362:240.
    
    [109] Hibbitt. ABAQUS/Standard User's Manual. Karlsson &Sorensen, Inc. 2002;V6.3.
    
    [110] Amsterdam E, Onck PR, Hosson JTMD. Fracture and microstructure of open cell aluminum foam Journal of Materials Science 2005;40:5813.
    
    [111] Amsterdam E, de Vries JHB, De Hosson JTM, Onck PR. The influence of strain-induced damage on the mechanical response of open-cell aluminum foam. Acta Materialia 2008;56:609.
    
    [112] Zhu HD, Sankar BV, Haftka RT. Mininum mass design of Insulation made of functionally graded material. Journal of Spacecraft and Rockets 2004;41:467.
    
    [113] Lu TJ, Stones HA, Ashby M. Heat transfer in open-cell metal foams. Acta Materialia 1998;46:3619.
    
    [114] Hwang JJ, Hwang GJ, Yeh RH, Chao CH. Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams. Journal of Heat Transfer-Transactions of the Asme 2002;124:120.
    
    [115] Calmidi VV, Mahajan RL. Forced convection in high porosity metal foams. Journal of Heat Transfer-Transactions of the Asme 2000;122:557.
    
    [116] Kim K, Jang SP. Effects of the Darcy number, the Prandtl number and the Reynolds number on the local thermal non-equilibrium. International Journal of Heat and Mass Transfer 2002;45:3885.
    
    [117] Kaviany M. Principles of Heat Transfer in Porous Media, third ed. Springer, New York 1995;17,18,30,70,94,415.
    [118]Younis LB,Viskanta R.Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam.International Journal of Heat and Mass Transfer 1993;36:1425.
    [119]Collishaw PG,Evans JRG.An Assessment of Expressions for the Apparent Thermal-Conductivity of Cellular Materials.Journal of Materials Science 1994;29:486.
    [120]Sullines D,Daryabeige K.Effective thermal conductivity of high porosity open cell nickel foam.in:35th AIAA Thermophysics Conference,CA 2001;Paper No.2819:12.
    [121]Vafai K,Tien CL.Boundary and inertia effects on convective mass transfer in porous media.International Journal of Heat and Mass Transfer 1982;25:1183.
    [122]Alawadhi EM,Amon CH.PCM thermal control unit for portable electronic devices:experimental and numerical studies.IEEE Transactions on Components and Packaging Technologies 2003;26:116.
    [123]Vesligaj MJ,Amon CH.Transient thermal management of temperature fluctuations during time varying workloads on portable electronic.IEEE Transactions on Components and Packaging Technologies 1999;22:541.
    [124]Bastawros AF.Effectiveness of open-cell metallic foams for high power electronic cooling.ASME HTD 1998;361:211.
    [125]Sugimura Y,Meyer J,He MY,BartSmith H,Grenstedt J,Evans AG.On the mechanical performance of closed cell Al alloy foams.Acta Materialia 1997;45:5245.
    [126]SEAC International B.V.K.Product data sheet of"Recemat" url http://www.seac.nl 1998.
    [127]ASTM standard methods of fire tests of building construction and materials.American Society for Testing and Materials 1988:E119.
    [128]汪树玉,杨德铨,刘国华,张科锋.优化原理、方法与工程应用.杭州:浙江大学出版社1991.
    [129]黄翼卓,王湛.基于遗传算法的抗震刚框架多目标优化设计.力学学报2007;39:389.
    [130]Aguilar MJF,Rodrigues H,Pina H.Multi-objective optimization of structures topology by genetic algorithms.Advanced in Engineering Software 2005;36:21.
    [131]林锉云,董加礼.多目标优化的方法与理论.长春:吉林教育出版社1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700