用户名: 密码: 验证码:
氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天线罩是高超音速导弹的关键部件之一,必须具备防热、透波、承载等多种功能,以满足导弹制导系统正常工作的需要。本文在全面综述国内外航天透波材料和烧蚀材料研究进展的基础上,以研制功能分离式高超音速导弹天线罩为目标,针对不同功能区对材料性能的不同要求,对各功能区的材料体系进行了设计,合成了新型的氮化物陶瓷先驱体混杂聚硼硅氮烷(H-PBSZ),通过先驱体浸渍—裂解(PIP)工艺制备了碳纤维增强氮化物(CFRN)耐烧蚀复合材料和石英纤维增强氮化物(SFRN)透波复合材料,并对烧蚀材料表面涂层的制备进行了初步探索。在此基础上,实现了不同功能区材料的整体成型,并制备出了全尺寸的整体天线罩构件。
     合成了新型氮化物陶瓷先驱体H-PBSZ,并对其交联和裂解过程进行了研究。分别合成硼吖嗪和全氢聚硅氮烷,使二者在一定条件下聚合,得到H-PBSZ。H-PBSZ结构中含有N-H、B-H、Si-H、B-N以及Si-N等化学键,在低温密闭环境中保持稳定。H-PBSZ在受热时会实现交联固化,交联过程中增大反应室气压可减小所放出的气泡的体积,并减缓其上升的速度,使交联反应平稳进行;同时可抑制放气反应的进行,减少气体的放出量,从而有效地抑制先驱体的“发泡”现象。H-PBSZ的交联产物可在氨气中发生高温裂解,随着裂解温度的升高,裂解产物的结晶度和稳定性均随之提高,1600℃实现完全陶瓷化,陶瓷产率约83wt%。H-PBSZ的最终裂解产物为BN和Si_3N_4的混合物。H-PBSZ是一种合适的PIP陶瓷先驱体。
     首次以H-PBSZ为先驱体,通过PIP工艺制备了3D CFRN复合材料。在PIP工艺循环过程中,随着循环次数的增加,复合材料的密度逐渐增大,孔隙率逐渐减少,4个PIP循环后复合材料基本达到致密;力学性能逐渐提高,弯曲强度和弹性模量均逐渐增大;烧蚀性能明显改善。在交联过程中,随着交联气压的升高,先驱体的“发泡”现象得到有效抑制,复合材料的密度及综合性能得以提高。交联气压为8MPa时,3D CFRN复合材料的密度达1.65g/cm~3。当裂解温度从800升至1300℃时,3D CFRN复合材料的密度及力学性能均随之提高。裂解温度的不同对先驱体的浸渍效率及所得复合材料的致密度无明显影响。2100℃热处理后,3DCFRN复合材料基体中的Si_3N_4已经分解,纤维与基体间发生了严重的界面反应,生成了B_4C以及SiC,复合材料的力学性能严重下降。
     考察了3D CFRN复合材料的烧蚀性能,并对烧蚀过程中材料结构和形貌的变化进行了分析。在烧蚀的过程中,氮化物基体对碳纤维提供了有效的保护,使复合材料显示出了良好的烧蚀性能。T300和T700两种碳纤维增强的3D CFRN复合材料的烧蚀性能基本相同。在轨道模拟烧蚀试验中,氮化物基体表现出了优于碳纤维的耐烧蚀性能。烧蚀之后,3D CFRN复合材料烧蚀表面的Si_3N_4发生了分解,BN以及碳纤维发生了晶化。3D CFRN复合材料的烧蚀是一个热化学烧蚀与机械剥蚀相结合的过程。
     研究了碳纤维种类及纤维表面处理对3D CFRN复合材料力学性能的影响。T300和T700两种碳纤维增强的3D CFRN复合材料的力学性能显著不同。与T300相比,T700增强的复合材料强度更高,韧性更好,断口中可观察到大量的纤维拔出。二者力学性能的差别归因于不同的纤维表面状态及由此导致的纤维/基体界面结合强度的差异。400℃空气表面氧化处理和1000℃惰性气氛热处理均可去除碳纤维的表面胶,且能够使纤维保留足够的强度。纤维的表面氧化处理可提高T700增强3D CFRN复合材料的力学性能,但对T300增强3D CFRN复合材料的力学性能不利;纤维的热处理对3D CFRN复合材料的力学性能无显著影响。复合材料力学性能的改变归因于表面处理所带来的纤维/基体界面结合状态的变化。采用空气氧化处理的T700纤维增强,高压交联,800℃裂解制备的3D CFRN复合材料弯曲强度为268.4MPa,弹性模量为67.6GPa。
     对3D CFRN复合材料表面抗侵蚀涂层的制备进行了初步研究。选取涂层成分为SiC,制备工艺为化学气相沉积(CVD)。合成了新型的CVD SiC先驱体液态碳硅烷,其结构中不含腐蚀性元素。以液态碳硅烷为先驱体进行沉积时,无腐蚀性副产物。随着沉积温度的升高,先驱体的裂解逐渐完全,900℃可沉积得到较纯净的部分结晶的SiC;当载气的流量较低时,可沉积得到SiC涂层,载气流量过高时,沉积产物为SiC纳米粉体。3D CFRN复合材料表面的CVD SiC涂层致密、坚硬,显微硬度达2800~3200 kgf/mm~2(HV)。SiC涂层的存在可有效地改善3D CFRN复合材料的烧蚀性能。
     采用H-PBSZ先驱体转化工艺制备了3D SFRN复合材料。高压交联工艺制备的3D SFRN复合材料与常压交联相比,综合性能显著提高,密度提高了8%,弯曲强度及弹性模量分别提高了35.5%和102.4%,氧—乙炔线烧蚀率下降了26.7%。随着裂解温度的升高,石英纤维的脆化加剧,3D SFRN复合材料的力学性能逐渐下降。高压交联、800℃裂解制备的3D SFRN复合材料的密度达1.83g/cm~3,弯曲强度为148.2MPa,弹性模量为41.5GPa,氧—乙炔线烧蚀率为0.11mm/s,质量烧蚀率为1.07×10~(-2)g/s。不同工艺条件制备的3D SFRN复合材料的介电性能较为稳定,介电常数为3.31~3.34,损耗角正切为3.8~4.9×10~(-3)。
     以功能分离式整体天线罩的整体成型为目标,对各功能区的材料体系和制备工艺进行了优化设计。不同功能区的候选材料3D CFRN和3D SFRN复合材料的热膨胀系数相近,在制备过程中和烧蚀试验过程中,均具有良好的相容性。根据具体应用环境,确定天线罩材料的增强织物采用2.5D编织结构,可兼顾材料经、纬两向的力学性能;烧蚀—承载功能区为混杂纤维增强氮化物(2.5D HFRN)复合材料,其中经纱为碳纤维,纬纱为石英纤维,透波功能区为石英纤维增强氮化物(2.5D SFRN)复合材料。以H-PBSZ为先驱体,采用PIP工艺进行复合材料制备。2.5D HFRN复合材料的经向弯曲强度为259.1MPa,弹性模量为65.3GPa,断裂韧性10.78MPa·m~(1/2),热导率和比热分别为1.20W/m·K和0.80 kJ/kg·K,氧—乙炔线烧蚀率和质量烧蚀率分别为0.058mm/s和5.52×10~(-3)g/s。2.5D SFRN复合材料的经向弯曲强度为142.7MPa,弹性模量为40.3 GPa,热导率和比热分别为0.80W/m·K和0.81 kJ/kg·K,氧—乙炔线烧蚀率和质量烧蚀率分别为0.107mm/s和1.06×10~(-2)g╱s,介电常数和损耗角正切值分别为3.34和4.0×10~(-3),在7.5~18.5 GHz的频段内透波率大于70%。二者的综合性能优异,可满足高超音速导弹天线罩正常工作的要求。
     分析了天线罩构件的制备流程,优化了PIP工艺参数,选择了合适的机械加工时机,实现了各功能区的整体成型,制备出了外形、尺寸精确的大尺寸异型薄壁高超音速导弹天线罩构件。
As one of key components of hypersonic missiles, the radome must possess multifunctions of thermal protection, electromagnetic transparence and load bearing to meet the requirements of the homing guidance systems. In this dissertation, based on the comprehensive review of aerospace wave-transparent materials and ablative materials at home and abroad, aiming at the requirements of different functional sections in the function separated hypersonic missile radome, the materials system in each functional section was designed, a new precursor for nitride ceramics, hybrid polyborosilazane (H-PBSZ) was synthesized, carbon fiber reinforced nitride matrix (CFRN) ablative composites and silica fiber reinforced nitride matrix (SFRN) wave-transparent composites were prepared by precursor infiltration and pyrolysis (PIP) process, and the preparation of the coating for ablative composites were explored primarily. Finally, integral formation of different functional sections was realized, and full sized monolithic radome was fabricated.
     H-PBSZ, a new precursor for nitride ceramics, was synthesized, and the curing and pyrolysis process of H-PBSZ was investigated. H-PBSZ was obtained from the copolymerization of borazine and perhydropolysilazane, which were synthesized separately. Chemical bonds of N-H, B-H, Si-H, B-N, Si-N and so on exist in the structure of H-PBSZ. H-PBSZ is stable in airtight atmosphere at low temperatures, and could be cured and solidified when heated. With the increase of atmospheric pressure in curing process, the volumn of bubbles originated from the precursor is decreased, and the floating velocity of bubbles is slowed down, the curing process can be calmly performed. Moreover, the reaction which emits gases can be restrained, and the amount of the gases is decreased. Therefore, the foaming phenomenon is effectively restrained. The cured H-PBSZ can be pyrolyzed in ammonia gas at high temperatures. With the increasing pyrolysis temperature, both the crystallinity and stability of pyrolytic product are increased. H-PBSZ is fully ceramized at 1600℃, and the ceramic yield is about 83wt%. The ultimate pyrolytic product of H-PBSZ is a mixture comprising BN and Si_3N_4. H-PBSZ is an appropriate preceramic precursor for PIP process.
     3D CFRN composites were prepared from H-PBSZ by PIP process for the first time. With the increase of PIP cycles, the density of the composites increases, the porosity decreases, and the composite becomes almost dense after four cycles; the mechanical properties are enhanced, including flexural strength and elastic modulus; and ablation resistance is improved. In the curing stage, with the increase of curing pressure, the foaming phenomenon is effectively restrained; the density and integrative properties of the composites are elevated. The density of 3D CFRN composite cured at 8 MPa reaches 1.65g/cm~3. Both the density and mechanical properties of the composites increase as the pyrolysis temperature increases from 800 to 1300℃. The infiltration efficiency of the precursor and the relative density of the composites are hardly changed with the variation of pyrolysis temperature. When heat treated at 2100℃, Si_3N_4 in the matrix of 3D CFRN composites is decomposed, and the existence of B_4C and SiC is detected, which indicates the interfacial chemical reactions between nitride matrices and carbon fibers. The mechanical properties of heat treated composites decline severely.
     Ablation properties of 3D CFRN composites were characterized, and the variations of structure and morphologies of the composites during ablation were analyzed. Carbon fibers in the composites are protected effectively by nitride matrices when ablated, and the composites exhibit excellent ablation resistance. The ablation properties of 3D CFRN composites reinforced by T300 and T700 carbon fibers are almost the same. Nitride matrices display better ablation resistance than carbon fibers when the composite is ablated by the electric arc heater. Si_3N_4 on the ablated surface of 3D CFRN composite is decomposed, while BN and carbon fibers are crystallized. The ablation of 3D CFRN composites is a combinative process of thermochemical erosion and mechanical denudation.
     The effects of the type of carbon fibers and the fiber surface treatments on the mechanical properties of 3D CFRN composites were investigated. The mechanical properties of 3D CFRN composites reinforced by T300 and T700 carbon fibers are quite different. Lots of fiber pull-out can be observed on the fracture surface of the composite reinforce by T700 fibers, and it is stronger and tougher than that reinforced by T300 fibers. The different surface states of different carbon fibers result in different fiber/matrix combinations and different mechanical properties of the composites. The size on the surface of carbon fiber can be eliminated by both surface oxidation in air at 400℃and heat treatment in inert atmosphere at 1000℃, and the fiber can keep enough residual strength. Surface oxidation of carbon fiber can improve the mechanical properties of the composite reinforced by T700 fibers, while it is harmful to the composite reinforced by T300 fibers. The heat treatment of carbon fibers causes little improvement for the mechanical properties. The variation of the mechanical properties is attributed to the change of fiber/matrix combination derived from the surface treatments. The flexural strength and elastic modulus of 3D CFRN composite reinforced by surface oxidized T700 carbon fibers, cured by high atmospheric pressure curing process and pyrolyzed at 800℃are 268.4MPa and 67.6GPa, respectively.
     The preparation of erosion resistant coatings for 3D CFRN composite was investigated primarily. SiC was selected, and chemical vapor deposition (CVD) was performed to prepare the coatings. Liquid carborsilanes which could be used as the precursor for CVD SiC were synthesized. There is no corrosive element in the structure and there is no corrosive byproduct when liquid carbosilanes are used as the precursor for depositing SiC materials. With the increase of deposition temperature, liquid carbosilanes are pyrolyzed more completely, and pure SiC which is partly crystallized can be deposited at 900℃. SiC coatings are obtained when the flow rate of carrier gas is relatively low, while nanosized SiC powders are deposited when the flow rate of carrier gas is high enough. CVD SiC coating deposited on the surface of 3D CFRN composite is compact and hard, and the microhardness of the coating is about 2800~3200 kgf/mm~2 (HV). The ablation resistance of 3D CFRN composite can be improved considerably with the existence of SiC coating.
     3D SFRN composites were prepared using H-PBSZ conversion method. Compared with normal atmospheric pressure curing process, 3D SFRN composites cured by high atmospheric pressure curing process exhibit much more better integrative properties, the density is increases by 8%, the flexural strength and elastic modulus are increased by 35.5% and 102.4%, and the oxyacetylene linear ablation rate is decreased by 26.7%. With the increase of pyrolysis temperature, the embrittlement of silica fibers becomes more serious, and the mechanical properties of 3D SFRN composites decline gradually. The density of 3D SFRN composite cured by high atmospheric pressure curing process and pyrolyzed at 800℃reaches 1.83g/cm~3, the flexural strength and elastic modulus are 148.2 MPa and 41.5GPa, and the oxyacetylene linear ablation rate and mass ablation rate are 0.11mm/s and 1.07×10~(-2)g/s. The dielectric properties of 3D SFRN composites prepared by different processes are relatively stable, the dielectric constant is 3.31~3.34, and the loss tangent is 3.8~4.9×10~(-3).
     Aiming at the integral formation of the function separated monolithic radome, the materials system and preparing process of each functional section were optimized. As the candidate materials for each function section, 3D CFRN and 3D SFRN composites have similar coefficient of thermal expansion, and they display good compatibility during the preparing and ablation processes. Based on the application environment, the radome materials are confirmed to be reinforced by 2.5-dimensional fabric, which can ensure the mechanical properties both in longitudinal direction and in latitudinal direction. Hybrid fiber reinforced nitride (2.5D HFRN) composites are used in ablation-load bearing section, wherein carbon fiber is longitudinal and silica fiber is latitudinal; silica fiber reinforced nitride (2.5D SFRN) composites are used in wave-transparent section. The radome materials were prepared from H-PBSZ by PIP process. The longitudinal flexural strength of 2.5D HFRN composite is 259.1 MPa, the elastic modulus is 65.3GPa, the fracture toughness is 10.78 MPa·m~(1/2), thermal conductivity and specific heat are 1.20W/m·K and 0.80 kJ/kg·K, and the oxyacetylene linear ablation rate and mass ablation rate are 0.058mm/s and 5.52×10~(-3)g/s. The longitudinal flexural strength of 2.5D SFRN composite is 142.7MPa, the elastic modulus is 40.3GPa, thermal conductivity and specific heat are 0.80W/m·K and 0.81 kJ/kg·K, the oxyacetylene linear ablation rate and mass ablation rate are 0.107mm/s and 1.06×10~(-2)g/s, the dielectric constant and the loss tangent are 3.34 and 4.0×10~(-3), and the wave transmittance is higher than 70% in the frequency range from 7.5 to 18.5 GHz. The properties of both composites are excellent, and they can meet the requirements of hypersonic missile radomes.
     The technological process for preparing full sized radome was analyzed, the parameters of PIP process were optimized, and the machining opportunity was selected. The integral formation of different functional sections was realized, and full sized, thin-walled monolithic radome which had exact shape and accurate size was fabricated.
引文
[1]孙家栋.导弹武器与航天器装备.北京:原子能出版社,航空工业出版社,兵器工业出版社,2003.
    [2]孙旭,何树才,孙快吉,等.导弹与战争.北京:国防工业出版社,1997.
    [3]程梅莎.烧蚀对天线罩材料透波性能影响的试验研究[硕士学位论文].北京:北京空气动力研究所,2001.
    [4]Air defense artillery reference handbook.Washington D C:Headquarters,Department of the Army,2000.
    [5]R.C.Johnson.Antenna engineering handbook.New York:McGraw-Hill,Inc.,1984.
    [6]M.C.Gilreath,S.L.Castellow.High-temperature dielectric properties of candidate space-shuttle thermal-protection-system and antenna-window materials.NASA TN D-7523,1974.
    [7]张大海,黎义,高文,等.高温天线罩材料研究进展.宇航材料工艺,2001,(6):1-3.
    [8]彭望泽.防空导弹天线罩.北京:宇航工业出版社,1993.
    [9]C.G.Dodds,R.A.Tanzilli.Boron nitride-toughened single phase silicon aluminum oxynitride composite,article and method of making same.US Patent,5925584,1999.
    [10]D.G.Paquette.Method of making a radar transparent window material operable above 2000℃.US Patent,5627542,1997.
    [11]J.D.Walfon.Radome engineering Handbook.New York:Marcel Dekker,Inc.,,1970.
    [12]P.Plotard,V.Labaste.Entry system development for Mars Netlander mission.Acta Astronautica,2004,55:677-686.
    [13]杜耀惟.天线罩电信设计方法.北京:国防工业出版社,1993.
    [14]齐共金.先驱体合成及其转化制备石英织物增强氮化硅基天线罩材料研究[博士学位论文].长沙:国防科技大学,2006.
    [15]S.S.Oleesky,C.E.Peach,G.B.Speen,et al.Multiple sandwich broad band radome.US Patent,3002190,1961.
    [16]R.L.Copeland,V.A.Chase.Rain erosion resistant material for airborne vehicle.US Patent,3616140,1971.
    [17]S.M.Moschiar,C.C.Riceard,R.J.Williama,et al.Rubber-modified epoxies.Ⅲ.Analysis of experimental trends through a phase-separation model.J.Appl.Polym.Sci.,1991,42:717-735.
    [18]D.Verchere,J.P.Pascault,H.Sautereau,et al.Rubber-modified epoxies.Ⅱ.Influence of the cure schedule and rubber concentration on the generated morphology.J.Appl.Polym.Sci.,1991,42:701-716.
    [19]D.Brown,T.E.Fiscus,C.J.Meierbachtol.Results of a study using RT duroid 5870 material for a missile radome.Proceeding of the 15~(th) symposium on electromagnetic windows,Atlanta,GA,1980.
    [20]胡连成,黎义,于翘.俄罗斯航天透波材料现状考察.宇航材料工艺,1994,24(1):48-52.
    [21]张煜东,苏勋家,侯根良.高温透波材料研究现状和展望.飞航导弹,2006,(3):56-58.
    [22]E.A.Welsh,A.Ossin.Evaluation of ablative materials for high performance radome applications.Proceedings of the 15~(th) symposium on electromagnetic windows,Atlanta,GA,1980.
    [23]陈虹,胡利明,贾光耀,等.陶瓷天线罩材料的研究进展.硅酸盐通报,2002,(4):40-44.
    [24]邓世均.高性能陶瓷涂层.北京:化学工业出版社,2004.
    [25]A.W.Rudge,K.Milne,A.D.Olver,et al.The handbook of antenna design.London:Peter peregrinus Ltd,1983.
    [26]秦明礼,曲选辉,黄栋生,等.氮化铝(AlN)陶瓷的特性、制备及应用.陶瓷工程,2000,(8):39-42.
    [271 杜帅,高陇桥,刘征,等.AlN陶瓷的介电性能.硅酸盐学报,1998,26(4):496-502.
    [28]J.J.Gebhardt.Preparation of a high purity aluminum nitride antenna window by organometallic pyrolysis.US Patent,5356608,1994.
    [29]D.Lewis,J.R.Spann.Assessment of new radome materials as replacement for pyroceram 9606.Proceedings of the 16~(th) symposium on electromagnetic windows,Atlanta,GA,1982.
    [30]D.W.Roy,J.L.Hastert.Evaluation of coors CD-1 cordierite as a radome material.Proceedings of 16~(th) symposium on electromagnetic windows,Atlanta,GA,1982.
    [31]C.G.Bergeron,S.H.Risbud.Introduction to phase equilibrium in ceramics.Columbus,OH:American Ceramic Society,1984.
    [32]J.N.Calata.Densification behavior of ceramic and crystallizable glass materials constrained on a rigid substrate.Blacksburg,VA:Virginia Polytechnic Institute and State University,2005.
    [33]H.Leggett.Ceramic broadband radome.US Patent,4358772,1982.
    [34]K.N.Letson,W.G.Burleson.Final evaluation of rain erosion sled test results at Mach 3.7 to 5.0 for slipcast fused silica radome structures.AD A077348,1979.
    [35]J.T.Neil,L.J.Bowen,B.E.Michaud.Fused silica radome.US Patent,4949095,1990.
    [36]T.M.Place,D.W.Bridges.Fused quartz reinforced silica composites.Proceedings of the 10~(th)symposium on electromagnetic windows,Atlanta,GA,1970.
    [37]W.Ho,D.R.Clarke.High temperature millimeter wave dielectric properties of hot pressed silicon nitride.Proceedings of the 16~(th) symposium on electromagnetic windows,Atlanta,GA,1982.
    [38]M.Y.Hsieh,H.Mizuhara.Silicon nitride having low dielectric constant.US Patent,4708943,1987.
    [39]M.Y.Hsieh.Low dielectric loss silicon nitride based material.US Patent,4654315,1987.
    [40]T.Arakawa,T.Mori,Y.Matsumoto.Silicon nitride sintered body and process for preparation thereof.US Patent,5017530,1991.
    [41]K.Miura,Y.Hattori,Y.Matsuo.Process for the production of silicon nitride sintered bodies.US Patent,4521358,1985.
    [42]D.R.Messier,P.Wong.Effect of processing conditions on microwave dielectric properties of reaction-sintered silicon nitride.Proceedings of the 13~(th) symposium on electromagnetic windows,Atlanta,GA,1976.
    [43]W.H.Clark.Millimeter wave seeker technology.AD A345819,1999.
    [44]F.H.Simpson,J.Verzemnieks.Controlled density silicon nitride material.Proceedings of the 16~(th) symposium on electromagnetic windows,Atlanta,GA,1982.
    [45]J.Barta,M.Manela,R.Fisher.Preparation and properties of silicon nitride for radome applications.Proceedings of the 16~(th) symposium on electromagnetic windows,Atlanta,GA,1982.
    [46]J.Verzemnieks,F.H.Simpson.Silicon nitride articles with controlled multi-density regions. US Patent,5103239,1992.
    [47]邹强.天线罩用氮化硅陶瓷材料烧结工艺的研究[硕士学位论文].天津:天津大学,2004.
    [48]顾立德.氮化硼陶瓷.北京:中国建筑工业出版社,1982.
    [49]张雯,王红洁,金志浩.先驱体热解制备BN复合陶瓷材料研究进展.兵器材料科学与工程,2004,27(5):58-63.
    [50]N.Ooi,V.Rajan,J.Gottlieb,et al.Structural properties of hexagonal boron nitride.Modelling Simul.Mater.Sci.Eng.,2006,14:515-535.
    [51]曾昭焕.氮化硼的高温介电性能.宇航材料工艺,1993,23(2):17-21.
    [52]Y.Oyama,O.Kamigato.Solid solubility of some oxides in Si_3N_4.Jpn.J.Appl.Phys.,1971,10:1637-1642.
    [53]O.Oyama.Solid solution in the ternary system,Si_3N_4-AlN-Al_2O_3.Jpn.J.Appl.Phys.,1972,11:760-761.
    [54]K.H.Jack,W.I.Wilson.Ceramics based on the Si-AI-O-N and related systems.Nature Phys.Sci.,1972,238:28-29.
    [55]M.Mitomo,Y.Moriyoshi,T.Sakai,et al.Process for producing atranslucent β-SiAlON sintered product.US Patent,4438051,1984.
    [56]K.W.Kirby,A.Jankiewicz,M.Janney,et al.Gelcasting of GD-1 ceramic radomes.Proceedings of the 8~(th) DoD Electromagnetic Windows Symposium,Colorado Springs,CO,2000.
    [57]K.W.Kirby,A.T.Jankiewicz,R.F.Lowell,et al.Near net shape fabrication of ceramic radomes.US Patent,6083452,2000.
    [58]J.E.Holowczak,E.Olster,W.H.Sutton.Low dielectric constant erosion resistant material.US Patent,64472581,2002.
    [59]N.D.Corbin,J.W.McCauley.Aluminum oxiynitride spinel(AlON):a new material for electromagnetic window applications.Proceedings of the 16~(th) symposium on electromagnetic windows,Atlanta,GA,1982.
    [60]D.W.Roy,J.L.Hastert.Transparent hot-pressed MgAl_2O_4 conical dome for IR/EO applications.Proceedings of the 16~(th) symposium on electromagnetic windows,Atlanta,GA,1982.
    [61]R.W.Rice,W.J.McDonough,S.W.Freiman,et al.Ablative-resistant dielectric ceramic articles.US Patent,4304870,1981.
    [62]G.C.Dodds,R.A.Tanzilli.Silica,boron nitride,aluminum nitride,alumina composite,article and method of making same.US Patent,5891815,1999.
    [63]I.G.Talmy,C.A.Martin,D.A.Haught,et al.Electromagnetic window.US Patent,5573986,1996.
    [64]J.A.Medding.Nondestructive evaluation of zirconium phosphate bonded silicon nitride radomes.Blacksburg,VA:Virginia Polytechnic Institute and State University,1996.
    [65]姚俊杰,李包顺,黄校先,等.SiO_2-Si_3N_4天线窗材料的热学性能和抗热震性能研究.航空材料学报,1996,16(3):57-62.
    [66]姚俊杰,李包顺,黄校先,等.SiO_2-Si_3N_4复合材料的力学性能及其增韧机理.无机材料学报,1997,12(1):47-53.
    [67]姚俊杰,李包顺,黄校先,等.SiO_2-Si_3N_4天线窗材料的介电性能研究.功能材料与器件学报,1996,2(2):65-70.
    [68]吴洁华,李包顺,黄校先,等.SiO_2-AlN复合材料的介电性能.功能材料与器件学报.1999,5(2):115-120.
    [69]吴洁华,李包顺,李承恩,等.SiO_2-AlN复合材料的介电性能——温度特性和频率特性.功能材料与器件学报,2001,7(1):73-76.
    [70]吴洁华,李包顺,李承恩,等.SiO_2-AlN复合材料的抗热震性.机械工程材料,2000,24(4):29-31.
    [71]吴洁华,李包顺,李承恩,等.SiO_2-AlN-Si_3N_4天线窗复合材料的制备和性能研究.硅酸盐通报,2000,(3):4-8.
    [72]吴洁华,郭景坤,李包顺.SiO_2-AlN-BN复合材料的制备和性能研究.硅酸盐学报,2000,28(4):365-370.
    [73]G.Wen,G.L.Wu,T.Q.Lei,et al.Co-enhanced SiO_2-BN ceramics for high-temperature dielectric applications.J.Euro.Ceram.Soc.,2000,20(11):1923-1928.
    [74]韩欢庆,葛启录,陈玉萍,等.晶须补强熔石英复合材料的热学性能.材料科学与工艺,1999,7(1):30-32.
    [75]韩欢庆,葛启录,雷廷权,等.熔石英基复合材料性能的研究.粉末冶金技术,1999,17(3):201-204.
    [76]W.F.Douglas,K.R.Kerry.BAS reinforced in-situ with silicon nitride.US Patent,5358912,1994.
    [77]J.R.Morris,R.A.Tanzilli.Aluminum nitride-boron nitride composite article and method of making same.US patent,4666873,1987.
    [78]张伟儒,王重海,刘健,等.高性能透波Si_3N_4-BN基陶瓷复合材料的研究.硅酸盐通报,2003,(3):1-4.
    [79]郭文利.天线罩用氮化硅基复合材料的研究[博士学位论文].天津:天津大学,2003.
    [80]M.Favaloro,S.Starett,J.Bryanos.High temperature dielectric composites.Proceedings of the 6~(th) DoD Electromagnetic Windows Symposium,Huntsville,AL,1995.
    [81]T.M.Place,D.W.Bridges.Fused quartz reinforced silica composites.Proceedings of the 10~(th)symposium on electromagnetic windows,Atlanta,GA,1970.
    [82]J.P.Brazel,R.Fenton.ADL-4D6:a silica/silca composite for hardened antenna windows.Proceedings of the 13~(th) symposium on electromagnetic windows,Atlanta,GA,1976.
    [83]L.M.Manocha,C.N.Panchal,S.Manocha.Silica/silica composites through electrophoretic infiltration.Ceram.Eng.Sci.Proc.,2002,23:655-661.
    [84]L.M.Manocha,C.N.Panchal,S.Manocha.Silica/silica composites through electrophoretic infiltration-effect of processing conditions on densification of composites.Sci.Eng.Comp.Mater.,2000,9(4):219-230.
    [85]D.L.Purinton,L.R.Semff.Method of making a broadband composite structure fabricated from an inorganic polymer matrix reinforced with ceramic woven cloth.US Patent,5738750,1998.
    [86]D.L.Purinton,L.R.Semff.Broadband composite structure fabricated from inorganic polymer matrix reinforced with glass or ceramic woven cloth.US Patent,6080455,2000.
    [87]J.S.Lyons,T.L.Starr.Strength and toughness of slip-cast fused-silica composites.J.Am.Ceram.Soc.,1994,77(6):1673-1675.
    [88]于翘.材料工艺.北京:宇航出版社,1993.
    [89]张立中.三向石英复合材料的断裂韧度K_(1C)的测试与分析.宇航材料工艺,1996,(4): 26-29.
    [90]贾光耀,陈虹,胡利明,等.三向石英复合材料的研制.硅酸盐通报,2002,(1):3-6.
    [91]贾德昌,周玉,雷廷权.热压工艺对SiO_(2f)/SiO_2复合材料结构与力学性能的影响.宇航材料工艺,2001,(1):29-31.
    [92]C.M.Xu,S.W.Wang,X.X.Huang,et al.Processing and properties of unidirectional SiO_(2f)/SiO_2 composites.Ceram.Int.,2007,33(4):669-673.
    [93]H.Chen,L.M.Zhang,G.Y.Jia,et al.The preparation and characterization of 3D-silica fiber reinforced silica composites.Key.Eng.Mater.,2003,249:159-162.
    [94]H.Chen,L.M.Zhang,G.Y.Jia,et al.Flexural properties of 3D-SiO_2/SiO_2 composites.Key Eng.Mater.,2003,249:163-166.
    [95]V.A.Chase,R.L.Copeland.Development of a 1200°F radome.Interim Engineering Report 3.AD 429387,1963.
    [96]胡连成,于翘,刘连元,等.俄罗斯航天透波材料技术.航天出国考察技术报告,1994,(1):136-142.
    [97]肖永栋,刘红影,方晓敏.新型无机烧蚀材料的性能及潜在用途.玻璃钢/复合材料,2002,(3):46-47.
    [98]田焕芳.石英增强磷酸盐复合材料制备和组织结构及力学性能[硕士学位论文].哈尔滨:哈尔滨工业大学,2003.
    [99]周燕,郭卫红,罗进文,等.磷酸盐基复合材料的纤维涂膜与性能的研究.功能材料,2004,35(s):2127-2135.
    [100]T.M.Place.Properties of BN-3DX,a 3-dimensional reinforced boron nitride composite.Proceedings of the 13~(th) symposium on electromagnetic windows,Atlanta,GA,1976.
    [101]T.M.Place.Low loss radar window for reentry vehicle.US Patent,4786548,1988.
    [102]郭景坤,黄校先,庄汉锐,等.氮化硼纤维补强氮化硅防热天线窗材料.中国国防科技报告,GF-HY 863433,1986.
    [103]G.J.Qi,C.R.Zhang,H.F.Hu,et al.Preparation of three-dimensional silica fiber reinforced silicon nitride composite using perhydropolysilazane as precursor.Mater.Lett.,2005,59(26):3256-3258.
    [104]G.J.Qi,C.R.Zhang,H.F.Hu,et al.Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite.J.Cryst.Growth,2005,284(1):293-296.
    [105]G.J.Qi,C.R.Zhang,H.F.Hu,et al.Three-dimensional silica fiber reinforced silicon nitride-based composites fabricated via different polysilazanes.Adv.Eng.Mater.,2005,7(11):1043-1046.
    [106]姜贵庆,刘连元.高速气流传热与烧蚀热防护.北京:国防工业出版社,2003.
    [107]袁海根,曾金芳,杨杰,等.防热抗烧蚀复合材料研究进展.化学推进剂与高分子材料,2006,4(1):21-25.
    [108]A.Canfield,R.G.Clinton.Improved ablative materials for the ASRM nozzle.AIAA/SAE/ASME/ASEE 28~(th) joint propulsion conference and exhibition,Nashville,TN,1992.
    [109]R.J.Zaldivar,G.S.Rellick.Processing effects on the mechanical behaviour of polyarylacetylene-derived carbon-carbon composites.J.Sampe,1991,27(5):29-36.
    [110]H.A.Kaizman,J.J.Mallon,W.T.Barry.Poly-arylacetylene matrix composites for solid rocket motor components.J.Adv.mater.,1995,4:21-27.
    [111]A.R.Bahramian,M.Kokabi,H.N.Famili,et al.Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin:process modeling and experimental.Polym.,2006,47:3661-3673.
    [112]J.K.Park,T.J.Kang.Thermal and ablative properties of low temperature carbon fiber-phenol formaldehyde resin composites.Carbon,2002,40:2125-2134.
    [113]张光复.钼酚醛的热性能和烧蚀性能研究.高分子材料科学与工程,1990,(5):37.
    [114]闫联生,姚冬梅,杨学军.硼酚醛烧蚀材料的研究.固体火箭技术,2000,23(2):69-73.
    [115]闫联生,傅立坤,刘晓红.树脂基防热材料烧蚀性能表征的探讨.固体火箭技术,2003,26(2):53-56.
    [116]胡良全,程建国,滕慧萍.纳米炭粉对炭/酚醛材料性能的影响.固体火箭技术,2000,23(3):58-63.
    [117]张德雄,张衍.高温复合材料基体树脂聚芳基乙炔综述.固体火箭技术,2001,24(1):53-59.
    [118]T.Ogasawara,T.Ishikawa.Thermal response and ablation characteristics of carbon fiber reinforced composite with novel silicon containing polymer MSP.Compos.Mater.,2002,(2):143-157.
    [119]B.P.Jousses.Synthesis and properties of new processable type polyarylacetylenes.The 46~(th)international SAMPE symposium and exhibition,2001.
    [120]闫联生,姚冬梅,杨学军.新型耐烧蚀材料研究.宇航材料工艺,2002,(2):29-31.
    [121]闫联生,姚冬梅,闫桂沈,等.碳布增强聚芳基乙炔新型防热材料.玻璃钢/复合材料,1999,(5):20-23.
    [122]闫联生.酚醛改性聚芳基乙炔复合材料.玻璃钢/复合材料,2001,(2):22-24.
    [123]J.H.Brannon,J.R.Lankard.Pulsed CO_2 laser etching of polyimide.Appl.Phys.Lett.,1986,48:1226-1228.
    [124]P.E.Dyer,G.A.Oldershaw,J.S idhu.CO_2 laser ablative etching of polyethylene terephthalate.Appl.Phys.B,1989,48:489-493.
    [125]R.Braun,R.Nowak,P.Hess,et al.Photoablation of polyimide with IR and UV laser radiation.Appl.Surf.Sci.,1989,43:352-357.
    [126]T.Sumiyoshi,Y.Ninomiya,H.Ogasawara,et al.A high perforation ability of TEA CO_2 laser for PEEK ablation.Lasers and electro-optics society annual meeting,LEOS'93 conference proceedings,IEEE,San Jose,CA,1993.
    [127]I.Dimitrienko.Verification of model for heat-mechanical processes in ablating composites.Final report,F61708-96-W0227.Moscow:Moscow State University,1996.
    [128]V.V.Nesmelov,V.D.Gol'din,G.F.Kostin.Ablation characteristics of thermal protective materials based on carbon fiber reinforced composites.Combust.Explo.Shock.,2003,39(3):309-315.
    [129]S.Tang,J.Deng,W.Liu,et al.Mechanical and ablation properties of 2D-carbon/carbon composites pre-infiltrated with a SiC filler.Carbon,2006,44:2877-2882.
    [130]J.Yin,X.Xiong,H.Zhang,et al.Microstructure and ablation performances of dual-matrix carbon/carbon composites.Carbon,2006,44:1690-1694.
    [131]Y.J.Lee,H.J.Joo.Investigation on ablation behavior of CFRC composites prepared at different pressure.Composites Part A,2004,35:1285-1290.
    [132]J.C.Han,X.D.He,S.Y.Du.Oxidation and ablation of 3D carbon-carbon composite at up to 3000℃.Carbon,1995,33(4):473-478.
    [133]Y.I.Dimitrienko.Thermal stresses and heat-mass transfer in ablating composite materials.Int.J.Heat Mass Transfer.,1995,38(1):139-146.
    [134]Y.I.Dimitrienko.Thermal stresses in ablative composite thinwalled structures under intensice heat flows.Int.J.Engng.Sci.,1997,35(1):15-31.
    [135]D.Cho,B.I.Yoon.Microstructural interpretation of the effect of various matrices on the ablation properties of carbon-fiber-reinforced composites.Compos.Sci.Technol.,2001,61:271-280.
    [136]张红波,尹健,熊翔.C/C复合材料烧蚀性能的研究进展.材料导报,2005,19(7):97-103.
    [137]黄海明,杜善义,吴林志,等.C/C复合材料烧蚀性能分析.复合材料学报,2001,18(3):76-80.
    [138]刘建军,苏君明,陈长乐.炭/炭复合材料烧蚀性能影响因素分析.炭素,2003,(2):15-19.
    [139]D.P.Kim,J.Economy.Fabrication of oxidation-resistant carbon fiber/boron nitride matrix composites.Chem.Mater.,1993,5:1216-1220.
    [140]D.P.Kim,C.G.Cofer,J.Economy.Fabrication and properties of ceramic composites with a boron nitride matrix.J.Am.Ceram.Soc.,1995,78:1546-1552.
    [141]C.G.Cofer,A.W.Saak,J.Economy.Carbon/boron nitride composites:an aiternativeto carbon/carbon.Ceram.Eng.Sci.e Proc.,1995,16:663-671.
    [142]Y.J.Le,H.J.Joo.Ablation characteristics of carbon fiber reinforced carbon(CFRC)composites in the presence of silicon carbide(SiC) coating.Surf.Coat.Technol.,2004,180-181:286-289.
    [143]张中伟,王俊山,许正辉,等.C/C复合材料1800℃抗氧化涂层探索研究.宇航材料工艺,2005,(2):42-46.
    [144]何捍卫,周科朝,熊翔.C/C复合材料抗烧蚀TaC涂层的制备.稀有金属材料与工程,2004,33(5):490-493.
    [145]L.L.Hou,R.Y.Luo,Y.H.Bi,et al.A phosphate-based antioxidation coating for carbon/carbon composites.New Carbon Mater.,2006,21(4):355-359.
    [146]J.F.Huang,H.J.Li,X.R.Zeng,et al.Oxidation resistant yttrium silicates coating for carbon/carbon composites prepared by a novel in-situ formation method.Ceram.Int.,2007,33:887-890.
    [147]P.Z.Gao,H.N.Xiao,H.J.Wang,et al.A study on the oxidation kinetics and mechanism of three-dimensional(3D) carbon fiber braid coated by gradient SiC.Mater.Chem.Phys.,2005,93:164-169.
    [148]H.T.Tsou,W.Kowbel.A hybrid PACVD SiC/CVD Si_3N_4/SiC multilayer coating for oxidation protection of composites.Carbon,1995,33(9):1279-1288.
    [149]黄海明,杜善义,施惠基.含钽(Ta)C/C复合材料烧蚀分析.复合材料学报,2003,20(3):13-16.
    [150]蔡大勇,李东春.基体改性剂含量对C/C复合材料抗氧化性能的影响.炭素,2000,(3):6-8.
    [151]李翠艳,李克智,欧阳海波,等.HfC改性炭/炭复合材料的烧蚀性能.稀有金属材料与工程,2006,35(s2):365-368.
    [152]王俊山,李仲平,敖明,等.掺杂难熔金属碳化物对炭/炭复合材料烧蚀机理的影响.新型炭材料,2006,21(1):9-13.
    [153]X.Li,J.Shi,G.Zhang,et al.Effect of ZrB_2 on the ablation properties of carbon composites. Mater.Lett.,2006,60:892-896.
    [154]张佐光.功能复合材料.北京:化学工业出版社,2004.
    [155]M.Minthorn.Advanced carbon fiber reinforced silicon carbide technology for SM3 divert and attitude control systems,Fiber Material Inc.-Final Report,N96-284,2002.
    [156]S.Schmidt,S.Beyer,H.Knabe,et al.Advanced ceramic matrix composites materials for current and future propulsion technology applications.Germany:IAC-03-S.3,2003.
    [157]H.Yamaguchi,T.Nakamura,H.Murata.Method for fabricating ceramic matrix composite.US Patent,6723382,2004.
    [158]H.Murata,M.Shioda,T.Nakamura.Method and apparatus for manufacturing ceramic-based composite member.US Patent,6723381,2004.
    [159]A.F.Okuno.Ablative and insulating properties of outgassed boron nitride and boron nitride composite.NASA TN D-3660,1996.
    [160]T.A.Parthasarathy,R.J.Kerans,S.Chellapilla,et al.Analysis of ceramics toughened by non-conventional fiber reinforcement.Mater.Sci.Eng.A,2007,443:120-131.
    [161]S.R.Levine,E.J.Opila,M.C.Halbig,et al.Evaluation of ultra-high temperature ceramics for aeropropulsion use.J.Eur.Ceram.Soc.,2002,22:2757-2767.
    [162]S.Tang,J.Deng,S.Wang,et al.Ablation behaviors of ultra-high temperature ceramic composites.Mater.Sci.Eng.A,2007,465:1-7.
    [163]R.Savino,M.Fumo,D.Paterna,et al.Aerothermodynamic study of UHTC-based thermal protection systems.Aerospace Sci.Technol.,2005,9:151-160.
    [164]王思青.石英-氮化物陶瓷基天线罩材料及构件的制备工艺与性能研究[博士学位论文].长沙:国防科技大学,2006.
    [165]艾涛,王汝敏.航天透波材料最新研究进展.材料导报,2004,18(11):12-15.
    [166]P.Miele,S.Bernard,D.Cornu,et al.Boron based nanostructured ceramics prepared by the preceramic polymer route.The fifth China international conference on high-performance ceramics,Changsha,2007.
    [167]张长瑞,郝元恺.陶瓷基复合材料——原理、工艺、性能与设计.长沙:国防科技大学出版社,2001.
    [168]蒋云,朱建勋,张建钟,等.2.5维编织结构纤维体积含量的数值计算.纤维复合材料,2003,(6):7-8.
    [169]F.W.Ainger,J.M.Herbert.The preparation of phosphorus-nitrogen compounds as non-porous solids.New York:Academic Press,1960.
    [170]P.G.Chantrell,P.Popper.Inorganic polymers and ceramics.New York:Academic Press,1965.
    [171]P.Popper.New electrical ceramics and inorganic polymers.Brit.Ceram.Res.Assn.Special.Publ.,1967,57:1-20.
    [172]W.Verbeek.Production of shaped articles of homogeneous mixtures of silicon carbide and nitride.US Patent,3853567,1974.
    [173]G.Winter,W.Verbeek,M.Mansmann.Production of shaped articles of silicon carbide and silicon nitride.US Patent,3892583,1975.
    [174]S.Yajima,Y.Hasegawa,K.Okamura,et al.Development of high tensile strength silicon carbide fibre using an organosilicon polymer precursor.Nature,1978,273:525-527.
    [175]S.Yajima,J.Hayashi,K.Okamura.Pyrolysis of a polyborodiphenylsiloxane.Nature,1977,226:521-522.
    [176]S.Yajima,J.Hayashi,K.Okamura,et al.Synthesis of continuous SiC fibers with high tensile strength.J.Am.Ceram.Soc.,1976,59:324-330.
    [177]郝元恺,肖加余.高性能复合材料学.北京:化学工业出版社,2004.
    [178]H.Morozumi,K.Sato,A.Tezuka,et al.Preparation of high strength ceramic fibre reinforced silicon nitride composites by a preceramic polymer impregnation method.Ceram.Int.,1997,23,179-184.
    [179]H.F.Hu,Z.H.Chen,C.X.Feng,et al.Three-dimensional braided preform reinforced Si-C-N composites prepared by precursor pyrolysis.J.Mater.Sci.Lett.,1998,17(1):73-74.
    [180]K.Jian,Z.H.Chen,Q.S.Ma,et al.Effects of pyrolysis processes on the microstructures and mechanical properties of C_f/SiC composites using polycarbosilane.Mater.Sci.Eng.A,2005,390(1-2):154-158.
    [181]K.Sato,T.Suzuki,O.Funayama,et al.Fabrication of silicon nitride based composites by impregnation with perhydropolysilazane.J.Ceram.Soc.Jpn.,1992,100:450-453.
    [182]张泰华,孟宪红.Micro-X概念验证机热防护系统研究进展.宇航材料工艺,2006,(6):14-16.
    [183]苏芳,孟宪红.三种典型热防护系统发展概况.飞航导弹,2006,(10):57-60.
    [184]胡海峰.陶瓷先驱体的分子设计与合成及其在CMCs制备中的应用[博士学位论文].长沙:国防科技大学,1998.
    [185]谢征芳.活性填料在先驱体转化陶瓷基复合材料及构件中的应用[博士学位论文].长沙:国防科技大学,2001.
    [186]马青松.聚硅氧烷先驱体转化制备陶瓷基复合材料[博士学位论文].长沙:国防科技大学,2003.
    [187]张玉娣.C/SiC复合材料反射镜坯体及过渡层的研究[博士学位论文].长沙:国防科技大学,2005.
    [188]王松.PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[博士学位论文].长沙:国防科技大学,2005.
    [1]W.V.Hough,C.R.Guibert,G.T.Hefferan.Method for the synthesis of borazine.US Patent,4150097,1979.
    [2]K.Su,E.E.Remsen,G.A.Zank,et al.Synthesis,characterization,and ceramic conversion reactions of borazine-modified hydridopolysilazanes:new polymeric precursors to SiNCB ceramic composites.Chem.Mater.,1993,5:547-556.
    [3]T.Isoda,H.Kaya,H.Nishii,et al.Perhydropolysilazane precursors to silicon nitride ceramics.J.Inorgan.Organomet.Polym.,1992,2(1):151-160.
    [4]C.K.Whitmarsh,L.V.Interrante.Synthesis and structure of a highly branched polycarbosilane derived from(chloromethyl)trichlorosilane.Organometallics,1991,10:1336-1344.
    [5]李兴华.密度、浓度测量.北京:中国计量出版社,1991.
    [6]祝桂洪.陶瓷工艺实验.北京:中国建筑工业出版社,1987.
    [7]曹英斌.先驱体转化——热压工艺制备C_f/SiC复合材料工艺、结构、性能研究[博士学位论文].长沙:国防科技大学,2001.
    [8]GB 6569-1986.工程陶瓷弯曲强度试验方法.1986.
    [9]常规性能评价方法标准,75-70-03.高温结构陶瓷平面应变断裂韧度试验方法.1988.
    [10]ASTM Test Method,D3379-75.Annual book of ASTM standards.Philadelphia:American Society for Testing and Materials,1988.
    [11]张耀明,李巨白,姜肇中.玻璃纤维与矿物棉全书.北京:化学工业出版社,2001.
    [12]GB/T 3362-2005.碳纤维复丝拉伸性能试验方法.2005.
    [13]GB/T 4339-1999.金属材料热膨胀特征参数的测定.1999.
    [14]GJB 330A-2000.固体材料60~2773K比热容测试方法.2000.
    [15]GB/T 10295-1988.绝热材料稳态热阻及有关特性的测定.1988.
    [16]GJB 323A-96.烧蚀材料烧蚀试验方法.1996.
    [1]K.Su,E.E.Remsen,G.A.Zank,et al.Synthesis,characterization,and ceramic conversion reactions of borazine-modified hydridopolysilazanes:new polymeric precursors to SiNCB ceramic composites.Chem.Mater.,1993,5:547-556.
    [2]T.Wideman,K.Su,E.E.Remsen,et al.Synthesis,characterization,and ceramic conversion of borazine/silazane copolymers:new reactions polymeric precursors to SiNCB ceramics.Chem.Mater.,1995,7:2203-2212.
    [3]A.Stock,E.Pohland.Borwasserstoffe,Ⅸ:B_3N_3H_6.Chemische Berichte,1926,59(9):2215-2223.
    [4]D.P.Kim,J.Economy.Fabrication of oxidation-resistant carbon fiber/boron nitride matrix composites.Chem.Mater.,1993,5:1216-1220.
    [5]D.P.Kim,C.G.Cofer,J.Economy.Fabrication and properties of ceramic composites with a boron nitride matrix.J.Am.Ceram.Soc.,1995,78:1546-1552.
    [6]C.G.Cofer,A.W.Saak,J.Economy.Carbon/boron nitride composites:an alternativeto carbon/carbon.Ceram.Eng.Sci.Proc.,1995,16:663-671.
    [7]S.Seghi,B.Fabio,J.Economy.Carbon/carbon-boron nitride composites with improved wear resistance compared to carbon/carbon.Carbon,2004,42:3043-3048.
    [8]S.Seghi,J.Lee,J.Economy.High density carbon fiber/boron nitride matrix composites:fabrication of composites with exceptional wear resistance.Carbon,2005,43:2035-2043.
    [9]张俊宝,雷廷权,温广武,等.先驱体法合成氮化硼研究进展.材料科学与工艺,2000,8(2):1-7.
    [10]W.V.Hough,C.R.Guibert,G.T.Hefferan.Method for the synthesis of borazine.US Patent,4150097,1979.
    [11]T.Isoda,H.Kaya,H.Nishii,et al.Perhydropolysilazane precursors to silicon nitride ceramics.J.Inorgan.Organomet.Polym.,1992,2(1):151-160.
    [12]T.Wideman,P.J.Fazen,K.Su,et al.Second-generation polymeric precursors for BN and SiNCB ceramic materials.Appl.Organomet.Chem.,1998,12:681-693.
    [13]K.Su,E.E.Remsen,G.A.Zank,et al.Synthesis,characterization and ceramic conversion reactions of hydridopolysilizanes.Polym.Prepr.,1993,34:334-335.
    [14]T.Wideman,E.Cortez,E.E.Remsen,et al.Reactions of monofunctional boranes with hydridopolysilazane:synthesis,characterization,and ceramic conversion reactions of new processible precursors to SiNCB ceramic materials.Chem.Mater.,1997,9:2218-2230.
    [15]G.J.Qi,C.R.Zhang,H.F.Hu,et al.Fabrication of high performance 3D SiO_2/Si_3N_4 composite via perhydropolysilazane infiltration and pyrolysis.Sci.China Ser.E,2005,48(6):685-691.
    [16]齐共金.先驱体合成及其转化制备石英织物增强氮化硅基天线罩材料研究[博士学位论文].长沙:国防科技大学,2006.
    [17]K.Roberts.Rationality and the LeChatelier principle.J.Econ.Theory,1999,87:416-428.
    [18]陈腾飞,黄伯云,廖寄乔,等.热处理温度对PAN基炭纤维结构的影响.功能材料,2002,33(4):447-449.
    [19]马恒怡,黄玉东,张志谦.γ-射线辐照对碳纤维结构的影响.高技术通讯,2001,(3):101-103.
    [20]G.J.Zhang,J.F.Yang,T.Ohji.In situ Si_3N_4-SiC-BN composites:preparation,microstructures and properties.Mater.Sci.Eng.A,2002,328:201-205.
    [21]T.Matsuda.Stability to moisture for chemically vapour-deposited boron nitride.J.Mater.Sci.,1989,24:2353-2358.
    [22]顾立德.氮化硼陶瓷.北京:中国建筑工业出版社,1982.
    [23]董文麟.氮化硅陶瓷.北京:中国建筑工业出版社,1987.
    [24]J.Economy,D.P.Kim.Borazine oligomers and composite materials including boron nitride and methods of making the same.US Patent,5399377,1995.
    [1]郝元恺,肖加余.高性能复合材料学.北京:化学工业出版社,2004.
    [2]Y.J.Lee,H.J.Joo.Investigation on ablation behavior of CFRC composites prepared at different pressure.Composites Part A,2004,35:1285-1290.
    [3]S.Tang,J.Deng,W.Liu,et al.Mechanical and ablation properties of 2D-carbon/carbon composites pre-infiltrated with a SiC filler.Carbon,2006,44:2877-2882.
    [4]G.J.Qi,C.R.Zhang,H.F.Hu,et al.Preparation of three-dimensional silica fiber reinforced silicon nitride composite using perhydropolysilazane as precursor.Mater.Lett.,2005,59(26):3256-3258.
    [5]穆柏春.陶瓷材料的强韧化.北京:冶金工业出版社,2002.
    [6]张长瑞,郝元恺.陶瓷基复合材料——原理、工艺、性能与设计.长沙:国防科技大学出版社,2001.
    [7]陈朝辉.先驱体结构陶瓷.长沙:国防科技大学出版社,2003.
    [8]李东风,王浩静,贺福,等.T300和T700炭纤维的结构与性能.新型炭材料,2007,22(1):59-64.
    [9]赵稼祥.东丽公司碳纤维及其复合材料的进展.宇航材料工艺,2000,(6):53-56.
    [10]黎小平,张小平,王红伟.碳纤维的发展及其应用现状.高科技纤维与应用,2005,30(5):24-30.
    [11]何新波,杨辉,张长瑞,等.纤维类型对C_f/SiC复合材料力学性能的影响.硅酸盐学报,2001,29(4):365-369.
    [12]郭慧玲,仲伟虹,张佐光,等.几种碳纤维的表面状态表征与分析.复合材料学报,2001,18(3):38-42.
    [13]石德珂,金志浩.材料力学性能.西安:西安交通大学出版社,1998.
    [14]M.C.Paiva,C.A.Bernardo,D.D.Edie.A comparative analysis of alternative models to predict the tensile strength of untreated and surface oxidised carbon fibers.Carbon,2001,39:1191-1101.
    [15]H.G.Halverson.Durability of ceramic matrix composites at elevated temperatures:experimental studies and predictive modeling.Blacksburg,VA:Virginia Polytechnic Institute and State University,2000.
    [16]B.K.Ahn.Interfacial mechanics in fiber-reinforced composites:mechanics of single and multiple cracks in CMCs.Blacksburg,VA:Virginia Polytechnic Institute and State University,1997.
    [17]沈曾民.新型碳材料.北京:化学工业出版社,2003.
    [18]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社,1997.
    [19]吴庆,陈惠芳,潘鼎.碳纤维表面处理与上浆综述.材料导报,2000,14(6):41-42.
    [20]N.Dilsiz,J.P.Wightman.Surface analysis of unsized and sized carbon fibers.Carbon,1999, 37:1105-1114.
    [21]A.Bismarck,C.Wuertz,J.Springer.Basic surface oxides on carbon fibers.Carbon,1999,37:1019-1027.
    [22]J.S.Lee,T.J.Kang.Changes in physico-chemical and morphological properties of carbon fiber by surface treatment.Carbon,1997,35(2):209-216.
    [23]X.L.Fu,W.M.Lu,D.D.L.Chung.Ozone treatment of carbon fiber for reinforcing cement.Carbon,1998,36(9):1337-1345.
    [24]P.M.A.Sherwood.Surface analysis of carbon and carbon fibers for composites.J.Electron.Spectrosc.Relat.Phenom.,1996,81:319-342.
    [25]W.H.Lee,J.G.Lee,P.J.Reucroft.XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O_2/(O_2+N_2).Appl.Surf.Sci.,2001,171:136-142.
    [26]卢锦花,李贺军,刘皓,等.碳纤维表面处理对2D碳/碳复合材料弯曲性能的影响.材料工程,2005,(9):3-6.
    [27]马恒怡,黄玉东,张志谦.γ-射线辐照对碳纤维结构的影响.高技术通讯,2001,(3):101-103.
    [28]乌云其其格.碳纤维表面处理.高科技纤维与应用,2001,26(5):24-28.
    [29]A.Bismarck,M.E.Kumru,J.Springer,et al.Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems.Appl.Surf.Sci.,1999,143:45-55.
    [30]郭云霞,刘杰,梁节英.电化学改性对PAN基碳纤维表面状态的影响.复合材料学报,2005,22(3):49-54.
    [31]S.Mondal,A.K.Banthia.Low-temperature synthetic route for boron carbide.J.Eur.Ceram.Soc.,2005,25:287-291.
    [32]L.G.Jacobsohn,M.Nastasi.Sputter-deposited boron carbide films:Structural and mechanical characterization.Surf.Coat.Technol.,2005,200:1472-1475.
    [33]J.Sun,H.Ling,W.J.Pan,et al.Chemical structure and micro-mechanical properties of ultra-thin films of boron carbide prepared by pulsed-laser deposition.Tribol.Lett.,2004,17(1):99-104.
    [34]N.Frage,L.Levin,M.P.Dariel.The effect of the sintering atmosphere on the densification of B4C ceramics.J.Solid State Chem.,2004,177:410-414.
    [35]L.Shi,Y.Gu,L.Chen,et al.A low temperature synthesis of crystalline B_4C ultrafine powders.Solid State Commun.,2003,128:5-7.
    [36]Y.Zhen,A.Li,Y.Yin,et al.Reactive and dense sintering of reinforced-toughened B_4C matrix composites.Mater.Res.Bull.,2004,39:1615-1625.
    [37]陈腾飞,黄伯云,廖寄乔,等.热处理温度对PAN基炭纤维结构的影响.功能材料,2002,33(4):447-449.
    [38]H.D.Batha,E.D.Whitney.Kinetic and mechanism of the thermal decomposition of Si_3N_4.J.Am.Ceram.Soc.,1973,56:365-373.
    [39]R.Raj.Fundamental research in structural ceramics for service near 2000℃.J.Am.Ceram.Soc.,1993,76:2147-2174.
    [40]顾立德.氮化硼陶瓷.北京:中国建筑工业出版社,1982.
    [41]N.Ooi,V.Rajan,J.Gottlieb,et al.Structural properties of hexagonal boron nitride.Modelling Simul.Mater.Sci.Eng.,2006,14:515-535.
    [42]M.A.Prelas,A.Benedictus,L.S.Lin,et al.Diamond based composites and related materials.Dordrecht,The Netherlands:Kluwer Academic Publishers,1997.
    [43]张巍,张博明,孟松鹤,等.细编穿刺碳-碳复合材料等离子火炬高温烧蚀性能研究.材料工程,2003,(5):23-25.
    [44]H.Sachdev,R.Haubner,H.N(o|¨)th,et al.Investigation of the c-BN/h-BN phase transformation at normal pressure.Diam.Relat.Mater.,1997,6:286-292.
    [45]S.Z.Bai,B.K.Huang,S.J.Zhang,et al.Preparation and characterization of BCN.Chem.J.Chinese U.,2005,26(5):811-815.
    [46]常铁军,祁欣.材料近代分析测试方法.哈尔滨:哈尔滨工业大学出版社,2003.
    [47]J.C.Han,X.D.He,S.Y.Du.Oxidation and ablation of 3D carbon-carbon composite at up to 3000℃.Carbon,1995,33(4):473-478.
    [1]姜贵庆,刘连元.高速气流传热与烧蚀热防护.北京:国防工业出版社,2003.
    [2]C.Westmark,G.Wm.Lawless.A discussion of rain erosion testing at the United States Air Force rain erosion test facility.Wear,1995,186-187:384-387.
    [3]L.P.Feng,Z.T.Liu.Characteristics of silicon dioxide films prepared on sapphire.Mater.Sci.Eng.B,2005,122:7-11.
    [4]W.F.Adler.Particulate impact damage predictions.Wear,1995,186-187:35-44.
    [5]W.F.Adler.Rain impact retrospective and vision for the future.Wear,1999,233-235:25-38.
    [6]G.H.Jilbert,J.E.Field.Synergistic effects of rain and sand erosion.Wear,2000,243:6-17.
    [7]A.A.Deom,A.Luc,S.Amara,et al.Towards more realistic erosion simulation tests for high velocity EM and IR windows.Wear,1999,233-235:13-24.
    [8]W.F.Adler,S.V.Hooker.Rain erosion mechanisms in brittle materials.Wear,1978,50(1):11-38.
    [9]S.V.Zwaag,J.E.Field.Rain erosion damage in brittle materials.Eng.Fract.Mech.,1983,17(4):367-379.
    [10]石毓锬,胡晓兰,梁国正,等.飞行器天线罩的雨蚀及防护.化工新型材料,2001,29(1):7-10.
    [11]E.E.Greene.Laminated thermoplastic radome.US Patent,4506269,1985.
    [12]袁立新,狄志刚,傅敏,等.飞行器电磁窗耐雨蚀复合涂层的制备.涂料工业,2005,35(3):29-31.
    [13]孟季茹,梁国正,秦华宇,等.机载雷达罩涂层的研究概况.材料导报,2000,14(2):51-52.
    [14]K.W.Foulke.Mach 2.0 rotating arm rain erosion test apparatus.Proceedings of the 15~(th)symposium on EM windows,Atlanta,GA,1980.
    [15]G.Foti.Silicon carbide-from amorphous to crystalline material.Appl.Surf.Sci.,2001,184:20-26.
    [16]J.S.Afrankova,J.Huran,I.Hotovy,et al.Characterization of nitrogen-doped amorphous silicon carbide thin films.Vacuum,1998,51(2):165-167.
    [17]J.Li,J.Tian,L.Dong.Synthesis of SiC precursors by a two-step sol-gel process and their conversion to SiC powders.J.Eur.Ceram.Soc.,2000,77:1853-1857.
    [18]R.J.Liu,C.R.Zhang,X.G.Zhou,et al.Structural analysis of chemical vapor deposited β-SiC coatings from CH_3SiCl_3-H_2 gas precursor.J.Cryst.Growth,2004,270:124-127.
    [19]R.Naslain.Design,preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview.Compos.Sci.Technol.,2004,64:155-156.
    [20]D.G.Bhat,R.M.Panos.Investigation of the CNTD mechanism and its effect on microstructural properties of SiC and AlN,U.S.Air Force Office of Scientific Research Contract F49620-79-C-0041,1981.
    [21]S.Motojima,H.Yagi,N.Iwamori.Chemical vapor deposition of SiC and some of its properties.J.Mater.Sci.Lett.,1986,5:13-16.
    [22]H.J.Boeglin.Chemical vapor deposition(CVD) process for the thermally depositing silicon carbide films onto a substrate.US Patent,5053255,1991.
    [23]J.M.Grow,R.A.Levy,M.Bhaskaran,et al.Low pressure chemical vapor deposition of silicon carbide from ditertiarybutylsilane.J.Electrochem.Soc.,1993,140(10):3001-3007.
    [24]C.L.Schiling,J.P.Wesson,T.C.Williams.Polycarbosilane precursors for silicon carbide.Am.Ceram.Soc.Bull.,1983,62(8):912-915.
    [25]C.K.Whitmarsh,L.V.Interrante.Synthesis and structure of a highly branched polycarbosilane derived from(chloromethyl)trichlorosilane.Organometallics,1991,10:1336-1344.
    [26]Q.M.Cheng,L.V.Interrante,M.Lienhard.Methylene-bridged carbosilanes and polycarbosilanes as precursors to silicon carbide-from ceramic composites to SiC nanomaterials.J.Eur.Ceram.Soc.,2005,25:233-241.
    [27]M.Lienhard,C.Wiegand,T.Apple,et al.Synthesis and characterization of cyano-substituted disilacyclobutane rings and poly(silylenemethylene) polymers.J.Organomet.Chem.,2003,686:272-280.
    [28]L.V.Interrante,Q.Liu,I.Rushkin,et al.Poly(silylenemethylenes)-a novel class of organosilicon polymers.J.Organomet.Chem.,1996,521:1-10.
    [29]S.Y.Parka,L.V.Interrantec,B.L.Farmer.The structure of poly(di-n-propylsilylenemethylene).Polymer,2001,42:4253-4260.
    [30]S.Y.Parka,L.V.Interrantec,B.L.Farmer.The structures of poly(di-n-alkylsilylenemethylene)s.Polymer,2001,42:4261-4269.
    [31]Q.H.Shen,L.S.Maedonald.Silicon carbide precursor.US Patent,6730802,2004.
    [32]刘荣军,周新贵,张长瑞,等.CVD法制备SiC先进陶瓷材料研究进展.材料工程,2002,(7):46-49.
    [33]G.Magnani,A.Brillante,L.Farina,et al.Microstructural characterization of SiC-SiC joint by Raman spectroscopy.J.Am.Ceram.Soc.,2004,87(4):651-655.
    [34]S.Nakashima.Raman determination of structures of long-period SiC polytypes.J.Appl.Phys.,1994,75(10):5354-5360.
    [35]J.C.Burton,L.Sun.Spatial characterization of doped SiC wafers by Raman spectroscopy.J.Appl.Phys.,1998,84(11):6268-6273.
    [36]S.Nakashima,M.Higashihira,K.Maeda,et al.Raman scattering characterization of polytype in silicon carbide ceramics:comparison with X-ray diffraction.J.Am.Ceram.Soc.,2003,86(5):823-829.
    [37]梁博,黄政仁,江东亮,等.化学气相沉积法制备SiC纳米粉.无机材料学报,1999,11(3):441-447.
    [38]彭军.SiC材料与器件.半导体技术,1995,(5):33-40.
    [1]R.C.Johnson.Antenna engineering handbook.New York:McGraw-Hill,Inc.,1984.
    [2]G.J.Qi,C.R.Zhang,H.F.Hu,et al.Preparation of three-dimensional silica fiber reinforced silicon nitdde composite using perhydropolysilazane as precursor.Mater.Lett.,2005,59(26):3256-3258.
    [3]G.J.Qi,C.R.Zhang,H.F.Hu,et al.Three-dimensional silica fiber reinforced silicon nitride-based composites fabricated via different polysilazanes.Adv.Eng.Mater.,2005,7(11):1043-1046.
    [4]张佐光.功能复合材料.北京:化学工业出版社,2004.
    [5]J.P.Brazel,R.Fenton.ADL-4D6:a silica/silca composite for hardened antenna windows.Proceedings of the 13~(th) symposium on electromagnetic windows,Atlanta,GA,1976.
    [6]L.M.Manocha,C.N.Panchal,S.Manocha.Silica/silica composites through electrophoretic infiltration.Ceram.Eng.Sci.Proc.,2002,23:655-661.
    [7]T.M.Place,D.W.Bridges.Fused quartz reinforced silica composites.Proceedings of the 10~(th)symposium on electromagnetic windows,Atlanta,GA,1970.
    [8]邢建申,王树彬,张跃.石英纤维析晶行为.复合材料学报,2006,23(6):75-79.
    [9]http://www.quartz.cn.net/index_c.htm.
    [10]F.E.Wagstaff.Crystallization and meltingkinetics of cristobalite.J.Am.Ceram.Soc.,1969,52(12):650-654.
    [11]温广武,雷廷权,周玉.不同形态石英玻璃的析晶动力学研究.材料科学与工艺,2001,9(1):1-5.
    [12]齐共金.先驱体合成及其转化制备石英织物增强氮化硅基天线罩材料研究[博士学位论文].长沙:国防科技大学,2006.
    [13]穆柏春.陶瓷材料的强韧化.北京:冶金工业出版社,2002.
    [14]张长瑞,郝元恺.陶瓷基复合材料——原理、工艺、性能与设计.长沙:国防科技大学出版社,2001.
    [15]杜耀惟.天线罩电信设计方法.北京:国防工业出版社,1993.
    [16]王零森.特种陶瓷.长沙:中南工业大学出版社,2003.
    [17]A.V.Goncharenko,V.Z.Lozovski,E.F.Venger.Lichtenecker's equation:applicability and limitations.Opt.Commun.,2000,174:19-32.
    [18]C.M.Regalado.A physical interpretation of logarithmic TDR calibration equations of volcanic soils and their solid fraction permittivity based on Lichtenecker's mixing formulae.Geoderma,2004,123:41-50.
    [19]王从曾.材料性能学.北京:北京工业大学出版社,2001.
    [20]邓世均.高性能陶瓷涂层.北京:化学工业出版社,2004.
    [21] G.J. Qi, C.R. Zhang, H.F. Hu. Effects of precoating and calcination on the microstructure of 3D silica fiber reinforced silicon nitride based composites. Trans. Nonferr. Met. Soc. Chn.,2006, 16(4): 824-827.
    [1]郝元恺,肖加余.高性能复合材料学.北京:化学工业出版社,2004.
    [2]张长瑞,郝元恺.陶瓷基复合材料——原理、工艺、性能与设计.长沙:国防科技大学出版社,2001.
    [3]蒋云,朱建勋,张建钟,等.2.5维编织结构纤维体积含量的数值计算.纤维复合材料,2003,(6):7-8.
    [4]田锡惠.导弹结构·材料·强度.北京:宇航出版社,1996.
    [5]张玉娣.C/SiC复合材料反射镜坯体及过渡层的研究[博士学位论文].长沙:国防科技大学,2005.
    [6]邓世均.高性能陶瓷涂层.北京:化学工业出版社,2004.
    [7]王松.PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究[博士学位论文].长沙:国防科技大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700