用户名: 密码: 验证码:
混凝微滤工艺处理微污染原水和低放废水的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水质标准的提高和膜法水处理成本的降低,混凝微滤工艺在处理微污染原水和低放废水领域越来越受到重视。混凝工艺能提高出水水质,同时其絮体在膜表面沉积也有效延缓了膜污染;微滤膜工艺则能有效的发挥过滤功能。
     在天津市某水厂建立了两套浸没式混凝微滤中试系统,即浸没式混凝膜过滤(SCMF)工艺和浸没式膜混凝反应器(SMCR)工艺,处理规模分别为150和300 m3/d,目的在于为建设混凝微滤工艺的自来水厂提供必要的基础参数和运行管理经验。与中国工程物理研究院合作开发了混凝微滤工艺处理低放废水的装置,在相关的设计中,对聚偏氟乙烯中空纤维微滤膜的耐辐射性能也进行了研究。
     SCMF工艺稳定运行时,膜通量为53.3 L/(h·m2),过滤时间为30 min,气水联合反洗为80 s。在稳定运行的154 d内,共进行了5次化学清洗。原水的水质状况显著影响膜污染的速率和出水的水质。低温低浊时期的原水水质较好,混凝剂FeCl3的投加量为6 mg/L;常温时期投加混凝剂聚合氯化铝10~20 mg/L,并增大了强化通量维护(EFM)的频率;夏季高温高藻期的原水水质较差,需要进一步采取预氯化和降低膜通量等措施来控制膜污染。SMCR工艺采取连续曝气,出水8 min停歇2 min的运行方式,气水比为15:1,排泥周期可由24小时延长为48小时,膜通量为16.7 L/(h·m2),FeCl3的投加量为3~4 mg/L。SMCR工艺在稳定运行的134 d内,从未进行化学清洗。在原水水质变差时同样需要采取加大混凝剂投剂量和增加预氯化等措施来控制膜污染和提高出水水质。
     混凝微滤工艺的出水水质稳定可靠,满足《生活饮用水卫生标准》(GB 5749-2006)。SCMF、SMCR工艺的平均出水浊度均为0.09 NTU,出水浊度≤0.1 NTU的部分所占比例分别为89.5%和92.0%,表明混凝微滤工艺对浊度有良好的去除效果。SCMF工艺的平均出水CODMn为2.03 mg/L,SMCR工艺为2.25 mg/L。出水细菌指标良好。SCMF工艺的产水率为90.9%,SMCR工艺的产水率可达98.8%。SCMF、SMCR工艺的电耗分别为0.20、0.42 kW·h/m3,考虑电费和药剂费用之和,SMCR工艺为0.247元/m3,高于SCMF工艺低温低浊时期的0.162元/m3,而低于其常温期0.264元/m3。
     混凝微滤工艺对微污染原水中可溶性有机物和消毒副产物前体物的去除研究发现,原水中的溶解性有机物以小分子为主,其中分子量介于3k-1k Da之间的有机物THMs的生成能力最强;膜分离出水中大分子有机物的含量具有较大幅度的降低,而小分子物质去除效果较差,甚至出现负增长的现象;比较不同有机物指标的去除效果,在各个分子量区间,UV254的去除率高于DOC;两套处理系统对THMFP的去除率在40%左右。采用粉末活性炭吸附工艺可以提高THMFP的去除效果,烧杯试验确定了吸附平衡时间为45 min;在相同投加吸附时间的情况下,发现PAC在投加量为20 mg/L时,去除率为57%。
     采用不同的剂量和剂量率对浸泡在pH=10的氢氧化钠溶液中的PVDF中空纤维微滤膜进行辐照。对辐照前后的样品作相关的性能测试,得到了膜耐辐射的剂量限值和辐射后的膜性能变化,辐射与PVDF膜的化学反应机理表明,膜表面生成-OH、-COOH和不饱和键,从而影响了通量、最大孔径、力学强度等指标,最后对装置的设计提出了工程化建议。
With the stringent water quality standards and the decreased cost of membrane, the coagulation-microfiltration process was increasingly concerned in the field of micro-polluted water and low-level radioactive wastewater treatment. Coagulation process could improve the treated water quality, and it could effectively retard membrane fouling because of the floc deposition on the membrane surface.
     Microfitration process could effectively exert liquid-solid separation function. Two pilot-scale devices of coagulation-mircofiltration processes, which were submerged coagulation membrane filtration (SCMF) with a capacity of 150 m3/d and submerged membrane coagulation reactor (SMCR) with a capacity of 300 m3/d, were constructed in a water treatment plant in Tianjin. The aim was to offer the basic data and the operational experience for new water treatment plant. A study on the resistance to radiation of poly(vinylidene fluoride) (PVDF) hollow fiber membrane was carried out. The aim was to design a device to treat the low-level radioactive wastewater for China Academy of Engineering Physics.
     The SCMF process, with a flux of 53.3 L/(h·m2), was backwashed after every 30 minutes’filtration. The membrane was chemically cleaned five times during 154 days’steady operation. The membrane fouling rate and the quality of treated water were remarkedly influenced by the quality of the raw water, which was relatively well during low temperature and turbidity period. The dosage of FeCl3 was 6 mg/L in this period. The dosage of polyaluminium chloride was 10~20 mg/L during normal temperature period, and a higher frequency of EFM was needed. The quality of the raw water was worst during high temperature and alga bloom period, so that further measures such as prechlorination and reduction of the flux were required. The SMCR process was operated under continuous aeration, with a 2 minutes’interval after every 8 minutes’filtration. The ratio of air to water was 15:1, and the sludge discharging period was 24 h firstly, then 48 h finally. The membrane flux was 16.7 L/(h·m2) and the dosage of FeCl3 was 3~4 mg/L. The SMCR, whose fouling rate was much lower than that of SCMF, was never chemically cleaned during 134 days’steady operation. Higher coagulation dosage and prechlorination were also required to control the membrane fouling and improve treated water quality when the raw water quality was poor.
     The quality of the treated water by both coagulation-microfiltation processes met the Standards for Drinking Water Quality (GB 5749-2006). Results showed that the turbidity was removed almost completely in this process. The treated water from SCMF and SMCR had the same average turbidity of 0.09 NTU, with 89.5% and 92.0% of turbidity less than 0.1 NTU respectively. The average CODMn of the treated water from two systems was 2.03 mg/L and 2.25 mg/L respectively. The quality of the treated water from two systems was excellent in microorganic indexes. Compared with SMCR water productivity of 98.8%, SCMF was only 90.9%. The power consumption of SCMF and SMCR process was 0.20 kW·h/m3 and 0.42 kW·h/m3 respectively. But the reagent cost of SMCR process was less than that of SCMF. As the total cost of the power and reagent was concerned, SMCR process was 0.247 yuan/m3,higher than that of SCMF during low temperature period and lower than that of SCMF during normal temperature period.
     A study on the remove of soluble organic compound and THMFP with coagulation-microfiltration process was carried out. The results of ultrafiltration test showed that the organic matters with low MW were the major THMs precursors and the organic matters with MW between 3k-1k Da had the greatest THMFP in raw water. The organic matters with high MW were removed efficiently, and that with low MW even had minus-increase reversely. UV254 had a better removal than DOC in various MW fractions. THMFP removal efficiency of the two systems is nearly 40%. Powered actived carbon (PAC) absorption test was performed to remove THMFP. By the jar test, the contact time and dosage were 45 min and 20 mg/L respectively, and the remove rate of THMFP was 57%.
     The effect of low-level doses of gamma radiation on the properties of the PVDF hollow fiber membrane was studied. In the experiment, different radiation doses were chosen with the certain dose rate. The membranes dipped in the sodium hydroxide solution with pH of 10 were irradiated and some performance tests were carried out. The radiant chemic reaction mechanism showed that–OH, -COOH and unsaturated chemical bond were appeared on membrane functional surface, so the flux, the maximal pore size and the mechanical property were affected. Based on the results of the tests, suggestion for the engineering application was proposed.
引文
[1]马军.中国水危机.北京:中国环境科学出版社,1999
    [2]刘军民.中国建设节水型社会财政支出压力分析, http://info.water.hc360.com/2006/04/10081868021.shtml,2006/04/10
    [3]2006年中国环境状况公告,中国国家环境保护总局,http://www.sepa.gov.cn/plan/zkgb/06hjzkgb /200706/P020070619274778023610.pdf,2007/06/04
    [4]2006年中国水资源公报,中华人民共和国水利部, http://sdinfo.chinawater.net.cn/gazette/china/2006/index.html,2007/10
    [5]焦志延主编.环境信息,国家环保总局宣教中心,2005/04
    [6]Xia Shengji,Nan Jun,Liu Ruiping,et al.Study of drinking water treatment by ultrafiltration of surfacewater and its application to China,Desalination,2004,170(1):41~47
    [7]戴树桂.环境化学.北京:高等教育出版社,1997
    [8]第十届全国人民代表大会常务委员会,2003/06/28,中华人民共和国放射性污染防治法,北京,2003
    [9]郄燕秋.给水深度处理技术的探讨.北京市市政工程设计研究总院建院四十五周年论文集,http://www.h2o-china.com/paper/viewpaper.asp?id=2690,2000/04/12
    [10]肖羽堂.生物接触氧化工艺与常规净水工艺优化组合处理受污染原水生产性应用研究:[博士学位论文].上海;同济大学,1999
    [11]王晓东.饮用水体中典型内分泌干扰物的检测和去除研究:[博士学位论文].天津;天津大学,2006
    [12]时小兵,曹吉林.饮用水处理工艺技术的研究进展.水处理信息导报,2004,6:4~7
    [13]罗欢,刘广立,刘杰,等.不同超滤膜过滤天然有机物的膜污染特性研究.环境污染治理技术与设备,6(5):23~26
    [14]熊毅.天然有机物(NOM)与膜.西南给排水,2001,23(5):18~21
    [15]Daniel M.W.,Sarah G.,Jasprit N.,et a1.Natural organic matter and DBP formation potential in Alaskan water supplies.Water Research,2003,37(4):939~947
    [16]Dojlido J.,Edward Z.,Ryszard S.Formation of the haloacetic acids during ozonation and chlorination of water in Warsaw waterworks(Poland).Water Research,1999,33(14):3111~3118
    [17]Rehan S.,Manuel J. R..Disinfection by-products(DBPs) in drinking water and predictive models for their occurrence:a review.Science of the Total Environment,2004,321(1-3):21~46
    [18]王丽花,周鸿,张晓健.常规工艺对消毒副产物及其前体物的去除.给水排水,2001,27(4):35~37
    [19]何文杰.安全饮用水保障技术.北京:中国建筑工业出版社,2006
    [20]石颖,马军.湖泊、水库水的强化混凝除藻实验研究.环境科学学报,2001,21(2):251~253
    [21]陈忠林,王立宁,马军,等.预氧化强化混凝去除颤藻及其嗅味的研究.中国给水排水,2003,19(5):13~15
    [22]张金萍,李德生.饮用水处理技术及其发展趋势.甘肃环境研究与监测,2001,14(1):45~47
    [23]辜娟绢,胡九成.饮用水处理技术的现状与进展.化学工程师,1999,75(6):37~41
    [24]李德生,黄晓东,王占生.微污染原水净化新工艺-生物强化过滤研究.中国给水排水,2000,16(10):18~20
    [25]李风彩.饮用水处理技术进展.河北环境科学,2004,12(2):49~51
    [26]朱易,宋书巧.饮用水中有机污染物的深度处理工艺.广西师范学院学报(自然科学版),2000,17(1):58~61
    [27]肖羽堂,许建华.生物接触氧化法净化微污染原水的机理研究.环境科学,1999,20(5):85~88
    [28]吴为中,王占生.水库水源水生物陶粒滤池预处理中试研究.环境科学研究,1999,12(1):10~14
    [29]王华成,吕锡武.微污染水源水饮用水处理研究进展.净水技术,2005,24(1):30~32
    [30]Yasumoto M.,Shoichi K.,MasakiItoh.Advanced membrane technology for application to water treatment.Water Science and Technology,1998,37(10):91~99
    [31]王宝贞.放射性废水处理.北京:科学出版社,1979
    [32]中国国家环境保护总局,GB8978-1996,中华人民共和国污水综合排放标准.北京,1996
    [33]罗明典.微生物治理环境污染物技术评述.现代化工,2004,24(10):5~9
    [34]蒋永一,黄秋红,顾鼎祥.应用生物吸附剂技术处理中低放废液的研究.铀矿地质,2003,19(5):310~317
    [35]Balarama K. M. V.,Arunachalam J.,Murali M.S..Performance of immobilized moss in the removal of 137Cs and 90Sr from actual low-level radioactive waste solutions.Journal of Radioanalytical and Nuclear Chemistry, 2004, 261(3): 551~557
    [36]刘德敏,刘翔峰,王世联,等.1-苯基-3-甲基-4-氰硫基-5-吡唑酮的合成及其对镅和铕的萃取研究.核化学与放射化学,2004,26(1):53~55
    [37]刘德敏,刘翔峰,杨裕生.5,7-二溴-8-羟基喹啉与含N协配体对镅和铕的萃取研究.核化学与放射化学,1997,19(3):12~17
    [38]韩宾兵,吴秋林,朱永贝睿.TRPO-TBP/煤油体系对高放废液中镅、铀、钚和锝等的萃取和反萃.辐射防护,2001,21(2):93~97
    [39]姜永青,何建玉,叶国安.酰胺荚醚对Am(Ⅲ)和Eu(Ⅲ)的萃取行为研究Ⅰ:萃取机理研究.核化学与放射化学,2000,22(2):65~71
    [40]张东,王艳,谭昭怡,等.交联聚乙烯醇磷酸酯的制备及对Eu3+和Am3+的吸附研究.四川大学学报(自然科学版),2003,40(6):1143~1147
    [41]余亨华,刘淑娟,罗明标.氢氧化镁处理含铀放射性废水的研究.水处理技术,2002,28(5):274~277
    [42]蔡英茂,刘桂芳.利用中和沉淀法就地处理包头市放射性废物库废水.辐射防护,2003,23(5):315~317
    [43]赵宝生,蔡青.离子浮选法处理放射性废水.原子能科学技术,2004,38(4):382~384
    [44]Aziz M.,Shakir K.,Benyamin K..The removal of 137Cs from radioactive process waste water by coprecipitate flotation.Radioactive Waste Management and the Nuclear Fuel Cycle,1986,7(4):335~357
    [45]董秉直,曹达文,范瑾初.膜技术应用于饮用水处理的研究和现状.给水排水,1999,25(1):28~32
    [46]张捍民,张威,王宝贞.膜技术处理饮用水的研究.给水排水,2002,28(3):21~24
    [47]张捍民,王宝贞.UF膜和MF膜技术在饮用水处理中应用现状的研究.哈尔滨建筑大学学报,2000,33(6):58~61
    [48]王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社,2002
    [49]Liikanen R.,Miettinen I.,Laukkanen R..Selection of NF membrane to improve quality of chemically treated surface water.Water Research,2003,37(4):864~872
    [50]Watanabe Y.,Kimura K.,Suzuki T..Membrane appalication to water purification process in Japan-development of hybrid membrane syatem.Water Science and Technology,2000,41(10-11):9~16
    [51]Robert R. C.,Taylor J. S..Surface water treatment using nanofiltration pilot testing results and design considerations.Desalination,1999,125(1-3):97~112
    [52]王琳,王宝贞.城市饮用水膜处理技术.膜科学与技术,2001,21(3):53~56
    [53]Navratil J. D..Pre-analysis separation and concentration of actinides in groundwater using a magnetic filtration/sorption method. I. Background and concept. Journal of Radioanalytical and Nuclear Chemistry,2001,248(3):571~574
    [54]Hiroyoshi I.,Mayumi K..Removal of 125I from radioactive experimental waste with an anion exchange paper membrane.Applied Radiation and Isotopes,2000,52(6):1407~1412
    [55]Chen Weiwen,Zhao Jun,GaoYong,et al.Coagulation-microfiltration process for the treatment of radioactive wastewater containing 241Am and study on the membrane fouling.the 2nd International Conference on Application of Membrane Technology,Beijing,China,2002
    [56]Gordon D.,Purdy G. M.,Smith B. F.,et al.Treatment of liquid wastes.Los Alamos Science,2000,26(2):452~457
    [57]Smith B. F.,Robison T. W.,Jarvinen G. D..Water-soluble metal-binding polymers with ultrafiltration,ACS Symp. Ser., 716(Metal-Ion Separation and Preconcentration).American Chemical Society,1999:294~330
    [58]Buckley J. , Slade A. , Vijayan S. , et al.Microfiltration of radioactive contaminants.AECL(Report) n 10867. Atomic Energy of Canada Limited,1993:1~12
    [59]Gra?yna Z. T.,Harasimowicz M.,Chmielewski G.. Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation.Journal of Membrane Science,1999,163(2):257~264
    [60]Gao Yong,Zhao Jun,Zhang Guanghui,et al.Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process.Separation and Purification Technology,2004,40(2):183~189
    [61]Matsushita T.,Matsui Y.,Shirasaki N.,et al.Effect of membrane pore size, coagulation time, and coagulant dose on virus removal by a coagulation-ceramic microfiltration hybrid system.Desalination,2005,178(1-3):21~26
    [62]Guigui C.,Rouch J. C.,Aptel P.,et al.Impact of coagulation conditions on the inline coagulation/UF process for drinking water production.Desalination,2002,147(1-3):95~100
    [63]Qin Jianjun, Htun M. O.,Kekre K. A.,et al.Impact of coagulation pH on enhanced removal of natural organic matter in treatment of reservoir water.Separation and Purification Technology,2006,49(3):295~298
    [64]Jucker C.,Clark M. M..Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes.Journal of Membrane Science,1994,97:37~52
    [65]Combe C.,Molis E.,Lucas P.,et al.Effect of CA membrane properties on adsorptive fouling by humic acid.Journal of Membrane Science,1999,154(1):73~87
    [66]Yoon S. H.,Lee C. H.,Kim K. J.,et al.Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production.Water Research,1998,32(7):2180~2186
    [67]Hwang K. J.,Liu H. C..Cross-flow microfiltration of aggregated submicron particles.Journal of Membrane Science,2002,201(1-2):137~148
    [68]Pikkarainen A. T.,Judd S. J.,Jokela J.,et al.Pre-coagulation for microfiltration of an upland surface water.Water Research,2004,38(2):455~465
    [69]闫昭辉,董秉直.混凝/超滤处理微污染原水的试验研究.净水技术,2005,24(6):4~6
    [70]董秉直,曹达文,管晓涛,等.混凝对膜过滤的影响.中国给水排水,2002,18(12):34~36
    [71]董秉直,夏丽华,陈艳,等.混凝处理防止膜污染的作用与机理.环境科学学报,2005,25(4):533~534
    [72]Oh J. I.,Seock H. L..Influence of streaming potential on flux decline of microfiltration with in-line rapid pre-coagulation process for drinking water production.Journal of Membrane Science,2005,254(1-2):39~47
    [73]Carroll T.,King S.,Gray R. S.,et al.The fouling of microfiltration membranes by NOM after coagulation treatment.Water Research,2000,34(11):2861~2868
    [74]Yuan W.,Andrew L. Z..Humic acid fouling during ultrafiltration.Environmental Science and Technology,2000,34(23):5043~5050
    [75]董秉直,曾达文,范谨初,等.天然原水有机物分子量分布的测定.给水排水,2000,26(1):30~33
    [76]Howe K. J.,Clark M. M..Fouling of microfiltration and ultrafiltration membranes by natural waters.Environmental Science and Technology,2002,36(16):3571~3576
    [77]莫罹,黄霞,吴金玲.混凝-微滤膜组合净水工艺中膜过滤特性及其影响因素.环境科学,2002,23(2):45~49
    [78]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002
    [79]Tom Stephenson,Simon Judd,Bruce Jefferson,张树国,李咏梅译.膜生物反应器污水处理技术.北京:化学工业出版社,2003
    [80]王湛.膜分离技术基础.北京:化学工业出版社,2000
    [81]宋航,付超.微滤过程阻力分析及过滤速率.高校化学工程学报,1999,13(4):315~322
    [82]莫罹,黄霞,吴金玲,等.混凝-微滤膜净水工艺的膜污染特征及其清洗.中国环境科学,2002,22(3):258~262
    [83]Park P. K.,Lee C. H.,Lee S..Variation of specific cake resistance according to size and fractal dimension of chemical flocs in a coagulation-microfiltration process.Desalination,2006,199(1-3):213~215
    [84]Park P. K.,Lee C. H.,Lee S..Permeability of collapsed cakes formed by deposition of fractal aggregates upon membrane filtration.Environmental Science and Technology,2006,40(8):2699~2705
    [85]董秉直,曹达文,陈艳.膜法饮用水深度处理技术.北京:化学工业出版社,2006
    [86]Zhao Z. Y.,Gu J. D.,Fan X. J.,et al.Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments.Journal of Hazardous Materials,2006,134(1-3):60~66
    [87]Costa,Rita A..Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions[J].Journal of Membrane Science,2005,255(1):49~56
    [88]刘红,王东升,吕春华,等.Al13去除水中腐殖酸的混凝作用机理.环境科学学报,2005,24(2):122~124
    [89]迪莉拜尔?苏力坦,莫罹,黄霞.PAC-MBR组合工艺处理微污染水原水的研究.水处理技术,2003,29(3):143~146
    [90]郝爱玲,陈永玲,顾平.粉末活性炭投加前后膜生物反应器处理微污染地表水的比较研究.2004年中日水处理技术交流会论文集,上海:2004,83~91
    [91]张捍民,张锦,等.粉末活性炭与超滤膜联用去除饮用水中污染物的研究.哈尔滨建筑大学学报,2001,34(3):60~64
    [92]王琳,王宝贞.饮用水深度处理技术.北京:化学工业出版社,2002
    [93]Sandrucci P.,Merlo G.,Genon G.,et al.PAC activity vs by-product precursors in water disinfection.Water Research,1995,29(10):2299~2308
    [94]Tan X. Y.,Tan S. P.,Teo W. K.,et al.Polyvinylidene fluoride (PVDF) hollow fiber membranes for ammonia removal from water.Journal of Membrane Science,2006,271(1-2):59~68
    [95]Qin Jianjun,Wai M. N.,Tao G. H.,et al.Membrane bioreactor study for reclamation of mixed sewage mostly from industrial sources.Separation and Purification Technology,2007,53(3):296~300
    [96]刘崎,朱智勇,杨小敏,等.PVDF-g-N-IPAAm温敏膜的辐射合成及性能研究.辐射研究与辐射工艺学报,2006,24(2):97~101
    [97]秦培中,魏俊富,刘东.PVDF中空纤维膜辐射接枝和交联及其对力学性能的影响.天津工业大学学报,2005,24(5):45~48
    [98]Glucina K.,Alvarez A.,Laine J. M..Assessment of an integrated membrane system for surface water treatment.Desalination,2000,132(1-3):73~82
    [99]Marcel Mulder著,李琳译.膜技术基本原理(第二版).北京:清华大学出版社,1999
    [100]时钧,袁权,高从堦.膜技术手册.北京:化学工业出版社,2001
    [101]李余增.热分析.北京:清华大学出版社,1987
    [102]胡保安,吕晓龙,马世虎,等.聚偏氟乙烯中空纤维膜的耐氧化性.纺织学报.2007,28(1):5~9
    [103]Adem E.,Rickards J.,Burillo G.,et al.Changes in poly-vinylidene fluoride produced by electron irradiation.Radiation Physics and Chemistry , 1999 ,54(6):637~641
    [104]Adem E.,Burillo G.,Mu?oz E.,et al.Electron and proton irradiation of poly-vinylidene fluoride:characterization by electron paramagnetic resonance. Polymer Degradation and Stability,2003,81(1):75~79
    [105]Kise H. , Ogata H..Phase transfer catalysis in dehydrofluorination of poly-vinylidene flouride by aqueous sodium hydroxide solutions.Journal of Polymer Science,Polymer Chemistry Edition,1983,21(12):3443~3451
    [106]翟茂林,伊敏,哈鸿飞.高分子材料辐射加工技术及进展.北京:化学工业出版社,2004
    [107]何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,1982
    [108]Zhao Zhudi,Chu Jin,Chen Xinfang.Crystallite damage studies on irradiated poly(vinylidene fluoride).Radiation Physics and Chemistry,1994,43(6):523~526
    [109]武利顺,孙俊芬,朱思君,等.聚醚砜和溶剂对聚偏氟乙烯膜结晶性能的影响.功能高分子学报,2005,18(1):122~126
    [110]傅依备.几种高分子材料的核辐射效应研究.材料导报,2003,17(2):4~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700