用户名: 密码: 验证码:
接收函数及T波在地球界面起伏研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球内部界面的研究,对于我们认识地球内部结构、物质组成、各圈层演化的动力学过程都有着十分重要的意义。由于地球内部的物质非均匀性、地球内部温度的异常、俯冲板块及地幔热柱的作用,使得地球内部的界面可能存在起伏。通过大量研究表明,对于地球界面起伏的研究,能够很好的将界面起伏与物质温度、地幔对流状态联系起来。
     本文主要采用接收函数和海洋T波来研究地球界面的起伏。对于地球内部间断面起伏的研究,我们从研究方法上的差异分为两类:第一类,界面起伏的确定性研究,本文主要采用转化波的接收函数方法。在利用接收函数方法进行界面起伏研究的时候,本文主要做了以下工作:(1)实现了共转换点叠加接收函数的方法,并通过对给定的两个较为复杂的2D模型的理论计算测试,证实了共转换点叠加方法和程序的正确性和可行性。(2)将程序发展到3D,并应用于实际区域上地幔界面起伏的研究中,得到了委内瑞拉和青藏高原地区410公里、660公里间断面的位置和起伏信息。在处理过程中,我们对接收函数的质量进行了评分,并作为后续叠加时的权重之一;同时在网格内部还引入了高斯权重因子取代传统的线性叠加算法。(3)实现了利用重力反演地壳厚度的方法,并用于计算中国地区大尺度的Moho面起伏,从另一个角度与接收函数的结果进行了对比研究。(4)通过对PKKPbc及其前驱波震相的分析,研究了外核顶部由轻元素组成的刚性薄层的地震学性质。第二类,界面起伏的统计性研究。对于界面起伏统计性研究,本文以不同尺度海底地形起伏对海洋T波激发的影响为例进行了说明。随后,本文也分析了T波与地震震源参数之间的关系,以及利用深震激发的T波来研究俯冲板块衰减特性。
     (A)界面起伏的确定性研究
     界面起伏的研究,主要是利用地震学中的前驱波震相(precursor),比如通过对地表前驱波S_(410)S、S_(660)S、P_(410)P、P_(660)P等的研究,可以得到410公里、660公里间断面的起伏。本文的研究主要利用接收函数H-Kappa叠加及接收函数3D共转换点叠加的方法来研究地壳和上地幔界面大尺度的起伏。本文的对于大尺度地球界面的研究主要分为以下几个方面:
     (1)通过网格搜索可能的地壳厚度(H)和纵横波速比(Kappa)的方法,可以得到研究台站下方的地壳厚度和纵横波速比。而地壳厚度和纵横波速比信息将为区域构造、岩石性质等研究提供帮助。
     (2)本文实现了共转换点叠加接收函数的方法,并通过两个2D模型的理论计算测试,首先验证了方法的正确性;其次在3D的叠加过程中引入了高斯权重函数和N次方根的方法,提高了对接收函数中一致信号的拾取。最后,将此方法用于实际接收函数的处理中,得到了委内瑞拉和青藏高原地区的410公里、660公里界面的起伏。利用物质高温高压试验的克拉贝隆曲线斜率的结果,将得到的界面起伏转化为温度变化的信息,为探测俯冲板块(冷)和热点热柱(热)提供依据。
     (3)我们编程实现了傅容珊教授1984年提出的利用重力傅立叶迭代法及刘元龙研究员提出的压缩质面法,并反演得到了中国地区大尺度的地壳厚度分布。我们之所以进行重力方法的研究,主要是为了与上文利用接收函数方法的结果进行对比。
     (4)通过对PKKPbc波形及其前驱波的分析,得到了外核顶部轻元素组成的刚性薄层(CRZ)的地震学性质:我们还通过比较不同位置的前驱波到时的差异,提出了外核可能存在tangent cylinder结构的地震学证据。
     综上所述,我们系统地形成了从接收函数的提取、接收函数信噪比的改进、接收函数叠加成像、高温高压试验对结果解释等相关研究的一整套方法。基于本文的叠加方法,我们可以快速准确地得到地下间断面的起伏,并与物质的温度异常联系起来,从而可以用来探测地球内部俯冲板块和热点热柱的分布。随着大量台阵的架设和地震波数据的积累,本文的方法在未来的研究工作中将有很好的应用前景。利用重力资料得到Moho面起伏的方法,可以从另一个角度对接收函数的结果进行验证,希望能成为接收函数方法的一个有益补充。
     (B)界面起伏的统计性研究
     对于尺度较小界面起伏的研究,由于频率的限制,很难用确定的地震波震相去研究小尺度界面起伏,而一般进行统计学上的描述。对于小尺度界面起伏的研究,我们主要以海底地形起伏为例,讨论了不同小尺度海底地形起伏对T波激发的影响。通过测试不同的海底地形起伏的模型所对应的T波能量的大小,计算结果表明海底地形起伏对T波的激发有一定的促进作用。随后,我们也讨论了T波的可能应用,主要包括研究T波与地震震源参数的关系、利用深地震T波来研究俯冲板块的衰减特性。
The interior discontinuities of the earth play an import part in the study of the earth's interior velocity structure、mineral composition、the evolution and interaction between different layers. Affected by anisotropy caused by the mineral arrangement、temperature anomaly、subducted slab and the mantle super plume, the discontinuities of the earth can afford some topography instead of horizontal flatting. Abundant studies suggest that the topography at each discontinuity can give some information about the material temperature and the mantle convection.
     In this study, we use the receiver function and Oceanic T wave to study the topography of the interior discontinuities. Due to the different methods to study the topography, we separate our work into two groups: (1) the deterministic study on the topography of the discontinuities. Depending on the traditional receiver function study, we have made some improvements in the following aspects: (a) we firstly write the 2D common convection point method, and then we test the correctness and robustness for two complicate input 2D velocity models. (b) For further application, we improved the 2D code to 3D, and then use this method to study the topography of the upper mantle discontinuities beneath Venezuela and Tibet region. During the data processing, for improvement, we also introduced the gauss weight function to rate the energy from different distance convection points. Another improvement is also made by weighting the original receiver function, and this weight will be introduced to the CCP stacking procedure. (c)At last, for comparison, we have written a 3D gravity inversion method to get a large scale Moho topography result which is used to compare with the result of the receiver function. (2) The statistic study on the topography of the discontinuities.. In this study, we calculate the effect of the topography of the Oceanic bottom to the synthetic T wave generation. From synthetic test results, the topography of the Oceanic bottom plays an important part in the generation of the synthetic T wave. After that, we also study the empirical relationship between the earthquake focal mechanism and the energy of the T wave; the other work about T wave is that we use the T wave generated by deep earthquake to study the quality factor of the subducted slab.
     (A) The deterministic study on the topography of the discontinuities
     It is an ordinary way to use the precursor phases to obtain the topography of the discontinuities, such as the study of the S_(410)S、S_(660)S、P_(410)P、P_(660)P can be used to study the topography of the 410 and 660Km discontinuities. In this paper, we mainly use the H-Kappa stacking receiver function method and the 3D common convection point method to study the large scale topography of the crust and upper mantle discontinuities. The main studies in this paper are as follows:
     (1) Utilizing the grid search H-Kappa stacking receiver function method, we obtain the thickness of the crust and the Vp/Vs ratio (Kappa) beneath the stations. Such results are useful to interpret the regional tectonic and petrology.
     (2)In this study, we develop the 2D Common Convection Point (CCP) stacking receiver function method to 3D. After testing the correctness and robustness of our code and method, we use the CCP stacking method to study the upper mantle discontinuities of Venezuela and Tibet region to get the topography of the 4101am 660km discontinuities. During the data process, we introduce the gauss weighting function and the Nth-root stacking method to improve the quality of the image. Benefit from the Clapeyron slope of mineral physics experiment at high temperature and high pressure, we translate our topography result of the discontinuity to the mineral temperature variation, thus our method can be used to detect the subducted slab (cold)、hotspots and plume (hot).
     (3) We develop a code based on the method of Prof,Fu and Prof,Liu, and then apply this method to get the crustal thickness of the whole China region. The purpose of this study is used to give a comparison to the receiver function method.
     (4) By analyzing the PKKPbc and its precursor, we obtain the seismic constrain of the Core Rigidity Zone (CRZ) composed by the outer core light element at the top of the outer core. In addition, after comparing the time difference between the precursor and the main PKKPbc phase at different outer core conversion point positions, we find the seismic evidence for the tangent cylinder structure in the outer core.
     As a summary, in this article, we systematically present a whole method including the receiver function extraction、the receiver function signal to ratio improvement、receiver function stacking to get inner earth image、mineral physics experiment at high temperature and high pressure to interpret the topography result. Based on the upper method, we can obtain the topography of the discontinuities immediately, which is correlated with the distribution of the subducted slab and hotspots and plume. Because more and more stations and data will be available soon, the method in our article will have a bright future. Utilizing the gravity method to inverse the topography of Moho will provide another independent way to give a comparison with the receiver function method, and will hopefully be a good supplement for the receiver function.
     (B) The statistic study on the topography of the discontinuities.
     To small scale topography study, considering the frequency issue, it is hard to use a certain phase to study the small scale topography. We mainly use the statistic method to study the small scale topography of the discontinuities. In this article we mainly take the study of the effect on the small scale topography at the Oceanic bottom to the generation of the synthetic T wave as an example. After comparing the T wave energy generation by different small scale topography at the Oceanic bottom, we find the existence of the small scale topography at the Oceanic bottom plays an important part in the generation of the T wave in the SOFAR channel. Furthermore, we also give two application studies of the T wave including (1) the empirical relationship between the T wave energy and the fault mechanism parameter of the earthquakes (2) the study of the Fiji-Tonga slab quality factor from the T wave generated by deep earthquakes in this region.
引文
陈连旺,陆远忠,郭若眉等.2001.华北地区断层运动与三维构造应力场的演化[J].地震学报,23(4):349-361.
    陈连旺,陆远忠,刘杰等.2001.1966年邢台地震引起的华北地区应力场动态演化过程的三维粘弹性模拟[J].地震学报,23(5):480-491.
    陈连旺,陆远忠,张杰等.1999.华北地区三维构造应力场[J].地震学报,21(2):140-149
    刁桂苓,张四昌,孙佩卿等.2006.2006年7月4日文安5.1级地震[J].地震地质,28(3):497-502.
    段永红,张先康,刘志.2005.长白山—镜泊湖火山区地壳结构接收函数研究[J].48(2):352-358.
    方剑.1999.利用卫星重力资料反演地壳及岩石圈厚度[J].地壳形变与地震,19(1):26-31.
    傅容珊.1984.利用傅立叶迭代法反演二维地壳结构[J].中国科学技术大学学报,14(增刊):117-124.
    傅容珊.1988.利用FFT反演三维地壳结构[J].中国科学技术大学学报,18(4):523-527.
    傅容珊,李力刚,黄建华等.1999.青藏高原隆升过程三阶段模式[J].地球物理学报,42:610-616.
    高孟谭,俞言祥,张晓梅等.2002.北京地区地震动的三维有限差分模拟[J].中国地震,18(4):356-364。
    宫在晓,张仁和,李秀林等.2005.浅海脉冲声传播及信道匹配试验研究[J].声学学报,30(2):108-114.
    何怡,张仁和,朱业.1994.水下声道中脉冲传播的WKBZ简正波方法[J].声学学报,19(6):418-424.
    黄建平 傅容珊 许萍.2006.利用重力数据反演中国及临区地壳厚度[J].地震学报,28(3),250-258.
    黄立人,符养,等.2003.由GPS观测结果推断中国大陆活动构造边界[J].地球物理学报,46:609-615.
    嘉世旭,齐诚,王夫运等.2005.首都圈地壳网格化三维结构[J].地球物理学报,48(6):1316-1324.
    江为为,刘少华,郝天珧等.2003.冲绳海槽及邻域地球物理场与地壳结构特征[J].地球物理学进展,18(2):287-292.
    兰从欣,王春媛,岳辉.2003.弱震条带对2001年首都圈地区中等地震活动的指示意义[J].地震,32(2):94-98.
    兰从欣,邢成起,苗春兰等.2005.近年首都圈地区中小地震震源机制解及其特征分析[J].华北地震科学,23(4):21-25.
    李松林,张先康,宋占隆等.2001.多条人工震测深剖面资料联合反演首都圈三维地壳结构[J].地球物理学报,44(3):360-369.
    李延兴,李智,张静华等.2004.中国大陆及周边地区的水平应变场[J].地球物理学报, 47(2):222-231.
    李延兴,杨国华,李智等.2003.中国大陆活动地块的运动于应变状态[J].中国科学(D辑),33(增刊):65-81.
    利布特里.1986.大地构造物理学和地球动力学[J].孙坦译.北京:地质出版社,270.
    李祖宁,傅容珊,黄建华.2002.剥蚀及地幔作用下青藏高原隆升过程的数值模拟[J].地球物理学报,45(4):516-524.
    刘爱文,常宝林,李雨生等.2006.2006年7月4日河北省文安5.1级地震震害分析[J].1(3):278-282.
    刘光鼎.1992.中国海区及领域地质地球物理特征[J].科学出版社,424-425.
    刘启元,陈九辉,李顺成等.2000.新疆伽师强震群区三维地壳上地幔S波速度结构及地震成因的探讨[J].地球物理学报,43(3):356-364.
    刘启元,Kind R,李顺成等.1996.接收函数复频谱比的最大或然性估计及非线性反演[J].地球物理学报,39(4):502-513.
    刘启元,李顺成,沈杨等.1997.延怀盆地及其临区地壳上地幔速度结构的宽频带地震台阵研究[J].地球物理学报,40(6):763-771.
    刘瑞丰,陈运泰,周公威等.1999.地震矩张量反演在地震快速反应中的应用[J].地震学报,21(2):115-122.
    刘峡 傅容珊 郑勇等.2007.中国大陆GPS结果的构造及动力学意义有限元分析[J].大地测量与地球动力学,27(3):6-11.
    刘元龙,郑建昌,武传珍.1987.利用重力资料反演三维密度界面的质面系数法[J].地球物理学报,30(2):187-196.
    马宏生,汪素云,裴顺平等.2007.川滇及周边地区地壳横波衰减的成像研究[J].地球物理学报,50(2):465-471.
    坪井忠二.1979.重力岩波全书[J].岩波出版社.东京:124-125.
    P.Mozaffari,许力生,吴忠良等.1999.用长周期体波数据反演1988年11月6日澜沧—耿马Ms7.6地震的矩张量[J].地震学报,21(4):344-353.
    沈正康、王敏、甘卫军等.2003.中国大陆现今构造应变速率场及其动力学成因研究[J].地学前缘,10(特刊),93-100.
    石耀霖,朱守彪.2004,利用GPS观测资料划分现今地壳活动块体的方法[J],大地测量与地球动力学,24(2):1-5.
    王椿镛,楼海,魏修成等.2001.天山北缘的地壳结构和1906年玛纳斯地震的地震构造[J].地震学报,23(5):460-470.
    王椿镛,吴建平,楼海等.2003.川西藏东地区的地壳P波速度结构[J].中国科学(D辑):181-189.
    王敏,沈正康,牛之俊等.2003.现今中国大陆地壳运动与活动块体模型[J].中国科学(D 辑),33(增刊):21-32.
    王敏,张祖胜,徐明元,等.,2005,2000国家GPS大地控制网的数据处理和精度评估[J].地球物理学报,48(4):817-823
    王琪.2003.中国大陆现今地壳运动研究[J].地震学报,23:453-464.
    王琪,张培震等.2001.中国大陆现今地壳运动和构造变形[J].中国科学,31(7):529-536.
    吴晶,高原,陈运泰等.2007.首都圈西北部地区地壳介质地震各项异性特性初步研究[J].地球物理学报,50(1),209-220.
    吴建平,明跃红,王椿铺.2001.云南数字地震台站下方的S波速度结构研究[J].地震学报,44(2):228-237.
    吴庆举,曾融生.1998.用宽频带远震接收函数研究青藏高原的地壳结构[J].地球物理学报,41(5):669-679.
    许力生,陈运泰.1996.用经验格林函数方法从长周期数字波形资料中提取共和地震的震源时间函数[J].地震学报,18(2):156-169.
    许力生,陈运泰.1997.用数字化宽频带波形资料反演共和地震的震源参数[J].地震学报,19(2):113-128.
    许忠淮,石耀霖.2003.岩石圈结构与大陆动力学[J].地震学报,453-464.
    杨智娴,陈运泰,郑月军等.2003.双差地震定位法在我国中西部地区地震精确定位中的应用[J].中国科学,33(增刊):129-136.
    姚伯初,曾维军,陈艺中等.1994.南海北部陆缘东部的地壳结构[J].地球物理学报,37(1):27-35.
    杨国华,韩月萍,谢觉民等.2002.首都圈地壳垂直形变与未来强震活动[J].地震,22(3):27-32.
    于湘伟,陈运泰,王培德.2003.京津唐地区中上地壳三维P波速度结构[J].地震学报,25(1):1-14.
    曾融生,孙为国,毛桐恩等.1995.中国大陆莫霍界面深度图[J].地震学报,12(3):322-327.
    曾融生,丁志峰,吴庆举.1998.喜马拉雅—祁连山地壳构造与大陆—大陆碰撞过程[J].地球物理学报,41(1):50-61.
    张国民,马宏生,王辉等.2005.中国大陆活动地块边界带与强震活动[J].地球物理学报,48(3):602-610.
    张仁和,何怡,刘红.1994.水平不变海洋声道中的WKBZ简正波方法[J].声学学报,19(1):1-12.
    郑勇,傅容珊,熊熊.2006.现代青藏高原及周边地区岩石圈演化动力学模拟[J].地球物理学报,49(2):415-427.
    周荣茂,陈运泰,吴忠良.1999.由矩张量反演得到的北部湾地震的震源机制[J].地震学报,21(6):561-569.
    周荣茂,陈运泰,吴忠良.1999.由矩张量反演得到的海南东方震群的震源机制[J].地震学报,21(4):337-343.
    朱守彪,石耀霖.2004.用遗传有限单元法反演川滇下地壳流动对上地壳的拖曳作用[J].地球物理学报,47(2),232-239.
    祝治平,张先康,张建狮等.1997.北京—怀来—丰镇剖面地壳上地幔构造与速度结构研究[J].地震学报,19(5):499-505.
    Ammon,C J.1991.The isolation of receiver effects from teleseismic P waveforms[J].Bull. Seismol. Soc. Am., 81:2504-2510.
    Aurnou J., Andreadis S, Zhu L.X. et al. 2003. Experiments on convection in earth's core tangent cylinder[J]. Earth and Planetary Science Letters, 212:119-134.
    Aubert J, Amit H., Hulot G et al. 2008. Thermochemical flows couple the earth's inner core growth to mantle heterogeneity [J]. Nature, 454,doi:10.1038/nature07109.
    Baker, G. E., J. B. Minster, G. Zandt and H. Gurrola. 1996. Constrains on crustal structure and complex moho topography beneath Pinyon flat, California, from teleseismic receiver functions[J]. Bull. Seismol. Soc. Am., 86, 1830-1844.
    Banjeree, P. and Satyaprakash, W. 2003. Crustal Configuration across the north-western Himalaya as inferred from gravity and GPS aided geoid undulation studies[J]. Journal of the Virtual Explorer 12: 93-106.
    Bina, C. R. and G. Helffrich. 1994. Phase transition clapeyron slopes and transition zone seismic discontinuity topography [J]. J. Geophys. Res., 99,15853-15860.
    Bhattacharyya, J., A. F. Sheenhan, K. Tiampo, and J. Rundle. 1999. Using a genetic algorithm to model broadband regional waveforms for crustal structure in the western United States[J]. Bull. Seism. Soc. Am. 89, 202-214.
    Blackman DK, C. E. Nishimura, and J. A. Orcutt, 2000. Seismoacoustic recordings of a spreading episode on the Mohns Ridge[J], J. Geophys. Res., 105, 10961-10973.
    Braitenberg C., Zadra M., Fang J., Wang Y., Hsu HT. 2000. The gravity and isostatic Moho undulations in Qinghai-Tibet plateau[J]. Journal of geodynamics 30(5): 489-505.
    Catherine D. de Groot-Hedlin, John A. Orcutt. 1999. Synthesis of earthquake-generated T-waves[J]. Geophys. Res. Lett, 26,1227-1230.
    Catherine D. de Groot-Hedlin, John A. Orcutt. 2001. Excitation of T-phases by seafloor scattering[J]. J. Acoust. Soc, 109,1944-1954.
    Chandan K. Saikia. 2006. Modeling of the 21 May 1997 Jabalpur earthquake in central India: source parameters and regional path calibration[J]. Bull. Seism. Soc. Am 96(4): 1396-1421.
    Charles A. Langston. 1978. the February 9, 1971 san Fernando earthquake: a study of source finiteness in teleseismic body waves[J]. Bull. Seism. Soc. Am. 68(1): 1-29.
    Cheadle, M. J. B. L. Czuchra, T. Byrne, C. J. Ando. 1986. The deep crustal structure of the Mojave Desert, California, from COCORP seismic reflection data[J]. tectonics, 5: 293-320.
    Deuss A and Woodhouse J. 2001. Seismic observations of splitting of the Mid-transition zone discontinuity in earth's mantle[J]. Science, 294,354-357.
    Dewey J.F.. Cande S., Pitmam W.C. 1989. Tectonic evolution of the India-Eurasia collision zone[J]. Eclogae Geol. Helv., 82:717-734.
    Doser, D. I. 1988. Source parameters of earthquakes in the Nevada seismic zone[J]. J. Geophys. Res. 43(B12):15,001-15,015.
    Dreger, D. S., and D. V. Helmberger. 1993. Determination of source parameters at regional distances with three—component sparse network data[J]. J. Geophys. Res. 98, 8107-8125.
    Dreger, D. S., and D. V. Helmberger. 1990. Broadband modeling of local earthquakes[J]. Bull. Seismol. Soc. Am. 1162-1179.
    Dreger, D. S., and B. Romanowicz. 1994. Source characteristics of events in the San Francisco Bay region[J]. U.S. Geol. Surv. Open-File Rept. 94(6), 301-309.
    Dreger, D. S, H. Tkalcic, and M. Johnston.. 2000. Dilational processes accompanying earthquakes in the Long Valley Caldera[J]. Science, 288,122-125.
    Dueker, K.G., and A.F. Sheehan. 1988. Mantle discontinuity structure beneath the Colorado rocky mountains and High plains[J]. J. Geophys. Res., 103:7153-7169.
    
    Durek J J, Romanowicz, B. 1999. Inner core anisotropy inferred by direct inversion of normal mode spectra[J]. Geophys. J. Int., 139, 599-622.
    
    Dziak, RP., CG. Fox, H. Matsumoto, and AE. Schreiner. 1997. The April 1992 cape Mendocino earthquake sequence: Seismo-acoustic analysis utilizing fixed hydrophone arrays[J]. Mar. Geophys. Res., 19,137-162. Dziewonski, AM., TA. Chou, and JH. Woodhouse. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismology[J]. J. Geophys. Res. 86, 2825-2852.
    Efron B, Tibshirani R. 1986. Bootstrap methods fro standard errors, confidence intervals, and other measures of statistical accuracy[J]. Statistical Science, 1 (1):54-75.
    Egill Hauksson & Jennifer S. Haanse. 1997. Three-dimensional Vp and Vp/Vs velocity models of the Los Angeles basin and central transverse Ranges, California[J]. J. Geophys.R., 102(3),5423-5453.
    England PC. and D. Mckenzie. 1982. A thin viscous sheet model for continental deformation[J]. Geophys. J. R. astr. Soc., 70: 295-321.
    England PC. and D. Mckenzie. 1983. Correction to: a thin viscous sheet model for continental deformation[J]. Geophys, J. R.astr. Soc., 73: 523-532.
    England PC, and GA. Houseman. 1986. Finite strain calculations of continental deformation, 2, comparison with the India-Asia collision[J]. J. Geophys. Res., 91: 3664-3676.
    England P, Peter Molnar. 1997. Active deformation of Asia: from Kinematics to Dynamics[J]. Science, 278: 647-650.
    
    Eric J. Fielding. 1996. Tibet uplift and erosion[J]. Tectonophysics. 260:55-84.
    Erich GR. and DA.Wiens, Leroy M.Dorman. 1999. Seismic attenuation tomography of the Tonga-Fiji region using phase pair methods[J]. Geophys. Res., 104:4795-4809.
    Feng S., 2001, Large-scale crustal deformation of the Tibetan Plateau[J]. J. Geophys. Res., 106: 6793-6816.
    Frank M. Graeber and Pierre-Franck Piserchia. 2004. Zone of T-wave excitation in the NE Indian ocean mapped using variations in backazimuth over time obtained from multi-channel correlation of IMS hydrophone triplot data[J]. Geophys.J.Int., 158:239-256.
    Frederik Tilmann, James Ni. 2003. INDEPTH HI Seismic Team, Seismic imaging of the downwelling India lithosphere beneath central Tibet[J]. Science, 300:1424-1427.
    Gerard Wittlinger, Paul Tapponnier. 1998. Georges Poupinet.Tomographic evidence for localized lithospheric shear along the altyn tagh fault[J]. Science,282(2):74-76.
    Gilbert, HJ., AF. Sheehan, DA. Wiens. 2001. Upper mantle discontinuity structure in the region of the Tonga subduction zone[J]. Geophys. Res. Lett., 28:1855-1858.
    Gurrola, H., JB. Minster and T. Owens. 1995. The use of velocity spectrum for stacking receiver functions and imaging upper mantle discontinuities[J]. Geophys. J. Int., 117:427-440.
    Harrison, M.T., P. Copeland, W. Kidd, and A. Yin. 1992. Rising Tibet[J]. Science, 255: 1663-1670.
    H.A.Bump & A.F.Sheehan. 1998. Crustal thickness variations across the northern Tien Shan from teleseismic receiver functions[J]. Geophys. R.L., 25(7):1055-1058.
    Helmberger, DV., and GR. Engen. 1980. Modeling the long-period body waves from shallow earthquakes at regional ranges[J]. Bull. Seism. Soc. Am. 70:1699-1714.
    Hiyoshi, Y., D. A. Walker, and C.S. McCreecy. 1992. T-phase data and regional tsunamigenesis in Japan[J]. Bull. Seismol. Soc. Am., 54:2085-2086.
    Houseman. GA., PC. England. 1986. Finite Strain Calculations of Contienetal deformation, 1, method and general results for convergent zone[J]. J. Geophys. Res., 91: 3651-3663.
    Huang JP, Fu RS, Xu P. 2006. Inversion of gravity and topography data for the crust thickness of China and its adjacent region[J]. ACTA, 19(3):264-272.
    Huang, PH. and Fu, RS. 1982. The mantle convection pattern and force source mechanism of recent tectonic movementin China[J]. Phys. Earth. Planet. Inter. 28:261-268.
    Hu JF, Su YJ & Zhu XG. 2005. S-wave velocity and Possion's ratio structure of crust in Yunnan and its implication [J]. Science (in china), 48(2):210-218.
    Ichinose, GA. KD. Smith, and JG. Anderson. 1997. Source parameters of the 15 November Border Town, Nevada, earthquake sequence[J]. Bull. Seism. Soc. Am. 87:652-667.
    Ichinose, GA., KD. Smith, and JG. Anderson. 1998. Moment tensor inversion of the 1994 to 1996 Double Spring Flat, Nevada, earthquake sequence and implications for local tectonics models[J]. Bull. Seism. Soc. Am. 88:1363-1378.
    Ichinose, GA., KD. Smith, and JG. Anderson. 1999. Seismic analysis of the 7 January 1998 chemical plant explosion at Kean Canyon, Nevada[J]. Bull. Seism. Soc. Am. 89:938-945.
    Ichinose, GA., KD. Smith, and YH Zeng. 2003. Source parameters of eastern California and western Nevada earthquakes from regional moment tensor inversion[J]. Bull. Seism. Soc. Am.93(1):61-84.
    Ishii M., Dziewonski AM. 2005. Constraints on the outer-core tangent cylinder using normal-mode splitting measurements[J]. Geophys. J. Int., 162,787-792.
    Ishii, M., Shearer, PM., Houston, H., Vidale JE. 2005. Rupture extent, duration, and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array[J]. Nature, doil0.1038/nature03675.
    Johnson, R. H., and J. Northrop. 1966. A comparison of earthquake magnitude with T-phase strength[J]. Bull. Seismol. Soc. Am., 56:119-124.
    Joshua C. Stachnik, Geoffrey A. Abers. 2004. Seismic Attenuation and Mantle Wedge Temperatures in the Alaska Subduction Zone[J]. Geophys.J.Int., 1-30.
    Kaban, MK., Schwintzer, P., Tikhotsky, SA. Tikhotsky. 1999. A global isostatic gravity model of the Earth[J]. Journal of geodynamics,T 136(3):519 - 524 .
    
    Katsura, T., and E. Ito. 1989. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modefied spinel, and splinel[J]. J.Geophys. Res., 94:15663-15670.
    Kind R, Sobolev SC. 2007. Receiver functions at the stations of the German regional seismic network(GRSN)[J]. Geophys J Int., 121:191-202.
    King R.,Yuan X., Saul J., Nelson D.,Sobolev S.C., 2002, seismic images of the crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction[J]. Science, 298:1219-1221.
    Langston C A. Structure under Mount Rainer, Washington. 1979. Inferred from teleseismic body waves[J]. J Geophys. Res., 84(B9):4749-4762.,1979.
    Laura E. Jones and D.V. Helmberger. 1998. Earthquake source parameters and fault kinematics in the eastern California shear zone[J]. Bull. Seism. Soc. Am. 88(6): 1337-1352.
    Leigh H. Royden, B.Clark Burchfiel, Robert WK. 1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276:788-790.
    Levander AR. 1985. Finite difference calculations of dispersive Rayleigh wave propagation[J]. Tectonophysics, 113, 1-30.
    Levander AR. 1985. Use of the telegraphy equation to improve absorbing boundary efficiency for fourth order acoustic wave finite difference schemes, letter to the editor[J]. Bull. Seism. Soc.Am., 75, 1847-1852.
    Levander AR. 1988. Fourth-order finite-difference P-SV seismograms[J]. Geophysics,53(11): 1425-1436.
    
    Lewis, JL., SM. Day, H. Magistrale, J. Eakins, and F. Vernon. 1999. Crustal thickness of the Penisular Ranges, southern California, from teleseismic receiver functions[J]. Geology, 23: 3095-3098.
    
    Liu. M., and Y. Yang. 2003. Extensional collapse of the Tibetan Plateau: Results of three-dimensional finite element modeling[J]. J. Geophys. Res., 108(B8), 2361, doi: 10.1029/2002JB002248.
    Louis Moresi, Zhong SJ, Michael Gurnis. 1996. The accuracy of finite element solutions of Stokes flow with strongly varying viscosity[J]. Physics of the Earth and planetary Interiors, 97: 83-94.
    Marco Olivieri, G. Ekstrom. 1999. Rupture depths and source processes of the 1997-1998 earthquake sequence in central Italy[J]. Bull. Seism. Soc. Am. 89(1):305-310.
    Megan P. Flanagan and Douglas A.wiens. 1998. Attenuation of broadband P and S waves in Tonga: observations of frequency dependent Q[J]. Pure appl. Geophys., 153:345-375.
    Minkyu Park and Robert 1. Odom. 2001. Modal scattering: a key to understanding oceanic T-waves[J]. Geophys. Res. Lett., 28:3401-3404.
    Monlar, P. 1990. A review of the seismicity and the rates of active understhrusting and the deformation of the Himalaya[J]. J. Himalayan Geology, 1: 131-154.
    Molnar, P., P. England, and J. Martinod. 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian Monsoon[J]. Rev. Geophys., 31(4): 357-396.
    Monlar, P. and P. Tapponnier. 1975. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 189:419-426.
    Monlar, P. and W.P.Chen. 1982. Seismicity and mountain building, in K.J.Hsu(ed.), Mountain Building Processes[J], Academic Report: 41-57.
    Monlar, P. and HQ.Deng. 1984. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia[J]. J. Geophys. Res., 89: 6203-6227.
    Niu,F. and Kawakatsu. 1996. Complex structure of the mantle discontinuities at the tip of the subducting slab beneath the northeast China: A preliminary investigation of broadband receiver functions[J]. J. Phys. Earth, 44:701-711.
    Okal, EA., and J. Talandier. 1986. T-wave duration, magnitudes and seismic moment of an earthquake: application to tsunami warning[J]. J. Phys. Earth, 34:19-42.
    Owens, T. J., G. Zandt and S. R. Taylor. 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms[J]. J. Geophys. Res., 89, 7783-7795.
    Panning, M., D. Dreger, and H. Tkalcic. 2001. Near-source velocity structure and isotropic moment tensors: a case study of the Long Valley Caldera[J]. Geophys. Res. Lett. 28: 1815-1818.
    Park, J. and V. Levin. 2000. Receiver functions from multiple-taper spectral correlation estimates[J]. Bull. Seismol.Soc. Am., 90, 1507-1520.
    Pasyanos, M. E., D. S. Dreger, and B. Romanowicz. 1996. Toward realtime estimation of regional moment tensors[J]. Bull. Seism. Soc. Am. 86:1255-1269.
    Paul Tapponnier, Xu zhiqin Francoise roger, Bertrand Meryer. 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294:1672-1677.
    
    Peter G.Decelles, George E. Gehrels, Jay Quade. 1998. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal[J]. Tectonics, 17: 741-765.
    Peter Bird. 2003. An updated digital model of plate boundaries[J]. geochemistry geophysics geosystems(G3), 4:14-18.
    
    Poppeliers, C. and G. Pavlis. 2003. Three-dimensional, prestack, plane wave migration of teleseismic P-to-S converted phases: 1. Theory[J]. J. Geophys. Res., 108(B2), 2112, doi:10.1029/2001JB000216.
    
    Ritsema, J., and T. Lay. 1995. Long period regional wave moment tensor inversion for earthquakes in the western United States[J]. J. Geophys. Res. 100:9853-9864.
    R.Kind, X.Yuan, J.saul, D.Nelson, S.V.Sobolev. 2002. Seismic images of crust and upper mantle beneath Tibet:evidence for Eurasian plate subduction[J]. science, 298: 1219-1221.
    RM. Russo, PG Silver, M. Franke, WB. Ambeh, DE. James. 1996. Shear-wave splitting in northeast Venezuela, Trinidad, and the eastern Caribbean[J]. Physics of the Earth and Planetary Interiors, 95:251-275.
    Robert P.Dziak. 2001. Empirical relationship of T-wave energy and fault parameters of northeast pacific ocean earthquakes[J]. Geophys. Res. Lett., 28:2537-2540.
    Roger Bilham,Kristine Larson,Jeffrey. 1997. Freymueller,GPS measurements of present-day convergence across the Nepal Himalaya[J]. Nature, 386:61-64.
    Rost S, Revenaugh J. 2003. Small-scale ultra low-velocity zone structure imaged by ScP, J. Geophys. Res. 108(Bl),2056, doi:10.1029/2001JB001627.
    RybergT, F Wenzel, A V Egorkin et al. 1997. Short-period observation of 520km discontinuity in northern Eurasia[J]. J. Geophys. Res. 102(B3):5413-5422.
    Saikia A, Frost D J, Rubie D C. 2008. Splitting of the 520-Kilometer seismic discontinuity and chemical heterogeneity in the mantle[J]. Science, 319:1515-1518.
    Schmerr N and E.J. Garnero. 2007. Upper mantle discontinuity topography from thermal and chemical heterogeneity [J]. Science, 318:623-626.
    Shearer P M. 1996. Transition zone velocity gradients and the 520-km discontinuity[J]. J. Geophys. Res. 101(B2):3053-3066.
    Shearer, P M. 1990. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity[J]. Nature, 344, 121 -126.
    Shearer, P M. 1991. Constrains on upper mantle discontinuities from observations of long-period reflected and converted phases[J]. J. Geophys. Res., 96,18147-18182.
    Shearer P M. 1993. Global mapping of upper mantle reflectors from long-period SS precursors[J]. Geophys. J. Int., 115,878-904.
    Shearer P M., and G Masters. Global mapping of topography on the 660-km discontinuity [J]. Nature, 355, 792-796.
    Sheehan, AF, PM Shearer, HJ Gillbert. 2000. Seismic migration processing of P-SV converted phases for mantle discontinuity structure beneath the Snake river plain, western United States[J]. J. Geophy. Res., 105, 19055-19065.
    Song, X. J., D. V. Helmberger, and L. Zhao. 1996. Broad-band modeling of egional seismograms: the Basin and Range crustal structure[J]. Geophys. J. Int. 125:15-29.
    Song XJ, LE. Jones and D.V.Helmberger. 1995. Source characteristics of the 17 January 1994 Northridge, California earthquake from regional broadband modeling[J]. Bull. Seism. Soc. Am. 85(6): 1591-1603.
    Song XJ, and D.V.Helmberger. 1997. Northridge aftershocks, a source study with TERRAscope data[J]. Bull. Seism. Soc. Am. 87(4): 1024-1034.
    Stephen P. Horton, Won-Young Kim, and Mitch Withers. 2005. The 6 June 2003 Bardwell, Kentucky, Earthquake sequence: evidence for a locally perturbed stress field in the Mississippi embayment[J]. Bull. Seism. Soc. Am. 95(2):431-445.
    Tan, Y., L.Zhu, D.V. Helmberger. 2006. Locating and modeling regional earthquakes with two stations[J]. J.Geophys.Res., 111(B01):306-314.
    Thio, H. K., and H. Kanamori. 1995. Moment-tensor inversion for local earthquakes using surface waves recorded at TERRAscope[J]. Bull. Seism. Soc. Am. 85:1021-1038.
    Tim J. Wright, Barry Parsons, Philip C. England. 2004. Insar observations of low slip rates on the major fault of western Tibet[J]. Science, 305:236-239.
    Wang PC, chu-yung chen, John nabelek. 1999. Present-day deformation of the Qaidam basin with implications for intra-continental tectonics[J]. Tectonophysics,165-181.
    Wang Q, PZ. Zhang, JT. Freymueller, R. 2001. Present-Day Crustal Deformation in China Constrained by Global Positioning Sytem Measurements[J]. Science, 294(5542): 574-577.
    Wallace, TC. 1981. A technique for the inversion of regional data in source parameter studies[J]. J. Geophys. Res. 86:1679-1685.
    Wallace, TC, and DV. Helmberger. 1982. Determining source parameters of moderate-size earthquakes from regional waveforms[J]. Phys. Earth Planet. Interiors 30:185-196.
    Walter, WR. 1993. Source parameters of the June 29, 1992 Little Skull Mountain earthquake from complete regional waveforms at a single station[J]. Geophys. Res. Lett., 20:403-406.
    Du W.X., Won-Yong Kim and Ltbb R. Sykes. 2003. Earthquake source parameters and state of stress for the northeastern united states and southeastern Canada from analysis of regional seismograms[J]. Bull. Seism. Soc. Am. 93(4): 1633-1648.
    
    Won-Yong Kim and Martin Chapman. 2005. The 9 December 2003 central Virginia earthquake sequence: a compound earthquake in the central Virginia seismic zone[J]. Bull. Seism. Soc. Am. 95(6):2428-2445.
    Won-Yong Kim. 2003. The 18 June 2002 caborn, Indiana, earthquake: reactivation of ancient rift in the Wabash valley seismic zone? [J]. Bull. Seism. Soc. Am. 93(5): 2201-2211.
    Xu M.J., Wang Liangshu & Liu Jianhua. 2006. crust and uppermost mantle structure of the Ailaoshan-Red river fault from receiver function analysis [J]. Science (in china), 49(10), 1043-1052.
    
    Yoshida S., Sumita I., Kumazawa M. 1996. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy[J]. J. Geophys. Res., 101(B12): 28085-28103.
    
    Yuan X, Ni J, Kind R. 1997. Lithospheric and upper mantle structure of southern Tibet form a seismological passive source experiment[J]. J. Geophys. Res., 102(B12):27491-27500.
    Yuan X, S. V. Sobolev, R. Kind et la. 1999. Subduction and collision processes in the central andes
    constrained by converted seismic phases[J]. Nature, 408:958-961.
    Zhao L.S., Donald V. Helmberger. 1991. Broadband modelling along a regional shield path, Harvard recording of the Saguenay earthquake[J]. Geophys. J. Int. 105 (2), 301-312.
    Zhao, L.-S., and D. V. Helmberger. 1994. Source estimation from broadband regional seismograms[J]. Bull. Seism. Soc. Am. 84:91-104.
    Zhang ZJ, TENG JW, LI YK, et al. 2004. Crustal structure of seismic velocity in southern Tibet and east-westward escape of the crustal material[J]. Science in China Series D-Earth Sciences, 47(6): 500-506.
    Zhu, L., T. J. Owens, and G. E. Randall. 1995. Lateral Variation in Crustal Structure of the Northern Tibetan Plateau Inferred from Teleseismic Receiver Functions [J]. BSSA, 85: 1531-1540.
    Zhu, L., and D. V. Helmberger. 1998. Moho offset across the northern margin of the Tibetan Plateau [J]. Science, 281:1170-1172.
    Zhu, L., and Y.Tan, DV. Helmberger, and CK. Saikia. 2006. Calibration of the Tibetan Plateau Using Regional Seismic Waveforms[J]. PAGEOPH, 163:1193-1213.
    Zhu L.P. & Rongsheng Zeng. 1993. Preliminary study of crust-upper mantle structure of the Tibetan plateau by using broadband teleseismic body waveforms [J]. ACTA, 6(2),305-316.
    Zhu L.P.& Hiroo Kanamori. 2000. Moho depth variation in southern California from teleseismic receiver functions [J]. J.Geophys.R., 105(2):2969~2980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700