用户名: 密码: 验证码:
开放式磁感应成像技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前运用于临床的医学影像技术可分为两种:结构性成像和功能性成像。结构性成像包括:X射线成像,CT,磁共振成像,超声成像。功能性成像主要包括:放射性核素显像,功能性核磁共振成像,脑磁图,电阻抗成像技术。当前,临床急需一种能够进行功能性成像的便携式床边实时检测设备,上述各种方法只有电阻抗成像技术能够提供连续时间功能性监护成像。然而,由于电阻抗成像技术需要向被测物体内注入电流,颅骨层的低电导率限制了电阻抗成像技术在颅脑疾病功能性成像方面的应用。所以,本论文根据磁场能够穿透低电导率颅骨的特点,针对颅脑疾病的实时监护,研究一种新型的无接触式功能性成像技术:开放式磁感应成像。论文内容包括以下几个方面:
     ①开放式磁感应成像的正问题理论研究。正问题研究主要包括两方面:一是采用基于有限元的A -φ法分析二维场域内的涡流分布情况。二是参照地质勘测分层模型的思路,提出生物体组织分层介质模型的假设,采用基于区域划分的Gauss-Legendre数值积分算法计算分层介质的开放式磁感应成像正问题。
     ②开放式磁感应成像逆问题研究。采用改进遗传算法计算分层开放式磁感应成像的逆问题。对遗传算法作了如下改进:根据个体之间的广义汉明距离限制,产生初始种群;采取精英保留策略和基于压差的排序方法进行选择操作;根据相关性配对方法,选择进行交叉的两个体,根据有效交叉区域的限制,确定单点交叉的基因座位置,根据个体适应度的大小,确定自适应交叉概率;根据进化代数,自适应调节变异概率。对开放式磁感应成像进行了仿真试验,结果表明:对于半径为10mm的探头,能对表皮下20mm的范围内,出血范围大约为两倍探头尺寸的电导率异常情况能够比较准确的进行重构。
     ③测量系统研制。介绍了开放式磁感应成像的硬件测量系统的各组成模块和设计原理。针对头颅,设计了传感器呈球面分布的多通道开放式磁感应成像设备。
     ④实验研究。实验研究包括两个主要内容:一是系统性能指标测试实验,确定测量系统的灵敏度,稳定性,以及噪声水平。测试结果表明:系统的相位灵敏度优于幅值灵敏度。所以我们确定以相位作为成像数据的来源。系统的相位灵敏度为0.185~o / S /m。通过稳定性测试实验,引入参考通道,大大减小了系统的相位噪声。系统的相位噪声在±0.05°之间。二是水槽实验,通过一系列水槽实验研究了开放式磁感应成像系统的成像效果。通过变频实验发现,激励频率越高,越有利于提高图像的分辨率。检测深度的实验表明,现有水槽系统的探测深度大约为20mm左右。最后,通过覆盖骨头的琼脂实验,证明了磁感应成像系统对低电导率骨骼的穿越能力,为将来实现临床颅脑疾病监护奠定了实验基础。
There are two main kind of clinical medicinal imaging technology. One is the structural imaging, and the other is the functional imaging. The former includes X-ray, CT, MRI and ultra-sound imaging. And the latter includes the radionuclidic imaging(PET), fMRI, Magnetoencephalography(MEG) and EIT. And now there is a urgent demand in the clinical application for a portable real-time monitoring functional imaging system on the bedside. All the mentioned imaging method can not satisfy this demand but EIT, but EIT employs a pair of electrodes to inject current into the measured objects, the low-conductivity characteristic of the skull layer limits its application in the brain disease functional imaging. Because the magnetic field can pass through the low-conductivity skull layer almost without attenuation, in this paper a contactless functional imaging method: Open Magnetic Induction Tomography is introduced. The research content includes following four parts:
     ①Forward problem of the open magnetic induction tomography. There are two parts of the forward problem research. A -φmethod based on FEM is employed to study the 2-D eddy current distribution. Referring the separated-layer idea in the geologic research, an assumption of multi-layer biological tissue model is presented. And a Gauss-Legendre numerical integral based on the region-separated idea is employed to calculate the forward problem of the open magnetic induction tomography.
     ②Inverse problem of the open magnetic induction tomography. A modified GA is employed to calculate the inverse problem. The modification of GA includes the following aspects. The initial population is generated according to the generalized Humming distance limitation. The elitist remaining method and the ranking algorithm based on pressure difference are used in selection. The two crossover individuals are selected according to the relative partner method. And gene position of the single-point crossover is located referring the limitation of the active crossover region. The crossover operation probability is adjusted according to the fitness value, and the variation operation probability is adjusted according to the iterative number. The simulation result indicates: a system equips a sensor with 10mm radius can reconstruct a conductivity abnormal region of two times larger as the sensor’s size within 20mm under the top surface.
     ③Measurement system research. All circuits and their designing principles are introduced. To simulate the human head, a multi-channel measurement system is constructed.
     ④Experiment research. There are two steps of the experiment research. One is the performance measurement of the MIT system including sensitivity, stability and the noise level. The result indicates that the sensitivity of phase is higher than that of the magnitude, so the phase data of the signal is recorded as the source of the imaging. The phase sensitivity of the system is 0.185~o / S /m . In order to improve the stability of the system and minimize the phase noise, a reference channel is employed. The phase noise range is±0.05°. The other is the water tank experiment. The results of the frequency-changing experiment indicate that the imaging quality can be improved by increasing the exciting frequency. The depth experiment indicates that our system can detect conductivity abnormal region within 20mm under the surface. And the imaging result of the agar model covered by a pig bladebone indicates that the magnetic induction tomography can detect conductivity distribution under the skull. And these experiments construct a base for the future clinical brain disease monitoring.
引文
[1] L.A. Geddes, and L.E. Baker, The Specific Resistance of Biological Material.-A Compendium of Data for the Biomedical Engineer and Physiologist [J]. Med. Biol. Engng. 1967, 5: 271-293.
    [2] R. Plonsey, Quantitive Formulations of Electrophysiological Sources of Potential Fields in Volume Conductors [J]. IEEE Trans. Biomed. Eng., 1984, 31: 868-872.
    [3] A.M.Dijkstra, B.H. Brown, A.D. Leathard, et al. Clinical Applications of Electrical Impedance Tomography [J]. Journal of Medical Engineering & Technology, 1993, 17(3): 89-98.
    [4] K. Boone, D.Barber, B.Brwon, et al. Imaging with electricity: Review of the European Concerted Action on Impedance Tomography [J]. Journal of Medical Engineering & Technology, 1997, 21(6): 201-232.
    [5] Robert W.M. Smith, Ian Leslie Fresston, Brian Hilton. A Real-Time Electrical Impedance Tomography System for Clinical Use-Design and Preliminary Results [J]. IEEE Trans Biomed Eng, 1995, 43: 133-140.
    [6] Scharfetter H, Roberto Casanas, Javier Rosell. Biological Tissue Characterization by Magnetic Induction Spectroscopy: Requirements and Limitations [J]. IEEE Trans Biomed Eng, 2003, 50(7): 870-880.
    [7] N. G Gencer, M. Nejat Tek. Electrical Conductivity Imaging via Contactless Measurements [J]. IEEE Trans on Medical Imaging, 1999, 18(7): 617-627.
    [8] N. G. Gencer, M.Kuzupglu. Electrical Conductivity Imaging Using Induced Currents [J]. IEEE Trans on Medical Imaging, 1994, 13(6): 338-350.
    [9] Al-Zeibak S, Saunders N H. A feasibility study of in vivo electromagnetic imaging [J]. Phys. Med. Biol. 1993, 38:151-160.
    [10]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000:200.
    [11] Peyton A J, Mackin R, Goss D, et al. The development of high frequency electromagnetic inductance tomography for low conductivity materials [C]. Proc. 2nd International Symposium Process Tomography, Wroclaw, Poland. 2002, Sept 11:25-40.
    [12] Goss D, Mackin R O,Crescenzo E, et al. Understanding the coupling mechanisms in high frequency EMT [C]. Proc. 3rd International Symposium Process Tomography, Banff, Canada. 2003:377-383.
    [13] Yu Z Z, Peyton A J, Conway W F, et al. Imaging system based on electromagnetic tomography [J]. Electro. lett. 1993, 29:625-626.
    [14] Peyton A J, Beck M S, et al. Development electromagnetic tomography for industrialapplications [C]. Proc. 1st World congress on industrial process Tomography, Buxton, UK. 1999, April 14:306-312.
    [15] Korjenevsky A, Cherepenin V, Sapetsky S. Magnetic induction tomography: experimental realization [J]. Physiol. Meas. 2000,21(1):89-94.
    [16] Watson S, Williams RJ, Griffiths H, et al. The Cardiff magnetic induction tomography system [C], Proc. Int. Fed. Med. Biol. Eng. EMBEC02, Vienna, Austria, 2002, Dec 4-8:116-117.
    [17] Peyton A J, Watson S, Williams R J, et al. Characterising the effects of the external electromagnetic and shield on a magnetic induction tomography sensor [C]. Proc. 3rd World congress on industrial process Tomography, Banff, Canada, 2003:352-357.
    [18] Griffiths H, Stewart W R, Gough W. Magnetic induction tomography: a measuring system for biological tissues [J]. Ann. NY Acad. Sci. 1999,873:335-345.
    [19] Korzhenevsky A, Sapetsky S. Visualization of the internal structure of extended conducting objects by magnetic induction tomography [J]. Bull. Russian Acad. Sciences: Physics. 2001,65(12):1945-1949.
    [20] Watson S, Williams R J, Griffiths H, et al. Frequency down-conversion and phase noise in MIT [J]. Physiol. Meas. 2002,23:189-194.
    [21] Yu Z Z, Peyton A J, Beck M S, Electromagnetic tomography, Part1: Design of a sensor and a system with a parallel excitation field [C]. Proc. European Concerted Action in Process Tomography, Oporto, Portugal, 1994:147-154.
    [22] Scharfetter H, Lackner H K, Rosell J. Magnetic induction tomography: hardware for multi-frequency measurement in biological tissues [J]. Physiol. Meas. 2001,22:131-146.
    [23] Korzhenevskii A V, Cherepenin V A. Magnetic induction tomography [J]. Comm. Tech. Electronics. 1997, 42(4):469-474.
    [24] Watson S, Williams R J, Gough W, et al. Phase measurement in biological magnetic induction tomography[C]. Proc. 2nd World congress on industrial process Tomography, Hannover, Germany, 2001, Aug29-31:517-524.
    [25] Watson S, Williams RJ, Griffiths H, et al. Magnetic induction tomography: phase vs. vector voltmeter measurement techniques [J]. Physiol. Meas. 2003,24:555-564.
    [26] Tarjan P P, McFee R, Electrodeless measurements of the effective resistivity of the human torso and head by magnetic induction [J]. IEEE Trans. Biomed. Eng. 1968:266-278.
    [27] Ulker B, Gencer N G. Implementation of data acquisition system for contactless conductivity imaging [J]. IEEE Engineering in Medicine and Biology Magazine. 2002, 21(5):152-155.
    [28] Riedel CH, Golombeck MA, Von Saint George, et al. Data acquisition system for contact-free conductivity measurement of biological tissure [C]. Proc Int. Fed. Med. Biol. Eng. EMBEC02,Vienna, Austria, 2002, vol 3:86-87.
    [29] Karbeyaz B U, Gencer N G. Electrical conductivity imaging via contactless measurements: an experimental study [J]. IEEE Trans. Med. Imag. 2003, 22(5):627-635.
    [30] Riedel CH, Dossel O. Planar system for magnetic induction impedance measurement [C]. Abstracts of 4th Conference on Biomedical Applications of Electrical Impedance Tomography. UMIST, Manchester, 2003, April 23-25:32.
    [31] Watson S, Williams RJ, Griffiths H, et al. A primary field compensation scheme for planar array magnetic induction tomography [J]. Physiol. Meas. 2004,25:271-279.
    [32] Scharfetter H, Rauchenzauner S, Merwa R, et al. Planar gradiometer for magnetic induction tomography: theoretical and experimental sensitivity maps for a low-contrast phantom [J]. Physiol. Meas. 2004,25:325-333.
    [33] Williams R A, Beck M S. Process Tomography Principles, Techniques and Applications [M]. Oxford: Butterworth Heinmann. 1995:581
    [34] Peyton A J, Yu Z Z, Lyon G, et al. An overview of electromagnetic inductance tomography: description of three different systems [J]. Meas. Sci. Technol. 1996,7:261-271.
    [35] Binns R, Lyons A R A, Peyton A J. Imaging of molten steel flow profiles [J]. Meas. Sci. Technol. 2001,12:1132-1138.
    [36] Pham M H, Hua Y, Gray N G. Eddy current tomography for metal solidification imaging [C]. Proc. 1st World congress on industrial process Tomography, Buxton, UK. 1999, April 14:451-458.
    [37] David S Holder, Griffiths H. Electrical impedance tomography: Methods, History and Applications, Chapter 8, Magnetic induction tomography [M]. IOP Publishing, 2005:213-238.
    [38] Morris A, Griffiths H, Gough W. A numerical model for magnetic induction tomography measurements in biological tissues [J]. Physiol. Meas. 2001,22:113-119.
    [39]李世均,秦明新,董秀珍等.非接触磁感应脑阻抗断层成像系统设计[J].中国医学物理学杂志.2003, 20(1):55-58.
    [40] Korjenevsky A. Solving inverse problems in electrical impedance and magnetic induction tomography by artificial neural networks [J]. Radioelectronice. 2001:12.
    [41] Korjenevsky A, Cherepenin V. Magnetic induction tomography- new imaging method in biomedicine [C]. Proc. 2nd World congress on industrial process Tomography, Hannover, Germany, 2001, Aug29-31:240-246.
    [42] Netz J, Forner E, Haagemann S. Contactless impedance measurement by magnetic induction- a possible method for investigation of brain impedance [J]. Physiol. Meas. 1993,14:263-271.
    [43] Merwa R, Holaus K, Brandtatter B, et al. Numerical solution of the general 3D eddy currentproblem for magnetic induction tomography(spectroscopy) [J]. Physiol. Meas. 2003,24:545-554.
    [44] Riedel C H, Keppelen M, Nani S, et al. Planar system for magnetic induction tomography using a sensor matrix [J]. Physiol. Meas. 2004,25:403-411.
    [45] Scharfetter H, Riu P, Populo M, et al. Sensitivity maps for low-contrast perturbations within conducting background in magnetic induction tomography [J]. Physiol. Meas. 2002, 23:195-202.
    [46] Hollaus K, Magele C, Merwa R, et al. Fast calculation of sensitivity matrix in magnetic induction tomography by tetrahedrakl edge finite elements and the reciprocity theorem [J]. Physiol. Meas. 2004, 25:159-168.
    [47] Merwa R, Holaus K, Oszkar B, et al. Detection of brain oedema using magnetic induction tomography: a feasibility study of the likely sensitivity and detectability [J]. Physiol. Meas. 2004,25:347-354.
    [48] Casanova R, da Silva A F, Borges A R, et al. Magnetic induction tomography using Tikhonov regularization [C]. Abstracts of Workshop on Inverse obstacle problems, Lisbon, Portugal. 2002.
    [49] Casanova R, da Silva A F, Borges A R, et al. MIT image reconstruction based on edge preserving regularization [J] . Physiol. Meas. 2004,25:195-207.
    [50] Soleimani M, Lionheart W R, Peyton A J, et al. Image reconstruction in 3D magnetic induction tomography using a FEM forward model [C]. Proc. 3rd International Symposium Process Tomography, Banff, Canada. 2003:252-255.
    [51] Gough W. Circuit for measurement of small phase delays in MIT [J] . Physiol. Meas. 2003,24:501-507.
    [52]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社, 2000:156.
    [53] Dodd C V, Deeds W E. Analytical solutions to eddy-current probe coil problems [J]. Journal of Applied Physics. 1968, 39(6):2829-2838.
    [54]雷银照.时谐电磁场解析方法[M].北京:科学出版社, 2000:182-187.
    [55]雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社, 1991: 31.
    [56]雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社, 1991. 33.
    [57]雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社, 1991. 88-89.
    [58]辛克维奇,K.摩根.有限元与近似法[M].北京:人民交通出版社, 1989. 61-62.
    [59] S.Rush, D.A.Driscoll. Current distribuction in the brain from surface electrodes [J]. Anesthesia Analgesia, 1968, 47: 717.
    [60]梁昆淼.数学物理方程(第三版) [M].北京:高等教育出版社, 1995:247-258.
    [61]徐士良.数值方法与计算机实现[M].北京:清华大学出版社, 2006:307-314.
    [62] Chave A D. Numerical integration of related Hankel transformations by quadrature and continued fraction expansion [ J ]. Geophysics, 1983, 48 (12):1671-1686.
    [63] Anderson W L. A hybrid fast Hankel transformation algorithm for electromagnetic modeling [J]. Geophysics, 1989, 54(2) : 263-266.
    [64]华军,蒋延生,汪文秉.双重贝塞尔函数积分的数值计算[J].煤田地质与勘探, 2001, 29(3):58-62.
    [65]徐士良.数值方法与计算机实现[M].北京:清华大学出版社, 2006:295-297.
    [66]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [67]金鸿章,王科俊,何琳.遗传算法理论及其在船舶横摇运动控制中的应用[M].黑龙江:哈尔滨工程大学出版社, 2007.
    [68]雷英杰,张善文,李继武等. Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2005.
    [69]黄友锐.智能优化算法及其应用[M].北京:国防工业出版社, 2008.
    [70]何大阔,王福利,张春梅.基于均匀设计的遗传算法参数设定[J].东北大学学报, 2003, 24(5):409-411.
    [71]何大阔,王福利,贾明兴.遗传算法初始种群与操作参数的均匀设计[J].东北大学学报, 2005, 26(9):828-831.
    [72]王宇平,焦永昌,张福顺.解多目标优化的均匀正交遗传算法[J].系统工程学报, 2003, 18(6):481-486.
    [73]吴斌,吴坚.快速遗传算法研究[J].电子科技大学学报, 1999, 28(1):49-53.
    [74]刘翼成.基于改进遗传算法的生物电磁成像与磁场聚焦应用研究[D].四川大学博士论文, 2005.
    [75]卢厚清,陈亮,宋以胜等.一种遗传算法交叉算子的改进算法[J].解放军理工大学学报, 2007, 8(3):250-253.
    [76]张明辉,王尚锦.具有自适应交叉算子的遗传算法及其应用[J].机械工程学报, 2002, 38(1):51-54.
    [77]曾庆勇.微弱信号检测(第二版)[M].浙江大学出版社, 2002,1:47-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700