用户名: 密码: 验证码:
DK-2000A手术动力装置机械传动部分的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手术动力装置是开展神经外科手术的必备医疗器械之一,其功能主要是用于开颅、颅底及脊柱手术中对骨组织的处理如钻、铣、磨、锯。近年来,我国临床医学发展迅速,作为医学前沿领域的神经外科发展尤为突出,一是神经外科手术开展的普及程度提高(目前大部分县级医院都已能开展神经外科手术),二是神经外科手术的精细复杂程度大大提高,充分的安全性是应该考虑的首要问题之一。这样一方面形成了手术动力装置的更大市场需求,另一方面对手术动力装置的技术及质量提出了更多更高要求。手术动力装置在神经外科中的应用一般有两种情况,开颅及颅底打磨,这两类手术实施过程中都有极大的风险性,如颅骨钻钻穿颅骨板后必须及时停止,否则会钻入脑组织造成伤害,而颅底或脊柱手术中磨钻摆动过大或操作不当,会伤及神经及血管,易致残致瘫,甚至导致死亡。手术对产品的安全要求极高,所以产品关键技术需认真加以研究。
     从市场实际情况来看,国内市场高端手术动力装置主要依赖进口,绝大部分用户还在使用木工钻、手摇钻等原始工具进行手术,手术效率很低,医生劳动强度很大,并且手术风险较高,同时每年还要消耗大量外汇,因此这一状态急需改变。在此背景下,作者提出了DK手术动力装置的研究开发,并将其中部分关键技术研究作为本人博士论文课题。
     手术动力装置是一个较为复杂的系统,广泛涉及精密机械传动、材料、计算机软硬件、电气控制、生物医学等学科技术,但由于篇幅限制,本人重点选择了对产品功能实现及手术安全影响度较大的软轴、钻手机以及主机热可靠性作为主要研究内容。
     手术动力装置在神经外科中的应用之一开颅(颅骨钻孔及切割),对动力要求大,而对速度要求不高;之二颅底骨组织或脊柱打磨,对动力要求不高,但对速度要求很高,并要求操作手机小尺寸,径向跳动量极小。手术动力装置分为软轴驱动和微电机驱动两类,两类工作方式各有其优缺点,软轴驱动采用大功率交流电机,动力较大,可很好满足开颅手术,其不足是系统可达到的终端输出速度较低(一般小于2万r/min),并且手机部件等尺寸较大,无法满足有高速(如4~8万r/min)、小尺寸要求的颅底与脊柱手术;而微电机方式正好相反,具备高速、小尺寸的技术特点,满足颅底与脊柱手术高速、小尺寸要求,但其功率小(一般只有几十瓦),进行开颅手术就较难。传统手术动力装置产品都仅有一种工作模式,这样临床应用很难同时满足开颅、颅底及脊柱打磨的需要。开发一种同时可满足开颅、颅底及脊柱打磨需要的手术动力装置的需求就这样形成了。本人创新性地将软轴及微电机方式融合于一台设备,很好地解决了这一问题,二种方式的融合使主机控制更加复杂,形成了一个新主机热可靠性问题,通过研究,这一问题得到了很好的解决。而软轴、钻手机及钻头作为手术动力装置非常关键的部件,其性能如振动、发热、柔软性、噪声、重量与尺寸等因素直接影响着手术动力装置功能的效用及安全性。
     本论文在深入研究神经外科手术动力装置的相关技术和产品现状的基础上,综合生物医学工程、机械学、材料学、力学、现代控制理论和计算机科学,提出了基于大功率电机驱动、大扭矩传递的软轴,并结合高速微电机驱动。采用软轴驱动与微电机驱动两种动力传输方式,使其功能与功能实现的途径达到了最佳的匹配。在这种设计方案中有关软轴的驱动设计是重点也是难点,有关软轴及其相关部件的设计涉及以下四个方面的内容:
     (1)据装置中软轴传动的性能要求,对其组件进行了详细的力学和性能分析,建立了力学模,提出了软轴的抗弯、抗扭强度和刚度,提出了软轴的抗弯、抗扭强度和刚度计算理论,并最终试制出了合乎要求的软轴。(2)采用有限元分析方法,分析了软轴连接结构件(如连接轴)部的动力学和静力学指标,实现了传动连接件的优化设计。(3)为实现颅骨钻手术中大动力输出的要求,本论文设计和优化了行星齿轮传动系统的技术方案。采用非均匀有理B样条曲线逼近技术对齿形轮廓进行构造,利用构造实体几何方法构造了行星齿轮系统及部件的参数化特征模,应用有限元技术对这些重要动力传输构件的受力和运动进行仿真分析优化,设计和开发了具有足够的强度和动力学传递性能,实现噪音小、平稳、1:6减速比的增力机构。(4)主机内部电气元器件的功率和热耗散功率较大,论论文采用有限差分法,研究了基于有限差分控制体积计算,对主机箱三维结构导热和流体流动进行数值模拟分析,获得了主机的结构布局设计对温度分布和三维冷却流体流动的影响,优化了部件布局和风扇通风窗的参数。
     本论文研究的技术创新点和主要研究成果:(1)创新点1:微动力与大动力结合。DK-2000A手术动力系统同时采用软轴驱动与微电机驱动两种动力传输方式,使其功能与功能实现的途径达到了最佳的匹配,可应用于神经外科手术中常用的钻、铣等功率要求较大的功能和高速打磨及钻微孔功能。(2)创新点2:研制成功了传递动力过程中平稳、噪音小、温升低、可高温高压消毒软轴;(3)创新点3:发明了颅骨钻手机内置行星齿轮传动机构和实现了颅骨钻头的钻穿即停功能,使得颅骨钻孔手术的有效和安全得到了保障。(4)DK-2000A手术动力系统操作简便,高效快速。所有连接均采用快速手工装卸,减小手术中繁琐的操作,对颅脑外科手术的急救、减小医生疲劳度和降低手术风险具有重大意义。
     本论文研究开发的手术动力装置技术已经过大量临床实践,证明设计成品的有效性及可靠性能够满足临床手术要求,得到了市场的验证与肯定。
The operation power device is a necessary appliance in neurosurgery operation, which main function is to deal with the bone tissue in skull and rachis operation by drilling milling grinding and sawing. In recent years, our clinic medicine developed rapidly, especially the advanced aspect in medicine such as neurosurgery development, firstly, the prevalence of neurosurgery operation is improved, (most county hospital can do neurosurgery operation nowadays) secondly, the subtly and complexity of neurosurgery operation improved greatly. Therefore, it will stimulate the greater demand; on the other hand, it will bring forward more requirements of technology and quality in operation power device.
     From the analysis of practical situation of market, most advanced operation power device depends on import in domestic market. Today, many consumers are still use the traditional apparatus to operate, such as wooden drill and hand-rock drill. It will cause intensive labor force and high risk in operation, meanwhile, the spending of mass foreign exchange is unavoidable, so, it is necessary the current status. In this situation, the author bring forward the research and development of DK Surgical Power Device, and take the key part as the thesis of PH.D.
     The operation power device is a comparatively complicated system, which involved many technologies such as exactitude machinery transmission, material, soft and hard ware and electric control biomedical. But this essay can’t illustrate clearly because of the restriction of space, so, the author choose the flexible shaft, drill handset and reliability of mainframe caloric as the key research objects which have a great affection on the realization of product function and the operation safety.
     There are two circumstance of the operation power device used in neurosurgery. The first one is open skull, (drilling of skull and cutting), it has a strong requirement of power but lower demand of speed. The second one is the burnishing of bone structure of skull bottom or spinal column, it has a strong requirement of speed but lower demand of power, and the small size of handset. The operation power device can divided into two categories, flexible shaft driving and micro-computer driving, both of the two categories have its own advantages and disadvantages. The flexible driving system adopt the alternating current electric motor, it has a strong power and can satisfied the skull-open operation better, the disadvantages of the system is the lower speed of achievable terminal output (generally less than 20000r/min), and the big size of handset assembly, it cannot satisfied the skull-bottom and spine operation with the requirement of high speed and small size. But the micro-computer driving system is the different one, it has the technical characteristic of high speed and small size, which can satisfied the skull-bottom and spinal operation with the requirement of high speed and small size, but the disadvantages of the system is the lower power (generally only decades tile), which is very difficult to do skull-open operation. The traditional product of operation power device only has one working pattern, therefore, it has difficulties in satisfied the burnishing requirement of skull-open, skull-bottom and spine operation coinstantaneous in clinic applying. So, the demand to develop operation power system which can meet the operation requirement of skull-open, skull-bottom and spine is formed. The author solves the problem commendably by combine the flexible shaft driving system and the micro-computer driving system to one device creatively. The combination of the two ways make it is more complicated in the control of mainframe, and formed a new problem of reliability of mainframe heat. On the basis of research, the problem solved commendably. And as the key parts of the operation power device such as flexible shaft, drill handset and drill bur, the capability of librations, radiation, plasticity, noise, weight and size has a great affection to the function and security of operation power device.
     On the basis of lucubrating correlation technique of neurosurgery operation power apparatus and the status of product status, integrated biomedical engineering with mechanics, materials science, dynamics, electronics, modern control theory and computer science, this thesis propound two ideas. One is neurosurgery operation power apparatus based on flexible shaft transmission and brushless micromachine drive, the other is actualization of encephalic OPS safety protection based on reliable drilling-out protection, precision OPS, antisepsis and high output torque. Therefore, the task of this thesis is to develop our research turned on the hard cores of operation power apparatus mentioned above, while we will use the modern CAD/CAE technic to accomplish design and circular analysis, improvement.
     Following is the main R&D work:(1) according to the performance requirement of flexible shaft transmission, detailedly analyzed the dynam and performance of the subassembly, formated dynamics model, profounded the rigidity and the intension of buckling strength, torsion resistant, proposed computational theory of parameter above and finally trial-manufactured up to standard. (2) Adopted finite element method to analyze dyn and static’s index of joint construction part such as coupling spindle. Actualize optimal design of transmission attaching parts. (3) Design and optimize the technical proposal of epicyclic gear’s transmission system for fulfilling craniotomy requirement of great power. (4) Adopted nonhomogeneous rational B-spline curve approximation technic to construct gear form, Using the geometry methods of structure entity to format parameterized characteristic model of epicyclic gear’s transmission system and parts, Applying finite element technic to emulate, analyze and optimize the stress and movements of these important power transmission components. Designed and developed Energizing machines, which have enough intensity, dyn, transfer performance, low noise, stabilization, and of which reduction ratio is 1:6. (5) The power and heat dissipation of host computer’s interior electric components are higher, so this thesis adopted finite difference method to research control by volume, numerical simulation analyzing mainframe box’s three dimensional structure heat conduction and fluid flow. Optimize parts layout and parameter of fan
     Through the research of the key technic above, make DK-2000A operation power apparatus which is the object of this thesis have these nice performance:(1) Integrate great power with micro-power, can synchronously use two power transmittal mode: Flexible shaft driving and micro motor driving. Optimally match the function and the approach, applying to the neurosurgery OPS that require great power for drilling, milling, high-speed polishing and grinding tiny hole. (2) Improving safety performance, the processing of flexible shaft transmission is stable, low noisy. And can be sterilized in the 135℃steam, cranial drilling handle with epicyclic gear transitive mechanics can transfer the more torque, cranial drilling bits can be stop when cranial bones is drilled through. All of these give a guarantee to operation of cranial drilling and the more power.(3)facility of operating and maintenance, all of joint and fixing are finished by hand without special tolls, it is important to emergency treatment for nuerosurgiery and reducing doctor’s tiredness and danger. (4) work for 40 minutes without interruption. Utilization ratio is improved because of treating several patents and the more difficult operation.
     The practice of clinical medicine shows that the mechanical transmission Components of DK-2000A is excellent, secure and stable and suitable to applying to treatment of drilling, milling, grinding for cranial bone in the fields of nuerosurgery and replace imported product. Up to now, all of the mechanical transmission Components has been practiced in clinical medicine. The stability and security of the Components have been fully affirmed by market.
引文
[1]王忠诚等.神经外科学[M].湖北:科学技术出版社.1998,10~15.
    [2]郭毅军,蔡绍晳,赵志强,曾垂省,王伟.《手术动力装置:颅骨钻的研究进展》[J].《医疗卫生装备》. 2007年第4期.
    [3]郭毅军.双动力模式手术动力装置[P].中国.实用新型专利,2006201112895.
    [4]郭毅军.手术动力装置微动力源用直流无刷电机恒速控制电路[P].中国.实用新型专利,2006201639456.
    [5]郭毅军.手术动力装置(DK-2000A) [P].中国.外观设计专利,ZL200630012163.8.
    [6]郭毅军.下连接组件上带有双内套筒的软轴[P].中国.实用新型专利,ZL0126588.9 .
    [7]郭毅军.医用滑动轴承钻手机[P].中国.实用新型专利,2006201113239.
    [8]郭毅军.防脱、防裂的开颅钻头[P].中国.实用新型专利,2006201639314.
    [9] GB9706.1-1995医用电气设备[S]第一部分:安全通用要求.
    [10]国家质量技术监督局, GB 15982-1995, GB 00015982 00000000 00000000 00000000 00000000—1996-01-23,医院消毒卫生标准[S].
    [11]国家药品监督管理局广州医疗器械质检中心, GB 18278-2000, GB 00018278 00002000 00000000 00000000 00000000,—2000-12-13,医疗保健产品灭菌确认和常规控制要求工业湿热灭菌[S],国家质量技术监督局.
    [12]王忠诚等,神经外科学[M],湖北科学技术出版社.1998,10~15.
    [13]白墨宇.钢丝软轴是怎样传递力矩的[J].力学与实践. 2000年2期.
    [14]姚文斌何天淳.受扭钢丝软轴的设计计算[J].机械设计. 1999年11期.
    [15]姚文斌何天淳.钢丝软轴抗扭刚度的计算与测量[J].力学与实践. 2000年2期.
    [16]单辉祖.材料力学教程[J].国防工业出版社.
    [17]张英会刘辉航.弹簧手册[J].机械工业版社.
    [18]盛景方译.SAE-J796a扭杆弹簧的设计和制造手册[M].北京:学术期刊出版社,1988.
    [19]殷仁龙.机械弹簧设计理论及其应用[J].北京:兵器工业出版社,1993.
    [20] [美]沃尔AM著谭惠民等译.机械弹簧[J].北京:国防工业出版社,1981.
    [21]何天淳姚文斌.受扭钢丝软轴的强度及刚度计算[J].昆明理工大学学报. 2000年4期.
    [22]何天淳姚文斌.钢丝软轴抗弯刚度的计算及测量[J].昆明理工大学学报. 1999年2期.
    [23]西南兵器工业理化检测中心.软轴芯力学性能测试报告[R].
    [24]冯春玲张庆华.航空发动机专用软轴的研制[J].天津冶金. 1999年4期.
    [25]王运炎.金属材料学[M].机械工业出版社.
    [26]温秉权.非金属材料手册[M].电子工业出版社.
    [27]管荣根,顾玲.机械振动特性和减振方法的探讨[J].机械设计与制造. 2001年2期.
    [28] www.engineerplastic.com工程塑料网[Z].
    [29]王德禧.聚苯硫醚的特性及应用[J].塑料. 2000年2期.
    [30]温延娜,赵清香.PPS力学性能研究[J].工程塑料应用. 2005年11期.
    [31] www.egols.com egols 8042润滑脂性能[Z].
    [32]侯洪海,宋郁琴.振动测试中加速度计与被测对象连接方式的研究[J].洛阳工业高等专科学校学报. 2005年1期.
    [33]朱孝录.机械零件失效讲座-第二讲轴的失效分析[J].机械工人(冷加工).1999 (2):33~35.
    [34]韩西,钟厉.有限元分析在结构分析和计算仿真中的应用[J].重庆交通学院学报, 2001, 20( B11):124~126.
    [35]郑毅,李伟.虚拟产品开发(VPD)技术——MSC.Manufacture软件包功能介绍[J].锻造与冲压. 2005, 10:70~73.
    [36]黄跃东,刘建雄.Pro/Mechanica的有限元分析应用[J].机电产品开发与创新,2007, 20(3):103~105.
    [37]蒋学武,吴新跃,朱石坚.综合应用UG,HyperMesh和MSC Marc软件进行有限元分析[J].计算机辅助工程. 2007, 16(2):11~14.
    [38] MSC.Nastran v2005新功能[J]. CAD/CAM与制造业信息化, 2005. 7:67~68.
    [39]艾松树,周照耀,邵明.特种车辆发动机支架模态分析[J].现代制造工程.2004, 10:42~44.
    [40]刘淑萍.有限元分析软件的介绍及其应用[J].机械管理开发. 2007, 3:87-88.
    [41]唐立民,齐朝晖.弹性力学弱形式广义基本方程的建立和应用[J].大连理工大学学报. 2001, 41(1):1~8.
    [42]王助成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社.1997,第2版.
    [43]徐光文,顾雪峰.环坐标中的弹性力学基本方程[J].天津城市建设学院学报. 2001, 7(1):25~27.
    [44]张培忠,朱占刚,米中贺,刘平.火炮扭力轴的预扭应力计算方法[J].火炮发射与控制学报. 2004, 4:33~36.
    [45]林智育,许希武.含任意椭圆核各向异性板杂交应力有限元[J].固体力学学报. 2006,27(2):181~185.
    [46]印铁,苏世明,王强.有限单元法在结构优化设计中应用[J].光电技术应用, 2003,18(3):44~47.
    [47]王守信.有限元法教程[M].哈尔滨:哈尔滨工业大学出版社.1999.
    [48]张国瑞.有限元法[M].北京:机械工业出版社.1991.
    [49]戴航.有限单元法三维弹性体离散法研究[J].安徽冶金科技职业学院学报.2007,17(3):17~19.
    [50]白忠喜.有限单元法基础教程[M].吉林:吉林科学技术出版社,1992.
    [51]张晓君,谢永和,吴国荣.多面结构连接的有限元网格划分[J].浙江海洋学院学报:自然科学版, 2007, 26(2):183~186,197.
    [52]谢世坤,黄菊花,桂国庆,郑慧玲.参数化网格划分方法研究及其系统实现[J].中国机械工程, 2007,18(3):313~316.
    [53]梁君,赵登峰.工作模态分析理论研究现状与发展[J].2006, 22(6):7-8~32.
    [54]郑栋梁,李中付等.结构早期损伤识别技术的现状和发展趋势[J].振动与冲击.2002,21(2):1-6,10.
    [55]龙驭球.有限元法概论[M].北京:高等教育出版社.1991,第2版.
    [56]傅志方.振动模态分析与参数辨识[M].北京:机械工业出版社.1990.
    [57]王志刚,郭书彪.旋转动力机械的扭矩测试技术研究[J].车辆与动力技术.2001,3:11~15.
    [58]顾冠群,万德钧.机电一体化设计手册[M].南京:江苏科学技术出版社.1996.
    [59]渐开线齿轮行星传动的设计与制造编委会编.渐开线齿轮行星传动的设计与制造[M].北京:机械工业出版社.2002.
    [60]彭书志.一种新型行星减速器的理论研究[J].光机电信息.1998, 15(7): 16~18.
    [61]黄晓春.行星齿轮传动机构的设计和应用[J].电子机械工程.1997(4).48-52.
    [62]张国瑞,张展.行星传动技术[M].上海:上海交通大学出版社.1989.
    [63]绕振刚.火炮行星减速器反求设计[J].机械设计.1992,9(2): 8-11;34.
    [64]王秋华.摆线针轮行星减速器的正交设计[J].实用机械技术.1989(2): 14-18.
    [65]俞研,陶俐言.CAD/CAM集成系统中的特征分类与描述方法研究[J].制造业自动化.2000, 22(1):30-32.
    [66]高德源等.行星齿轮减速器CAD系统的研究[J].工程机械.1998,29(9): 10-12.
    [67]王玮,高永顺.NGW型行星减速器CAD系统[J].吉林工学院学报.1997,18(1):18-24.
    [68]程自彬.NGW行星减速器的模糊优化设计[J].湖南大学学报.1991,18(2): 77-84.
    [69]王彩梅.行星摆线针轮减速机虚拟样机的建造与性能仿真[D].中国农业大学.2001, 3.
    [70]张锁怀,隋铁成.三轴式内齿行星减速器传动力学及运动性能的研究[J].机械设计.1995,12(11):21-22,37.
    [71]熊银根,淮良贵.齿差摆线针轮行星传动的多目标优化设计[J].机械设计与研究.1989(4): 21-26.
    [72]张蕾,卢玉明.高速中截圆柱齿轮减速器的稳健设计[J].机械设计.1999(10): 10-12.
    [73]黄晓剑.双摆线滚子行星传动原理初探[J].机械设计与研究.1989(4): 27-31.
    [74]唐荣锡. CAD/CAM技术[M].北京航空航天大学出版社, 1994, 9.
    [75]林祷,张学峰.无自转活齿双摆线行星减速器[J].东北大学学报(自然版).1995,26(2):253-256.
    [76]王助成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社.1997,第2版.
    [77]王守信.有限元法教程[M].哈尔滨:哈尔滨工业大学出版社.1994.
    [78]白忠喜.有限单元法基础教程[M].吉林:吉林科学技术出版社.1992.
    [79]张国瑞.有限元法[M].北京:机械工业出版社.1991.
    [80]龙驭球.有限元法概论[M].北京:高等教育出版社.1991,第2版.
    [81]韩祟第.难加工材料切削加工.机械工业出版社.1996.
    [82]沙占友主编.中外集成传感器实用手册[M].北京:电子工业出版社.2005.9.
    [83]钟洪钧,胡运发.虚拟仪表综合热分析仪[J].计算机工程.2007.3,第33卷第5期,234~236.
    [84]李海元,栗保明.用激光测量高热可靠性电子器件的热变形[J].光谱学与光谱分析.2002.6,第22卷第3期,381~383.
    [85]生建友.印制电路板的热可靠性设计[J].可靠性设计与工艺控制.2002.2,第1期,34~38.
    [86]薛军,孙宝玉等.热分析技术在电子设备热设计中的应用[J].长春工业大学学报(自然科学版).2007.6,第28卷第2期,176~179.
    [87] Paul Rako.热分析与热设计技术[J].EDNChina电子设计技术.2007.7,76~90.
    [88]黄艳飞,张荣标等.基于有限元的PCB板上关键元件热可靠性分析[J].微计算机信息(嵌入式与S0C),2005年.第21卷第11_2期.
    [89]屈金祥.航天器系统热分析综述[J].《红外》月刊.2004第10期,20~27.
    [90]徐高卫,薛建顺等.超级计算机机箱的热流场特性研究和优化设计[J].机械设计与研究. 2006.12,第22卷第6期,57~61.
    [91] http://www.dianyuan.com. [Z].
    [92]龙驭球.有限元法概论[M].北京:高等教育出版社.1991,第2版.
    [93]张国瑞.有限元法[J].北京:机械工业出版社.1991.
    [94]白忠喜.有限单元法基础教程[M].吉林:吉林科学技术出版社.1992.
    [95]吕永超,杨双根.电子设备热分析、热设计及热测试技术综述及最新进展[J].电子机械工程.2007年第23卷第1期:5~10.
    [96]唐荣锡.CAD/CAM技术[M].北京航空航天大学出版社.1994, 9.
    [97]陈景仁.流体力学及传热学[M].国防工业出版社.1984.12.
    [98]陶文铨.计算流体力学与传热学[M].中国建筑工业出版社.1991.11.
    [99]王助成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社.1997,第2版.
    [100]张天孙.传热学[M].北京:中国电力出版社.2006.2,第二版.
    [101]胡荣祖.热分析动力学[M].北京:科学出版社.2001.8.
    [102]钟丽,袁峰.精密温度测量中传感器热特性对温度场的影响[J].仪器仪表学报.2004年3期.
    [103]付桂翠,高泽溪.高精度多路微机控制温度测量系统的设计[J].测控技术.2006,25卷2期19~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700