用户名: 密码: 验证码:
致密金属陶瓷复合膜的氢渗透性能和稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着发展中国家的崛起,化石能源的消耗量迅速增长,而其储量有限,价格不断上涨,同时带来的温室效应给环境带来巨大的压力。为了保证经济的可持续发展和良好的生存环境,必须发展可再生的清洁能源,其中,氢来源丰富,对环境友好,热量高,在未来可望成为和电一样的二次能源,使目前的碳经济转换成氢经济。由于在氢经济和石油化工等领域的巨大潜在应用价值,复合金属氧化物高温质子导体的研究在最近十年受到了学术界和工业界的关注。在其众多应用中,仅氢传感器实现商业化,其他的应用如氢分离膜、质子膜燃料电池主要面临的问题集中在其性能和稳定性上。由于高温质子导体的电子导电能力很弱,以往的氢分离膜需要外短路,给应用带来诸多不便,新型双相混合导体材料的出现给氢分离膜材料的应用带来了希望,但是还存在诸多的问题亟待解决。本论文主要研究了Ni—BaCeO_3/CeO_2金属陶瓷的氢渗透性能及化学稳定性。
     第一章简要介绍了氧化物型质子导体在氢经济中的重要地位和应用前景,对各种复合金属氧化物高温质子导体的研究现状作了全面的阐述,着重关注了钙钛矿和萤石型氧化物,阐明了钙钛矿型质子导体的质子缺陷形成机制和传输理论。
     第二章探索了Ni—BaCeO_3双相材料的制备条件,研究了Ni含量及BaCeO_3中B位双掺杂对氢渗透性能的影响。样品组成分析的结果表明BaCeO_3高温时容易和Al_2O_3粉体反应,降低样品的密度,必须予以避免。氢渗透测量的结果表明,Ni体积含量过高或过低都对氢渗透性能有不好的影响,在30%时最佳。另外,和氧离子导体能通过双掺杂提高其氧离子电导率不同,B位双掺杂对BaCeO_3的质子电导率并没有明显影响,文献报道的电导率提高应属其氧离子电导率的提高。
     第三章研究了水蒸气对Ni—BaCe_(0.9)Y_(0.1)O_(3-δ)(Ni—BCY)和Ni—BaZr_(0.05)Ce_(0.85)Y_(0.1)O_(3-δ)(Ni—BZCY)的氢渗透性能和化学稳定性的影响。对于Ni-BCY样品,在进气中加入少量水蒸气有利于氢渗透,而过量的水蒸气和BaCeO_3在高于一定温度时会发生反应,生成Ba(OH)_2和CeO_2,反而降低氢渗透性能。对于Ni-BZCY样品,其在水蒸气中的化学稳定性由于Zr的掺杂而得到提高,从而使其氢渗透速率在高水蒸气分压下随水蒸气分压提高而提高。在实际应用中,Ni-BZCY是很有前途的氢分离膜材料。
     第四章研究了Ni—BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3-δ)(Ni—BZCY)金属陶瓷在H_2S中的氢渗透性能和化学稳定性。在高温(900℃)时,当H_2S浓度超过~50 ppm时,Ni-BZCY金属陶瓷的氢渗透速率开始下降,随着H_2S浓度的上升,其氢渗透性能下降的程度越高。实验后,发现有BaS、掺杂CeO_2,Ce_2O_2S、Ni_3S_2生成,并且随着氢渗透速率的下降,H_2S和BaCeO_3反应的程度不断上升,另外,热力学计算表明当H_2S浓度为55 ppm时开始反应,说明H_2S和BaCeO_3的反应是900℃氢渗透性能下降的原因。通过提高混合气中的水蒸气含量可能会提高该温度下Ni-BZCY对H_2S的容忍度。
     在中温(700℃)时,Ni-BZCY表面有微量的BaS、掺杂CeO_2、Ni_3S_2生成,其氢渗透性能在30,60 ppm H_2S中分别下降约20%和30%,组成和微结构的分析以及毒化和再生行为表明硫在镍表面的吸附可能是H_2S在700℃时毒化Ni-BZCY的原因。
     第五章将掺杂的CeO_2和Ni复合制成金属陶瓷氢分离膜,研究了La、Ca掺杂对其结构和氢渗透性能的影响,发现La、Ca掺杂量分别为0.5、0.0125时效果最佳。还研究了Ni-La_(0.4875)Ca_(0.0125)Ce_(0.5)O_(2-δ)(Ni—LDC)的氢渗透率和膜厚度间的关系,发现厚度在0.51 mm以上时受体扩散控制,而厚度在0.32 mm时受表面交换过程影响。
     第六章研究了Ni-LDC在H_2O、CO_2、H_2S中的化学稳定性。发现Ni-LDC在水蒸气中有很好的化学稳定性,但其氢渗透性能会随着进气中水蒸气含量的提高而下降。Ni-LDC在CO_2中也有很好的化学稳定性,但其氢渗透速率在900℃时会随着CO_2的加入而下降,该下降过程很短并可恢复,而在700℃时不受CO_2影响。在高温下的性能下降是水汽转换反应的逆反应引起的,导致样品表面氢气浓度下降,水蒸气含量(?)提高,从而使氢渗透速率下降。而在低温时,该反应非常弱,对氢渗透速率没有影响。Ni-LDC在H_2S中的化学稳定性较差,LDC会和H_2S反应生成Ce_2O_2S和La_2O_3,导致氢渗透速率下降,在75,150,300 ppm的H_2S中分别下降5,15,30%,抗硫能力比Ni—BZCY略强。##原图像不清晰
With the stress of global climate change and the development of fuel cells, hydrogen is expected to be the clean fuel which can substitute oil-based fuels in the future.The high cost of hydrogen production is a choke point in its commercialization process as a fuel.As a low energy cost process,membrane technology is promising in the hydrogen separation from product gases which are generated by reforming or gasification of fossil fuels and biomass.As the gas mixtures usually contain H_2O,CO_2 and H_2S,the membranes must be chemically stable in these atmospheres.Dense cermets(ceramic-metal composite)composing of Ni and high temperature proton conductors such as doped barium cerates(BaCeO_3)and doped ceria have been developed as cost-effective materials for hydrogen separation membranes.This thesis concerns the hydrogen permeation performance and chemical stability of Ni-BCY/CeO_2 based hydrogen separation membrane.
     Chanpter 1 describes applications of high-temperature proton conductors in hydrogen economy and petrochemical industry,the progress of research on the high-temperature proton conductors,the mechanism of proton incorporation and conduction in perovskite-type proton conductors.
     In chapter 2,the preparation condition of Ni-BaCeO_3 is investigated.When pellets are sintered in a gas flow,BaCeO_3 is ready to react with Al_2O_3 powder brought by the gas flow from the bubble stick made of alumina.The reaction forms BaAl_2O_4 and doped CeO_2,reducing the relative densities of the pellets.
     The results of hydrogen permeation measurement show that a membrane containing 30%Ni in volume possesses the highest performance.Besides,the double doping at the Ce site turn to be useless or even harmful.Unlike the increase of the oxide ion conductivity caused by co-doping,no obvious increase in proton conductivity is observed in BaCeO_3.
     In chapter 3,the hydrogen permeation performance and chemical stability of Ni—BaCe_(0.9)Y_(0.1)O_(3-δ)(Ni—BCY)and Ni—BaZr_(0.05)Ce_(0.85)Y_(0.1)O(3-δ)(Ni—BZCY)in moisture between 600 and 750℃is investigated.For Ni—BCY,when the feed gas contains a H_2O level of less than 1.2 kPa,the increase in H_2O concentration is beneficial to the hydrogen permeation performance.However,when the H_2O concentration is above the value,the increase in H_2O concentration takes the opposite effect.After the experiments,the analysis on microstructure and phase composition show the formation of Ba(OH)_2 and CeO_2,which is caused by the reaction between H_2O and BaCeO_3.Results of thermodynamic calculations based on the data supplied by Tanner show that BaCeO_3 reacts with H_2O at a H_2O level of about 1.1 kPa below 750℃,and is consistent with the experimental results.When BCY is doped with 5% Zr,its stability in moisture is improved.When Ni-BZCY samples are exposed to H_2O, their performance increase with the H_2O level after the iniatial drop.
     In chapter 4,the hydrogen permeation performance and chemical stability of Ni -BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3-δ)(Ni-BZCY)in H_2S is investigated.At 900℃,performance loss of hydrogen permeation starts when the H_2S concentration is over 50 ppm and increase with increasing H_2S levels.The performance loss in 60,100,300 ppm H_2S is 3%,19%and 45%,respectively.X—ray diffraction results show that BaS,doped CeO_2,Ce_2O_2S,Ni_3S_2 is formed.With the increase in performance loss,the degree of reaction between H_2S and BaCeO_3 increases.Only a little BaCeO_3 reacts in 60 ppm H_2S,but all BaCeO_3 on the surface disappear in 100 ppm H_2S,causing volume expansion and fracture on the surface of the sample.CeO_2 reacts with H_2S and H_2 forming Ce_2O_2S and H_2O in 300 ppm H_2S,causing severer volume expansion and surface fracture.Thus H_2S can reacts with more BaCeO_3 and continue to decrease the hydrogen permeation flux.When H_2S in the feed gas is removed,the hydrogen permeation flux recovers completely,with an unexpected increase(2%)which is related with the porosity of the surface.Besides,results of thermodynamic calculations show that BaCeO3 begins to react with H_2S at a level of 55 ppm in an 1.5%H_2O-containing atmosphere at 900℃,which also proves that the reaction between BaCeO_3 and H_2S is the cause of the performance loss.It is likely that the tolerance of Ni-BZCY to H_2S can be improved by increasing the H_2O level in the feed gas.
     At 700℃,the performance loss of Ni-BZCY in 30,60 ppm H_2S is 20%and 30%, respectively.XRD analysis show the formation of slight BaS,doped CeO_2 and Ni_3S_2.The adsorption of sulfur on Ni surface should be the cause of performance loss in this condition.
     In chapter 5,hydrogen separation membranes composed of doped ceria and nickel(Ni—La_(X-Y)Ca_YCe_(1-X)O_(2-δ)are fabricated.The effects of La,Ca doping at the Ce sites are investigated.The highest performance is achieved when X=0.5 and Y=0.0125.The dependence of hydrogen permeation flux on membrane thickness is also studied.When the thickness is above 0.51 mm,the hydrogen permeation process is controlled by the bulk diffusion step.When the thickness is 0.32 mm,the hydrogen permeation process is affected by the surface exchange step.
     In chapter 6,the chemical stability and hydrogen permeation performance of Ni—La_(0.4875)Ca_(0.0125)Ce_(0.5)O_(2-δ)(Ni—LDC)in H_2O,CO_2 and H_2S is investigated.Ni-LDC show high resistance in moisture,but its performance decreased with the increase of H_2O levels.It also show high stability in CO_2,and its performance maintains in 40% CO_2 at 700℃.However,due to the reaction between H_2 and CO_2 at 900℃,the concentration of H_2 decreases while the concentration of H_2O increases.Both of them are harmful to the hydrogen permeation.Thus the hydrogen permeation flux reduces 4%and 10%at 900℃in 20%and 40%CO_2,respectively.When CO_2 in the feed gas is removed,the hydrogen permeation flux recovers completely in one hour.Ni-LDC does not show high resistance to H_2S.It is found that LDC reacts with H_2S forming Ce_2O_2S and La_2O_3,causing the performance loss.The hydrogen permeation flux decreases 5,15 and 30%in 75,150 and 300 ppm H_2S,respectively.
引文
1.C.D.Zuo,Ph.D thesis,Georgia Institute of Technology(2006).
    2.G.Marban,T.Vales-Solis,"Towards the hydrogen economy?" International Journal of Hydrogen Energy,32(2007)1625-1637.
    3.D.Kennedy,"The Hydrogen Solution",science,305(2004)917.
    4.M.Conte,A.laeobazzi,M.Ronchetti,R.Vellone,"Hydrogen economy for a sustainable development:state-of-the-art and technological perspectives",Journal of Power Sources,100(2001)171-187.
    5.IPCC,"Climate Change 2007:Synthesis Report",Climate Change 2007:Synthesis Report,(2007).
    6.A.L.Dicks,"Hydrogen generation from natural gas for the fuel cell systems of tomorrow",J.Power Sources,61(1996)113-124.
    7.F.ROBERT,"The Hydrogen Backlash",science,305(2004)958-961.
    8.J.A.Ritter,A.D.Ebner,"State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries",Separation Science and Technology,42(2007)1123-1193.
    9.C.Forsberg,"Futures for hydrogen produced using nuclear energy",Progress in Nuclear Energy,47(2005)484-495.
    10.S.S.Penner,"Steps toward the hydrogen economy",Energy,31(2006)33-43.
    11.M.Ni,D.Y.C.Leung,M.K.H.Leung,K.Sumathy,"An overview of hydrogen production from biomass",Fuel Process.Technol.,87(2006)461-472.
    12.K.Nath,D.Das,"Hydrogen from biomass",Current Science,85(2003)265-271.
    13.W.G.Coors,"Protonic ceramic fuel cells for high-efficiency operation with methane",Journal of Power Sources,118(2003)150-156.
    14.T.Schober,F.Krug,W.Schilling,"Criteria for the application of high temperature proton conductors in SOFCs",Solid State Ionics,97(1997)369-373.
    15.C.W.Tanner,A.V.Virkar,"Instability of BaCeO_3 in H_2O-Containing atmospheres",Journal Of The Electrochemical Society,143(1996)1386-1389.
    16.Z.L.Wu,M.L.Liu,"Stability of BaCe_(0.8)Gd_(0.2)O_3 in a H_2O-containing atmosphere at intermediate temperatures",Journal of the Electrochemical Society,144(1997)2170-2175.
    17. S. V. Bhide, A. V. Virkar,"Stability of BaCeO_3-based proton conductors in water-containing atmospheres", Journal of the Electrochemical Society, 146 (1999) 2038-2044.
    
    18. N. Zakowsky, S. Williamson, J. T. S. Irvine,"Elaboration of CO_2 tolerance limits of BaCe0.9Y0.1O3-deIta electrolytes for fuel cells and other applications", Solid State Ionics,176(2005)3019-3026.
    
    19. S. Adhikari, S. Fernando,"Hydrogen membrane separation techniques", Industrial & Engineering Chemistry Research, 45 (2006) 875-881.
    
    20. H. Matsumoto et aI.,"Hydrogen separation from syngas using high-temperature proton conductors", Ionics, 13 (2007) 93-99.
    
    21. W. Ma, S. K. Gong, H. B. Xu, X. Q. Cao,"On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions", Scripta Materialia, 54(2006)1505-1508.
    
    22. X. Chen, M. Han, Z. Wang, X. Jiang,"Cr-based alloy used as interconnect in solid oxide fuel cells", Rare Metal Materials and Engineering, 36 (2007) 642-644.
    
    23. K. D. Kreuer,"Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides", Solid State Ionics, 125 (1999) 285-302.
    
    24. Y. P. Fu, S. B. Wen, C. H. Lu,"Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells", Journal of the American Ceramic Society, 91(2008)127-131.
    
    25. R. Pornprasertsuk, P. Ramanarayanan, C. B. Musgrave, F. B. Prinz,"Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles", Journal of Applied Physics, 98 (2005) .
    
    26. H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka,"Prospect of hydrogen technology using proton-conducting ceramics", SOLID STATE IONICS, 168 (2004) 299-310.
    
    27. N. Taniguchi, T. Kuroha, C. Nishimura, K. Iijima,"Characteristics of novel BaZr_(0.4)Ce_(0.4)In_(0.4)O_3 proton conducting ceramics and their application to hydrogen sensors",Solid State Ionics, 176 (2005) 2979-2983.
    
    28. W. S. Wang, A. V. Virkar,"A conductimetric humidity sensor based on proton conducting perovskite oxides", Sensors and Actuators B-Chemical, 98 (2004) 282-290.
    
    29. Y. T. Liu, X. Y. Tan, K. Li,"Nonoxidative methane coupling in a SrCe_(0.95)Yb_(0.05)O_(3-alpha) (SCYb) hollow fiber membrane reactor", Industrial & Engineering Chemistry Research, 45 (2006) 3782-3790.
    
    30. G. Marnellos, M. Stoukides,"Ammonia synthesis at atmospheric pressure", Science, 282 (1998)98-100.
    31. Z. J. Li, R. Q. Liu, J. D. Wang, Y. H. Xie, F. Yue,"Preparation of BaCe_(0.8)Gd_(0.2)O_(3-delta) by the citrate method and its application in the synthesis of ammonia at atmospheric pressure",Journal of Solid State Electrochemistry, 9 (2005) 201-204.
    
    32. Z. J. Li, R. Q. Liu, Y. H. Xie, S. Feng, J. D. Wang,"A novel method for preparation of doped Ba_3(Ca_(1.18)Nb_(1.82))O_(9-delta): Application to ammonia synthesis at atmospheric pressure", Solid State Ionics, 176(2005) 1063-1066.
    
    33. R. Q. Liu, Y. H. Xie, J. D. Wang, Z. J. Li, B. H. Wang,"Synthesis of ammonia at atmospheric pressure with Ce_(0.8)M_(0.2)O_(2-delta) (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature", Solid State Ionics, 177 (2006) 73-76.
    
    34. R. Q. Lui, Y. H. Xie, Z. J. Li, J. D. Wang, Y. G. Sun,"Application of proton conductors (Ce_(0.8) La_(0.2))_((1-x))Ca_xO_(2-δ) in synthesis of ammonia", Acta Physico-Chimica Sinica, 21 (2005) 967-970.
    
    35. J. D. Wang, Y. H. Xie, Z. F. Zhang, R. Q. Liu, Z. H. Li,"Protonic conduction in Ca2+-doped La_2M_2O_7 (M = Ce, Zr) with its application to ammonia synthesis electrochemically",Materials Research Bulletin, 40 (2005) 1294-1302.
    
    36. Y. H. Xie, R. Q. Liu, Z. J. Li, J. D. Wang, X. T. Su,"Synthesis and electrical properties of Ca and Ce doped pyrochlore-type oxides", Chinese Journal of Inorganic Chemistry, 20 (2004) 551-554.
    
    37. Y. H. Xie et al.,"Preparation of La_(1.9)Ca_(0.1)Zr_2O_(6.95) with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure", Solid State Ionics, 168 (2004) 117-121.
    
    38. F. Zhang et al.,"Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-alpha ceramic prepared via microemulsion method and its application in ammonia synthesis at atmospheric pressure",MATER LETT, 61 (2007) 4144-4148.
    
    39. G. Zhang, S. Dorris, U. Balachandran, M. Liu,"Effect of pd coating on hydrogen permeation of Ni-barium cerate mixed conductor", ELECTROCHEM SOLID ST, 5 (2002) J5-J7.
    
    40. T. Norby, Y. Larring,"Mixed hydrogen ion-electronic conductors for hydrogen permeable membranes", Solid State Ionics, 136 (2000) 139-148.
    
    41. G. Zhang, S. Dorris, U. Balachandran, M. Liu,"Interfacial resistances of Ni-BCY mixed-conducting membranes for hydrogen separation", Solid State Ionics, 159 (2003)121-134.
    
    42. N. Taniguchi, K. Hatoh, J. Niikura, T. Gamo, H. Iwahara,"Proton Conductive Properties of Gadolinium-Doped Barium Cerates at High-Temperatures", Solid State Ionics, 53-56 (1992) 998-1003.
    
    43. N. Bonanos, B. Ellis, M. N. Mahmood,"Construction and Operation of Fuel-Cells Based on the Solid Electrolyte Baceo3-Gd", Solid State Ionics, 44 (1991) 305-311.
    
    44. H. Iwahara, T. Yajima, H. Ushida,"Effect of ionic radii of dopants on mixed ionic conduction (H++O2-) in BaCeO_3-based electrolytes", Solid State Ionics, 70-71 (1994) 267-271.
    
    45. H. Iwahara, T. Yajima, H. Ushida,"Effect of Ionic-Radii of Dopants on Mixed Ionic-Conduction (H++O2-) in BaCeC_3-Based Electrolytes", Solid State Ionics, 70 (1994) 267-271.
    
    46. T. Hibino, K. Mizutani, T. Yajima, H. Iwahara,"Evaluation of Proton Conductivity in SrCeO_3,BaCeO_3, CaZrO_3 and SrZrO_3 by Temperature Programmed Desorption Method", Solid State Ionics, 57 (1992) 303-306.
    
    47. H. Iwahara, T. Yajima, T. Hibino, H. Ushida,"Performance of Solid Oxide Fuel-Cell Using Proton and Oxide-Ion Mixed Conductors Based on Bacel-Xsmxo3-Alpha", Journal of the Electrochemical Society, 140(1993) 1687-1691.
    
    48. G. C. Mather, J. R. Jurado,"Nonstoichiometry and stability in water of undoped SrCeO_3",Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 42 (2003) 311-316.
    
    49. C. D. Zuo, T. H. Lee, S. E. Dorris, U. Balachandran, M. L. Liu,"Composite Ni-Ba(Zr_(0.1)Ce_(0.7)Y_(0.2)O_3 membrane for hydrogen separation", Journal of Power Sources, 159 (2006) 1291-1295.
    
    50. A. Tomita et al.,"Chemical and redox stabilities of a solid oxide fuel cell with BaCe_(0.8)Y_(0.2)O_(3-alph) a functioning as an electrolyte and as an anode", Solid State Ionics, 177(2006)2951-2956.
    
    51. F. L. Chen, O. T. Sorensen, G. Y. Meng, D. K. Peng,"Chemical stability study of BaCe_(0.9)Nd_(0.1)O_(3-alpha) high-temperature proton-conducting ceramic", Journal of Materials Chemistry, 7 (1997) 481-485.
    
    52. K. D. Kreuer et al.,"Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications", Solid State Ionics, 145 (2001) 295-306.
    
    53. K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara,"Protonic conduction in Zr-substituted BaCeO_3", SOLID STATE IONICS, 138 (2000) 91-98.
    
    54. K. D. Kreuer,"Proton-conducting oxides", Annual Review of Materials Research, 33 (2003)333-359.
    
    55. P. Babilo, S. M. Haile,"Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO", Journal of the American Ceramic Society, 88 (2005) 2362-2368.
    
    56. S. W. Tao, J. T. S. Irvine,"A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers", Advanced Materials, 18 (2006) 1581-+.
    
    57. A. K. Azad, J. T. S. Irvine,"Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr)_((1-x))Sc-_x O_(3-delta)", Solid State Ionics, 178 (2007) 635-640.
    
    58. J. S. Bae, W. K. Choo, C. H. Lee."The crystal structure of Ba(Ce_(0.8)Zr_(0.2))O_(-3)", Journal of the European Ceramic Society, 21 (2001) 1779-1782.
    
    59. K. H. Ryu, S. M Haile,"Chemical stability and proton conductivity of doped BaCeO_3-BaZrO_3 solid solutions", Solid State Ionics, 125 (1999) 355-367.
    
    60. T. Shimada, C. Wen, N. Taniguchi, J. Otomo, H. Takahashi.'The high temperature proton conductor BaZr_(0.4)Ce_(0.4)In_(0.2)O_(3-alpha)", Journal Of Power Sources, 131 (2004) 289-292.
    
    61. Z. M. Zhong,"Stability and conductivity study of the BaCe_(0.9-x)Zr_xY_(0.1)O_(2.95) systems", Solid State Ionics, 178 (2007) 213-220.
    
    62. C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano, M. Uchiyama,"Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_(3-delta) as an electrolyte for low-temperature solid-oxide fuel cells", Advanced Materials, 18 (2006)3318-3320.
    
    63. T. Fukui, S. Ohara, S. Kawatsu,"Conductivity of BaPrO_3 based perovskite oxides", Journal of Power Sources, 71 (1998) 164-168.
    
    64. S. V. Bhide, A. V. Virkar/'Stability of AB ' B-1/2 " O-1/2(3)-type mixed perovskite proton conductors", Journal of the Electrochemical Society, 146 (1999) 4386-4392.
    
    65. A. Magraso, F. Espiell, M. Segarra, J. T. S. Irvine,"Chemical and electrical properties of BaPr_(0.7)Gd_(0.3)O_(3-delta)", Journal of Power Sources, 169 (2007) 53-58.
    
    66. G. Ma, F. Zhang, J. Zhu, G. Meng. (2006).
    
    67. F. Zhang, C. Chen, B. Pan, R. Xu, G. L. Ma,"Study on proton conduction in La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3-alpha)) ceramics", Acta Chimica Sinica, 65 (2007) 2473-2478.
    
    68. T. Norby,"Solid-state protonic conductors: principles, properties, progress and prospects",Solid State Ionics, 125 (1999) 1-11.
    
    69. T. Shimura, M. Komori, H. Iwahara,"Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature", Solid State Ionics, 86-8 (1996) 685-689.
    
    70. T. Omata, S. Otsuka-Yao-Matsuo,"Electrical properties of proton-conducting Ca~(2+)-doped La_2Zr_2O with a pyrochlore-type structure", Journal of the Electrochemical Society, 148(2001)E252-E261.
    
    71. M. E. Bjorketun, C. S. Knee, B. J. Nyman, G. Wahnstrom,"Protonic defects in pure and doped La_2Zr_2O_7 pyrochlore oxide", Solid State Ionics, 178 (2008) 1642-1647.
    
    72. Y. Nigara, K. Kawamura, T. Kawada, J. Mizusaki, M. Ishigame,"Hydrogen permeability in sintered CeO_2 at high temperatures", Journal of the Electrochemical Society, 146 (1999)2948-2953.
    
    73. Y. Nigara, Y. Kosaka, K. Kawamura, J. Mizusaki, M. Ishigame,"Oxygen permeability in ZrO_2-CeO_2-MgO at high temperatures", Solid State Ionics, 86-8 (1996) 739-744.
    
    74. Y. Nigara, J. Mizusaki, M. Ishigame,"Measurement of Oxygen Permeability in CeO_2 Doped Csz", Solid State Ionics, 79 (1995) 208-211.
    
    75. Y. Nigara, J. Mizusaki, K. Kawamura, T. Kawada, M. Ishigame,"Hydrogen permeability in (Ce02)_(0.9))(CaO)_((0.1)) at high temperatures", Solid State Ionics, 115 (1998) 347-354.
    
    76. Y. Nigara, K. Watanabe, K. Kawamura, J. Mizusaki, M. Ishigame,"Oxygen permeation in ZrO_2-CeO_2-CaO for application to oxygen separation from thermally decomposed H2O",Journal of the Electrochemical Society, 144 (1997) 1050-1055.
    
    77. Y. Nigara, K. Yashiro, J. O. Hong, T. Kawada, J. Mizusaki,"Hydrogen permeability of YSZ single crystals at high temperatures", Solid State Ionics, 171 (2004) 61-67.
    
    78. Y. Nigara, K. Yashiro, I. Kawada, J. Mizusaki,"Hydrogen permeability in (CeO_2)_((0.9))(GdO_(1.5))_((0.1)) at high temperatures", Solid State Ionics, 159 (2003) 135-141.
    
    79. Y. Nigara, K. Yashiro, T. Kawada, J. Mizusaki,"The atomic hydrogen permeability in (Ce02)_((0.85))(CaO)_((0.15)) at high temperatures", Solid State Ionics, 145 (2001) 365-370.
    
    80. Y. Nigara, K. Kawamura, T. Kawada, J. Mizusaki,"Hydrogen permeability in Ce_(0.8)Yb_(0.2)O_(1.9) at high temperatures", Solid State Ionics, 136 (2000) 215-221.
    
    81. T. Shimura, Y. Tokiwa, H. Iwahara,"Protonic conduction in lanthanum strontium aluminate and lanthanum mobate-based oxides at elevated temperatures", SOLID STATE IONICS, 154(2002) 653-658.
    
    82. R. Haugsrud, T. Norby,"Proton conduction in rare-earth ortho-niobates and ortho-tantalates",Nature Materials, 5 (2006) 193-196.
    
    83. B. Zhu, X. R. Liu, T. Schober,"Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications", Electrochemistry Communications, 6 (2004) 378-383.
    
    84. B. Zhu, G. Y. Meng, B. E. Mellander,"Non-conventional fuel cell systems: new concepts and development", Journal of Power Sources, 79 (1999) 30-36.
    
    85. W. Zhu, C. R. Xia, D. Ding, X. Y. Shi, G. Y. Meng,"Electrical properties of ceria-carbonate composite electrolytes", Materials Research Bulletin, 41 (2006) 2057-2064.
    
    86. G. Y. Meng et al.,"Novel intermediate temperature ceramic fuel cells with doped ceria-based composite electrolytes", Solid State Ionics, 148 (2002) 533-537.
    
    87. M. S. Islam,"Ionic transport in ABO_3 perovskite oxides: a computer modelling tour", J. Mater. Chem, (2000) 1027-1038.
    
    88. J. F. Liu, A. S. Nowick,"The Incorporation and Migration of Protons in Nd-Doped BaCeO_3",Solid State Ionics, 50 (1992) 131-138.
    
    89. T. Yajima, H. Suzuki, T. Yogo, H. Iwahara,"Protonic conduction in SrZrO_3-based oxides", Solid State Ionics, 51 (1992) 101-107.
    
    90. N. Kurita, N. Fukatsu, K. Ito, T. Ohashi,"Protonic Conduction Domain of Indium-Doped Calcium Zirconate", Journal of the Electrochemical Society, 142 (1995) 1552-1559.
    
    91. H. Maekawa et al.,"High temperature proton NMR study of yttrium doped barium cerates", Solid State Communications, 130 (2004) 73-77.
    
    92. K. Kunstler, H. J. Lang, A. Maiwald, G. Tomandl,"Synthesis, structure and electrochemical properties of In-doped BaCeO_3", Solid State Ionics, 107 (1998) 221-229.
    
    93. D. A. Stevenson, N. Jiang, R. M. Buchanan, F. E. G. Henn,"Characterization of Gd, Yb and Nd Doped Barium Cerates as Proton Conductors", Solid State Ionics, 62 (1993) 279-285.
    
    94. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki,"Protonic conduction in calcium,strontium and barium zirconates", Solid State Ionics, 61 (1993) 65-69.
    1.F.ROBERT,"The Hydrogen Backlash",science,305(2004)958-961.
    2.M.Conte,A.Iacobazzi,M.Ronchetti,R.Vellone,"Hydrogen economy for a sustainable development:state-of-the-art and technological perspectives",Journal of Power Sources,100(2001)171-187.
    3.M.Marquevich,R.Coll,J.Salvado,D.Montane,"Hydrogen production from biomass:steam-reforming of vegetable oils and pyrolisis oils",Afinidad,58(2001)181-189.
    4.K.Nath,D.Das,"Hydrogen from biomass",Current Science,85(2003)265-271.
    5.D.Kennedy,"The Hydrogen Solution",science,305(2004)917.
    6.J.A.Turner,"Sustainable Hydrogen Production",SCIENCE,305(2004)972-974.
    7.J.A.Ritter,A.D.Ebner,"State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries",Separation Science and Technology,42(2007)1123-1193.
    8.R.Siriwardane et al.,"Characterization of ceramic hydrogen separation membranes with varying nickel concentrations", APPLIED SURFACE SCIENCE, 167 (2000) 34-50.
    
    9. G. Z. U. Balachandran T. H. Lee, S. E. Dorris,"DEVELOPMENT OF DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION", 6th Natural Gas Conversion Symposium, Girdwood, Alaska, June 17-21,2001, (2000).
    
    10. G. Zhang, S. Dorris, U. Balachandran, M. Liu,"Effect of pd coating on hydrogen permeation of Ni-barium cerate mixed conductor", ELECTROCHEM SOLID ST, 5 (2002) J5-J7.
    
    11. G. Zhang, S. Dorris, U. Balachandran, M. Liu,"Interfacial resistances of Ni-BCY mixed-conducting membranes for hydrogen separation", Solid State Ionics, 159 (2003)121-134.
    
    12. C. D. Zuo et al.,"Hydrogen permeation and chemical stability of cermet [Ni-Ba(Zr_(0.8-x)Ce_xY_(0.2))O_3] membranes", Electrochemical and Solid State Letters, 8 (2005)J35-J37.
    
    13. U. Balachandran et al,"Hydrogen separation by dense cermet membranes", Fuel, 85 (2006)150-155.
    
    14. S. J. Song et al, "Annealing effect of cermet membranes on hydrogen permeability",Chemistry Letters, 35 (2006) 1378-1379.
    
    15. C. D. Zuo, S. E. Dorris, U. Balachandran, M. L. Liu,"Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe_(0.8)Y_(0.2)O_(3-alpha) mixed protonic-electronic conductor", Chemistry of Materials, 18 (2006) 4647-4650.
    
    16. C. D. Zuo, T. H. Lee, S. E. Dorris, U. Balachandran, M. L. Liu,"Composite Ni-Ba(Zr_(0.1)Ce_(0.7)Y_(0..2))O_3 membrane for hydrogen separation", Journal of Power Sources, 159(2006) 1291-1295.
    
    17. T. H. L. U. (Balu) Balachandran, S. Wang, C. Zuo and S. E. Dorris, in 20th Annual International Pittsburgh Coal Conference.Pittsburgh, PA, Sept. 15-19. (2003).
    
    18. R. Siriwardane et al, "Characterization of ceramic-metal composite hydrogen separation membranes consisting of barium oxide, cerium oxide, yttrium oxide and palladium",APPLIED SURFACE SCIENCE, 217 (2003) 43-49.
    
    19. N. Kim, B. H. Kim, D. Lee,"Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte", Journal of Power Sources, 90 (2000) 139-143.
    
    20. X. T. Su, Q. Z. Yan, X. H. Ma, W. F. Zhang, C. C. Ge,"Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte",Solid State Ionics,177(2006)1041-1045.
    21.F.L.Chen,O.T.Sorensen,G.Y.Meng,D.K.Peng,"Chemical stability study of BaCe_(0.9)Nd_(0.1)O_(3-alpha)high-temperature proton-conducting ceramic",Journal of Materials Chemistry,7(1997)481-485.
    22.N.Maffei,L.Pelletier,J.P.Charland,A.McFarlan,"A direct ammonia fuel cell using barium cerate proton conducting electrolyte doped with gadolinium and praseodymium",Fuel Cells,7(2007)323-328.
    23.Y.Ji,J.Liu,T.M.He,J.X.Wang,W.H.Su,"The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte",Joumai of Alloys and Compounds,389(2005)317-322.
    24.王记江,李东升,胡怀明,蒋凯,史启祯,“BaceO_3基高温质子导体研究进展”,延安大学学报,25(2006)59-64.
    1.K.D.Kreuer,"Proton-conducting oxides",Annual Review of Materials Research,33(2003)333-359.
    2.J.A.Ritter,A.D.Ebner,"State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical,and petrochemical industries",Separation Science and Technology, 42 (2007) 1123-1193.
    
    3. F. L. Chen, O. T. Sorensen, G. Y. Meng, D. K. Peng,"Chemical stability study of BaCe_(0.9)Nd_(0.1)O_(3-alpha) high-temperature proton-conducting ceramic", Journal of Materials Chemistry, 7 (1997) 481-485.
    
    4. S. V. Bhide, A. V. Virkar,"Stability of BaCeO_3-based proton conductors in water-containing atmospheres", Journal of the Electrochemical Society, 146 (1999) 2038-2044.
    
    5. C. W. Tanner, A. V. Virkar,"Instability of BaCeO_3 in H_2O-Containing atmospheres", Journal Of The Electrochemical Society, 143 (1996) 1386-1389.
    
    6. Z. L. Wu, M. L. Liu,"Stability of BaCe_(0.8)Gd_(0.2)O_3 in a H_2O-containing atmosphere at intermediate temperatures", Journal of the Electrochemical Society, 144 (1997) 2170-2175.
    
    7. L. P. Cook, W. Wong-Ng, R. Feenstra,"Ba(OH)_((2)) equilibria in the system Ba-O-H-F, with application to the formation of Ba_2YCu_3O_(6.5+x) from BaF_2-precursors", Journal of Research of the National Institute of Standards and Technology, 110 (2005) 115-126.
    1. M. Conte, A. Iacobazzi, M. Ronchetti, R. Vellone,"Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives", Journal of Power Sources, 100(2001) 171-187.
    
    2. G. Marban, T. Vales-Solis,"Towards the hydrogen economy?" International Journal of Hydrogen Energy, 32 (2007) 1625-1637.
    
    3. J. A. Ritter, A. D. Ebner,"State-of-the-art adsorption and membrane separation processes for hydrogen production in the chemical and petrochemical industries", Separation Science and Technology, 42 (2007) 1123-1193.
    
    4. U. Balachandran et al.,"Hydrogen separation by dense cermet membranes", Fuel, 85 (2006)150-155.
    
    5. C. D. Zuo et al.,"Hydrogen permeation and chemical stability of cermet [Ni-Ba(Zr_(0.8-x)Ce_xY_(0.2))O_(-3)] membranes", Electrochemical and Solid State Letters, 8 (2005)J35-J37.
    
    6. C. D. Zuo, T. H. Lee, S. E. Dorris, U. Balachandran, M. L. Liu,"Composite Ni-Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_3 membrane for hydrogen separation", Journal of Power Sources, 159(2006) 1291-1295.
    
    7. C. D. Zuo, S. E. Dorris, U. Balachandran, M. L. Liu,"Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe_(0.8)Y_(0.2)O_(3-alPha) mixed protonic-electronic conductor", Chemistry of Materials, 18 (2006) 4647-4650.
    
    8. A. Tomita et al.,"Chemical and redox stabilities of a solid oxide fuel cell with BaCe_(0.8)Y_(0.2)O_(3-alpha) functioning as an electrolyte and as an anode", Solid State Ionics, 177(2006)2951-2956.
    
    9. D. Peterson, J. Winnick,"A hydrogen sulfide fuel cell using a proton-conducting solid electrolyte", Journal of the Electrochemical Society, 143 (1996) L55-L56.
    
    10. J. Li, J.-L. Luo, K. T. Chuang, A. R. Sanger,"Chemical stability of Y-doped Ba(Ce,Zr)O_3 perovskites in H2S-containing H2", Electrochimica Acta, 53 (2008) 3701-3707.
    
    11. K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara,"Protonic conduction in Zr-substituted BaCeO_3", SOLID STATE IONICS, 138(2000)91-98.
    
    12. P. Babilo, S. M. Haile,"Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO", Journal of the American Ceramic Society, 88 (2005) 2362-2368.
    
    13. S. W. Zha, Z. Cheng, M. L. Liu,"Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells", Journal of the Electrochemical Society, 154 (2007) B201-B206.
    14. K. Sasaki et al.,"H2S poisoning of solid oxide fuel cells", Journal of the Electrochemical Society, 153 (2006) A2023-A2029.
    
    15. M. V. Rao, Ph.D Thesis, Universitat Stuttgart (2006).
    
    16. Z. Cheng, M. L. Liu,"Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman micro spectroscopy", Solid State Ionics, 178 (2007) 925-935.
    
    17. H. Kurokawa, T. Z. Sholklapper, C. P. Jacobson, L. C. De Jonghe, S. J. Visco,"Ceria nanocoating for sulfur tolerant Ni-based anodes of solid oxide fuel cells", Electrochemical and Solid State Letters, 10 (2007) B135-B138.
    
    18. H. P. He, R. J. Gorte, J. M. Vohs,"Highly sulfur tolerant Cu-ceria anodes for SOFCs",ELECTROCHEM SOLID ST, 8 (2005) A279-A280.
    
    19. R. M. Fertizz, R. J. Gorte, J. M. Vohs,"Determining the Ce_2O-2S-CeOx phase boundary for conditions relevant to adsorption and catalysis", Applied Catalysis B-Environmental, 43(2003) 273-280.
    
    20. J. Dong, Z. Cheng, S. W. Zha, M. L. Liu,"Identification of nickel sulfides on Ni-YSZ cermet exposed to H_2 fuel containing H_2S using Raman spectroscopy", Journal of Power Sources,156(2006)461-465.
    
    21. A. G. Morachevskii, L. B. Tsymbulov,"Thermodynamic characteristics of Ni3S2 compound formation", Russian Journal of Applied Chemistry, 76 (2003) 1006-1007.
    
    22. E. H. P. Cordfunke, A. S. Booij, M. E. Huntelaar.'The thermochemical properties of BaCeO_3(s) and SrCeO_3(s) from T = (5 to 1500)K", Journal of Chemical Thermodynamics, 30(1998)437-447.
    1.H.Iwahara,Y.Asakura,K.Katahira,M.Tanaka,"Prospect of hydrogen technology using proton-conducting ceramics", SOLID STATE IONICS, 168 (2004) 299-310.
    
    2. S. V. Bhide, A. V. Virkar,"Stability of BaCeO3-based proton conductors in water-containing atmospheres", Journal of the Electrochemical Society, 146 (1999) 2038-2044.
    
    3. K. H. Ryu, S. M. Haile,"Chemical stability and proton conductivity of doped BaCeO_3-BaZrO-3 solid solutions", Solid State Ionics, 125 (1999) 355-367.
    
    4. C. W. Tanner, A. V. Virkar,"lnstability of BaCeO_3 in H_2O-Containing atmospheres", Journal Of The Electrochemical Society, 143 (1996) 1386-1389.
    
    5. A. Tomita et al.,"Chemical and redox stabilities of a solid oxide fuel cell with BaCe_(0.8)Y_(0.2)O_(3-alpha) functioning as an electrolyte and as an anode", Solid State Ionics, 177(2006)2951-2956.
    
    6. Z. L. Wu, M. L. Liu,"Stability of BaCe_(0.8)Gd_(0.2) in a H_2O-containing atmosphere at intermediate temperatures", Journal of the Electrochemical Society, 144 (1997) 2170-2175.
    
    7. N. Zakowsky, S. Williamson, J. T. S. Irvine,"Elaboration of CO_2 tolerance limits of BaCe_(0.9)Y_(0.1)O_(3-delta) electrolytes for fuel cells and other applications", Solid State Ionics, 176(2005)3019-3026.
    
    8. G. L. Ma, F. Zhang, J. L. Zhu, G. Y. Meng,"Proton conduction in La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-alpha)",Chemistry of Materials, 18 (2006) 6006-6011.
    
    9. F. Zhang, C. Chen, B. Pan, R. Xu, G. L. Ma,"Study on proton conduction in La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3-alpha) ceramics", Acta Chimica Sinica, 65 (2007) 2473-2478.
    
    10. F. Zhang et al.,"Proton and oxide-ionic conduction in Sr- and Zn-doped LaGaO_3", Journal of Materials Science, 43 (2008) 1587-1592.
    
    11. F. Zhang et al.,"Proton conduction in La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-alpha) ceramic prepared via microemulsion method and its application in ammonia synthesis at atmospheric pressure",MATER LETT, 61 (2007)4144-4148.
    
    12. J. L. Zhu, F. Zhang, C. Chen, G. L. Ma,"Proton conduction in La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(-3alpha) ceramics prepared by microemulsion method", Chinese Journal of Inorganic Chemistry, 23(2007) 1621-1626.
    
    13. M. V. Rao, Ph.D Thesis, Universitat Stuttgart (2006).
    
    14. R. Haugsrud, B. Ballesteros, M. Lira-Cantu, T. Norby,"Ionic and electronic conductivity of 5% Ca-doped GdNbO_4", Journal of the Electrochemical Society, 153 (2006) J87-J90.
    
    15. R. Haugsrud, T. Norby,"Proton conduction in rare-earth ortho-niobates and ortho-tantalates",Nature Materials, 5 (2006) 193-196.
    
    16. R. Haugsrud, T. Norby,"High-temperature proton conductivity in acceptor-doped LaNbOV,Solid State Ionics, 177 (2006) 1129-1135.
    17. M. E. Bjorketun, C. S. Knee, B. J. Nyman, G. Wahnstrom,"Protonic defects in pure and doped La_2Zr_2O_7 pyrochlore oxide", Solid State Ionics, 178 (2008) 1642-1647.
    
    18. J. A. Labrincha, J. R. Frade, F. M. B. Marques,"Protonic conduction in La_2Zr_2O_7-based pyrochlore materials", Solid State Ionics, 99 (1997) 33-40.
    
    19. T. Omata, K. Okuda, S. Tsugimoto, S. Otsuka-Matsuo-Yao,"Water and hydrogen evolution properties and protonic conducting behaviors of Ca~(2+)-doped La_2Zr_2O_7 with a pyrochlore structure", Solid State Ionics, 104 (1997) 249-258.
    
    20. T. Omata, S. Otsuka-Yao-Matsuo,"Electrical properties of proton-conducting Ca~(2+)-doped La_2Zr_2O_7 with a pyrochlore-type structure", Journal of the Electrochemical Society, 148(2001)E252-E261.
    
    21. A. Petric, P. N. Huang,"Oxygen and Proton Conduction in the Yttrium Tantalate Pyrochlore Phase", Journal of Materials Chemistry, 5 (1995) 607-610.
    
    22. T. Shimura, M. Komori, H. Iwahara,"Ionic conduction in pyrochlore-type oxides containing rare earth elements at high temperature", Solid State Ionics, 86-8 (1996) 685-689.
    
    23. H. Yamamura, H. Nishino, K. Kakinuma, K. Nomura,"Crystal phase and electrical conductivity in the pyrochlore-type composition systems, Ln_((2))Ce_((2))O_((7)) (Ln = La, Nd, Sm, Eu,Gd, Y and Yb)", Journal of the Ceramic Society of Japan, 111 (2003) 902-906.
    
    24. Y. Nigara, K. Kawamura, T. Kawada, J. Mizusaki,"Hydrogen permeability in Ce_(0.8)Yb_(0.2)O_(1.9) at high temperatures", Solid State Ionics, 136 (2000) 215-221.
    
    25. Y. Nigara, K. Kawamura, T. Kawada, J. Mizusaki, M. Ishigame,"Hydrogen permeability in sintered CeO_2 at high temperatures", Journal of the Electrochemical Society, 146 (1999)2948-2953.
    
    26. Y. Nigara, Y. Kosaka, K. Kawamura, J. Mizusaki, M. Ishigame,"Oxygen permeability in ZrO_2-CeO_2-MgO at high temperatures", Solid State Ionics, 86-8 (1996) 739-744.
    
    27. Y. Nigara, J. Mizusaki, M. Ishigame,"Measurement of Oxygen Permeability in Ceo2 Doped Csz", Solid State Ionics, 79 (1995) 208-211.
    
    28. Y. Nigara, J. Mizusaki, K. Kawamura, T. Kawada, M. Ishigame,"Hydrogen permeability in (CeO_2)_((0.9))(CaO)_((0.1))at high temperatures", Solid State Ionics, 115 (1998) 347-354.
    
    29. Y. Nigara, K. Yashiro, J. O. Hong, T. Kawada, J. Mizusaki,"Hydrogen permeability of YSZ single crystals at high temperatures", Solid State Ionics, 171 (2004) 61-67.
    
    30. Y. Nigara, K. Yashiro, I. Kawada, J. Mizusaki,"Hydrogen permeability in (CeO_2)_((0.9))(GdO_(1.5))_((0.1)) at high temperatures", Solid State Ionics, 159 (2003) 135-141.
    
    31. Y. Nigara, K. Yashiro, T. Kawada, J. Mizusaki."The atomic hydrogen permeability in (CeO_2)_((0.85))(CaO)_((0.15))at high temperatures", Solid State Ionics, 145 (2001) 365-370.
    32. J. D. Wang, Y. H. Xie, Z. F. Zhang, R. Q. Liu, Z. H. Li,"Protonic conduction in Ca~(2+)-doped La_2M_2O_7 (M = Ce, Zr) with its application to ammonia synthesis electrochemically",Materials Research Bulletin, 40 (2005) 1294-1302.
    1. Z. L. Wu, M. L. Liu,"StabiIity of BaCe_(0.8)Gd_(0.2)O_3 in a H_2O-containing atmosphere at intermediate temperatures", Journal of the Electrochemical Society, 144 (1997) 2170-2175.
    
    2. C. W. Tanner, A. V. Virkar,"Instability of BaCeO_3 in H_2O-Containing atmospheres", Journal Of The Electrochemical Society, 143 (1996) 1386-1389.
    
    3. K. H. Ryu, S. M. Haile,"Chemical stability and proton conductivity of doped BaCeO_3-BaZrO_3 solid solutions", Solid State Ionics, 125 (1999) 355-367.
    
    4. S. V. Bhide, A. V. Virkar,"Stability of BaCeO_3-based proton conductors in water-containing atmospheres", Journal of the Electrochemical Society, 146 (1999) 2038-2044.
    
    5. N. Zakowsky, S. Williamson, J. T. S. Irvine,"Elaboration of CO_2 tolerance limits of BaCe_(0.9)Y_(0.1)O_(3-delta) electrolytes for fuel cells and other applications", Solid State Ionics, 176(2005)3019-3026.
    
    6. A. Tomita et al.,"Chemical and redox stabilities of a solid oxide fuel cell with BaCe_(0.8)Y_(0.2)O_(3-alpha) functioning as an electrolyte and as an anode", Solid State Ionics, 177(2006)2951-2956.
    
    7. F. L. Chen, O. T. Sorensen, G. Y. Meng, D. K. Peng,"Chemical stability study of BaCe_(0.9)Nd_(0.1)O_(3-alpha) high-temperature proton-conducting ceramic", Journal of Materials Chemistry, 7 (1997) 481-485.
    
    8. A. K. Azad, J. T. S. Irvine,"Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr)_((1-x))Sc-x O_(3-delta)", Solid State Ionics, 178 (2007) 635-640.
    
    9. J. Li, J.-L. Luo, K. T. Chuang, A. R. Sanger,"Chemical stability of Y-doped Ba(Ce,Zr)O_3 perovskites in H2S-containing H2", Electrochimica Acta, 53 (2008) 3701-3707.
    
    10. C. D. Zuo, S. W. Zha, M. L. Liu, M. Hatano, M. Uchiyama,"Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_(3-delta) as an electrolyte for low-temperature solid-oxide fuel cells", Advanced Materials, 18 (2006)3318-3320.
    
    11. C.D. Zuo, T. H. Lee, S. E. Dorris, U. Balachandran, M. L. Liu,"Composite Ni-Ba(Zr_(0.1)Ce_(0.7)Y_(0.2))O_3 membrane for hydrogen separation", Journal of Power Sources, 159(2006) 1291-1295.
    
    12. C. D. Zuo, S. E. Dorris, U. Balachandran, M. L. Liu,"Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe_(0.8)Y_(0.2)O_(3-alpha) mixed protonic-electronic conductor", Chemistry of Materials, 18 (2006) 4647-4650.
    
    13. H. T. Chen, Y. M. Choi, M. L. Liu, M. C. Lin,"A first-principles analysis for sulfur tolerance of CeO_2 in solid oxide fuel cells", Journal of Physical Chemistry C, 111 (2007) 11117-11122.
    
    14. R. M. Fertizz, R. J. Gorte, J. M. Vohs,"Determining the Ce_2O_2S-CeOx phase boundary for conditions relevant to adsorption and catalysis", Applied Catalysis B-Environmental, 43 (2003)273-280.
    15.H.P.He,R.J.Gorte,J.M.Vohs,"Highly sulfur tolerant Cu-ceria anodes for SOFCs",ELECTROCHEM SOLID ST,8(2005)A279-A280.
    16.Z.M.Zhong,"Stability and conductivity study of the BaCe_(0.9-x)Zr_xY_(0.1)O_(2.95)systems",Solid State Ionics,178(2007)213-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700